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For the response acquisition of the structure sectionmeasuring points, themethod of identifying the structural stiffness parameters
is developed by using the extended Kalman filter. The state equation of structural system parameter is a nonlinear equation.
Dispersing the structural dynamic equation by using Newmark-𝛽 method, the state transition matrix of discrete state equation
is deduced and the solution of discrete state equation is simplified. The numerical simulation shows that the error of structural
recognition doesnot exceed 5% when the noise level is 3%. It meets the requirements of the error limit of the engineering structure,
which indicates that the derivation described in this paper has the robustness for the structural stiffness recognition. Shear structure
parameter identification examples illustrate its applicability, and themethod can also be used to identify physical parameters of large
structure.

1. Introduction

The dynamic response of structure which is developed in
recent years is used to recognize the structural damage. This
method is based on the structural dynamic parameter. The
civil engineering structure will accumulate damage because
of the collision, environment corrosion, material aging, long-
term effects of load, and the fatigue. The local damage
will lead to the destruction of the whole structure, which
will result in serious engineering accident. The diagnostic
techniques of structural damage have been studied since
the 1970s in order to guarantee the structural safety and
reduce the economic loss [1]. The aim of structural dam-
age recognition is to find the position and the degree of
structural damage, which provides foundation for the follow-
up assessment of structural safety [2]. Damage identification
is based on structural vibration, and the basic principle is
structural modal parameter (natural frequency, mode shape,
etc.) as the function of the structural physical characteristics
(mass, damping, and stiffness), and so the change of physical
characteristics will cause the change in system dynamic
response [3–5].

Another important property which the ideal damage
identification method should have is to be able to distinguish
the differences of the two deviations caused by structural
modeling error and structural damage. How to explain the
structural security status and damage degrees by virtue of
the information frommeasurements is still a scientific theory
which is to be improved.The structural damage identification
method based on the changes of vibration characteristics has
been adopted to research for decades. Because the structural
vibrationmodal parameters (such as frequency,mode shapes,
and modal damping) are the functions of structural physical
parameters (such as mass, stiffness, and damping), changes
in the structural physical parameters will inevitably lead to
change in structural vibrationmodal parameters, which is the
basic principle of structural damage identification. Damage
identification is usually divided into three levels: to judge the
occurrence of damage; to determine the location of damage;
to solve the extent of damage [6–9]. The early damage
identificationmethod generally determines the occurrence of
damage by the changes of the frequency before and after the
damage. Later, it has been gradually developed by using var-
ious modal testing information (such as displacement mode,
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strain mode, and frequency response function) for accurate
damage positioning and measurement [10]. The structural
damage identification techniques have been combined with
modernmodalmeasurement andmodern numerical analysis
method, and they are playing an important role in the field of
civil engineering [11–14].

In terms of algorithms, it usually takes optimization
[15, 16] or intelligent algorithm [17–19] and other methods
to determine the degree of structural damage. Uncertainty
widely exists in practical engineering, and the theory and
algorithm of uncertain optimization research is significant
for the system. In the optimization method of uncertainty,
many studies have been done for the uncertainty analysis
and solution strategy [20–23]. Due to the fact that there is
a lot of uncertain information during the research process
of geotechnical engineering, it is difficult for deterministic
models to conclude the complicated mechanical property
of geotechnical engineering. Data [24] develops a variety
of nondeterministic methods on the basis of determinis-
tic back analysis. As the neural network can reflect any
nonlinear systems without knowing the nonlinear physi-
cal properties of systems, nonlinear dynamical systems of
nonparametric research based on the neural network are
increasingly developing [25–28]. Data [29] introduces the
principle of SDLV and puts forward the precise SDLVdamage
localization method based on the success of rod damage
identification. As for the unreliable results of structural
damage identification caused by large and complex struc-
tures and a serious shortage of measurement information,
data [30] comes up with damage identification methods of
partial main frequency substructure.There are noises in both
structural model and measurement response which lead to
the numerical instability of structural damage identification.
Tikhonov regularization method is a common method to
improve ill-conditioned matrix. By introducing a smooth
function to Tikhonov penalty function, data [31] improves
the impact of noise on structural damage. It is an effective
way to study the effects of noise on structural damage
identification by means of probability. Data [32] presents
the information fusion techniques based on Bayesian theory,
which is used to improve the accuracy of structural damage
identification results. Structuralmonitoring can onlymonitor
partial measuring points, while the random damage locating
vector method can produce better recognition results for
truss bridges and steel frame structures [33]. For the problems
of inaccurate damage identification of symmetric structure,
data [34] proposes the theory of mobile additional mass to
change symmetry of the structure.

Physical parameters identification is one of the main
research contents of structural health monitoring. Accord-
ing to the change of physical parameters, especially the
stiffness, we are able to identify the structure damage, as
well as the damage degree and location. In this paper,
the natural excitation technique and the extended Kalman
filter algorithm are used in shear structure by adopting
time domain identification method, and a new method of
physical parameter identification based on environmental
excitation is put forward to identify the interlaminar stiffness
of the shear structure. Numerical simulation results show that

the proposedmethod can well identify structural parameters.
With the increase of noise level, convergence time of iden-
tified value to the true value elongates and error increases
gradually but within the acceptable scope of the project,
which shows algorithm has certain robustness to noise.

2. EKF Principle of Structural
Stiffness Identification

The structural equation of motion under seismic excitations
can be expressed as

Mẍ + Cẋ + K (𝜃) x = −Mẍ𝑔, (1)

M,C, and K(𝜃) represent mass matrix of 𝑛 × 𝑛 dimensional,
dampingmatrix, and stiffnessmatrix. DampingmatrixCuses
Rayleigh damping; ẍ, ẋ, and x are the acceleration of the
structure, speed, and displacement response; ẍ𝑔 is ground
motion acceleration; 𝑛 is the degree of structure freedom;
𝜃 is structural stiffness parameters to be identified, which
dimension is𝑚.

At the time of 𝑘 and 𝑘 + 1,

Mẍ𝑘 + Cẋ𝑘 + K (𝜃) x𝑘 = F𝑘, (2)

Mẍ𝑘+1 + Cẋ𝑘+1 + K (𝜃) x𝑘+1 = F𝑘+1. (3)

According to Newmark-𝛽 method, at the time of 𝑘 + 1,
velocity and displacement can be expressed as

ẋ𝑘+1 = ẋ𝑘 +
Δ𝑡

2
(ẍ𝑘 + ẍ𝑘+1) ,

x𝑘+1 = x𝑘 + ẋ𝑘Δ𝑡 +
Δ𝑡2

4
(ẍ𝑘 + ẍ𝑘+1) ,

(4)

Δ𝑡 is discrete time interval.
Substituting (4) into (3) anddeducing ẍ𝑘+1, we can deduce

the following:

ẍ𝑘+1 = A1 [F𝑘+1 − K (𝜃) x𝑘 − A2ẋ𝑘 − A3ẍ𝑘] , (5)

A1 = (
Δ𝑡2

4
K (𝜃) + Δ𝑡

2
C +M)

−1

,

A2 = (Δ𝑡K (𝜃) + C) ,

A3 = (
Δ𝑡2

4
K (𝜃) + Δ𝑡

2
C) ,

(6)

ẍ𝑘 can be obtained through equation (2) as follows:

ẍ𝑘 = M−1F𝑘 −M
−1K (𝜃) x𝑘 −M

−1Cẋ𝑘. (7)

Combining (5) and (7), we can deduce the following:

(ẍ𝑘+1 + ẍ𝑘) = A1F𝑘+1 − A1K (𝜃) x𝑘 − A1A2ẋ𝑘

− (A1A3 − I) ẍ𝑘

= a𝑓
𝑘
+ a𝑑
𝑘
x𝑘 + a

V
𝑘
ẋ𝑘,

(8)
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a𝑓
𝑘
= A1F𝑘+1 − [A1A3 − I]M

−1F𝑘,

a𝑑
𝑘
= −A1K (𝜃) + [A1A3 − I]M

−1K (𝜃) ,

aV
𝑘
= −A1A2 + [A1A3 − I]M

−1C.

(9)

Substituting (8) into (4), we can deduce the following for-
mula:

ẋ𝑘+1 = ẋ𝑘 +
Δ𝑡

2
(a𝑓
𝑘
+ a𝑑
𝑘
x𝑘 + a

V
𝑘
ẋ𝑘)

=
Δ𝑡

2
a𝑓
𝑘
+
Δ𝑡

2
a𝑑
𝑘
x𝑘 + (

Δ𝑡

2
aV
𝑘
+ I) ẋ𝑘,

x𝑘+1 = x𝑘 + ẋ𝑘Δ𝑡 +
Δ𝑡2

4
(a𝑓
𝑘
+ a𝑑
𝑘
x𝑘 + a

V
𝑘
ẋ𝑘)

=
Δ𝑡2

4
a𝑓
𝑘
+ (
Δ𝑡2

4
a𝑑
𝑘
+ I) x𝑘 + (

Δ𝑡2

4
aV
𝑘
+ Δ𝑡I) ẋ𝑘.

(10)

Write formula (10) in the matrix form

{
x𝑘+1
ẋ𝑘+1

} =
[
[
[

[

(
Δ𝑡2

4
a𝑑
𝑘
+ I) (

Δ𝑡2

4
aV
𝑘
+ Δ𝑡I)

Δ𝑡

2
a𝑑
𝑘

(
Δ𝑡

2
aV
𝑘
+ I)

]
]
]

]

{
x𝑘
ẋ𝑘
}

+

{{{
{{{
{

Δ𝑡2

4
I

Δ𝑡

2
I

}}}
}}}
}

a𝑓
𝑘
,

(11)

I is the unit matrix of 𝑛 × 𝑛.
Using the method of Newmark-𝛽, we can transform

formula (1) into discrete equation (11).
Let

y𝑘 = {x𝑘 ẋ𝑘 𝜃𝑘}
𝑇
. (12)

Then structural equation of state can be rewritten as

y𝑘+1 =
[
[
[
[
[
[

[

(
Δ𝑡2

4
a𝑑
𝑘
(𝜃) + I) (

Δ𝑡2

4
aV
𝑘
(𝜃) + Δ𝑡I) 0𝑛×𝑚

Δ𝑡

2
a𝑑
𝑘
(𝜃) (

Δ𝑡

2
aV
𝑘
(𝜃) + I) 0𝑛×𝑚

0𝑚×𝑛 0𝑚×𝑛 0𝑚×𝑚

]
]
]
]
]
]

]

y𝑘

+

{{{{{{
{{{{{{
{

Δ𝑡2

4
I

Δ𝑡

2
I

0𝑚×𝑛

}}}}}}
}}}}}}
}

a𝑓
𝑘
.

(13)
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Figure 1: Structure diagram.

Table 1: Structural parameters.

𝑖 1 2 3 4
𝑚
𝑖
(kg) 900 675 675 450

𝑘
𝑖
(Nm−1) 12000 11000 10000 9000

Let

Φ𝑘 =

[
[
[
[
[
[
[

[

(
Δ𝑡2

4
a𝑑
𝑘
(𝜃) + I) (

Δ𝑡2

4
aV
𝑘
(𝜃) + Δ𝑡I) 0𝑛×𝑚

Δ𝑡

2
a𝑑
𝑘
(𝜃) (

Δ𝑡

2
aV
𝑘
(𝜃) + I) 0𝑛×𝑚

0𝑚×𝑛 0𝑚×𝑛 0𝑚×𝑚

]
]
]
]
]
]
]

]

,

Γ𝑘 = {
Δ𝑡2

4
I Δ𝑡
2
I 0𝑚×𝑛}

𝑇

.

(14)

If the process noise exists in the system, (13) can be rewritten
as

y𝑘+1 = Φ𝑘y𝑘 + Γ𝑘𝛼
𝑓

𝑘
+ 𝜔𝑘, (15)

𝜔𝑘 is the process noise of system.
The supplementary system observation equation is

z𝑘+1 = H𝑘y𝑘 + 𝜐𝑘, (16)

H𝑘 is the observation matrix of system and 𝜐𝑘 is the observa-
tion noise of the system.

Assuming that process noise and observation noise are
independent of each other, the covariance matrix of process
noise and observation noise isN= 0. Given the system initial
value y0, the initial value of process noise covariance matrix
P0, and observation noise covariance matrix R, discrete
augmented state vector ŷ𝑘+1 and covariance matrix P̂𝑘+1 can
be estimated according to the extendedKalmanfiltermethod.
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Figure 2: Structural stiffness identification result without noise.

(1) According to formula (15), calculate and predict the
state vector ỹ𝑘+1.

(2) Calculation of covariance prediction equation is

P̃𝑘+1 = Φ𝑘P𝑘Φ
𝑇

𝑘
. (17)

(3) The gain matrix is

K𝑘+1 = P̃𝑘+1H
𝑇

𝑘+1
(H𝑘+1P̃𝑘+1H

𝑇

𝑘+1
+ R)
−1

. (18)

(4) State filtering equation is

x̂𝑘+1 = x̃𝑘+1 + K𝑘+1 (z𝑘+1 −H𝑘+1x̃𝑘+1) . (19)
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Figure 3: Stiffness identification results when SNR is 40.

(5) Error covariance filtering equation is

P𝑘+1 = P̃𝑘+1 − K𝑘+1H𝑘+1P̃𝑘+1. (20)

3. The Numerical Simulation

To validate the effectiveness of the algorithm, a four-story
shear structure is considered, as shown in Figure 1. Struc-
ture damping is the Rayleigh damping; quality factor is

6.984 × 10−3 and stiffness coefficient is 9.390 × 10−4; the rest
parameters of the structure are shown in Table 1.The input of
basement is elecentro wave. Use the method of time-history
analysis to calculate structural response and gather each layer
displacement response as measurements to identify stiffness
between the layers.

Three working conditions in this paper are considered,
which are measurements without noise, measurements with
1% of noise, and measurements with 3% of noise. All the
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Figure 4: Stiffness identification results when SNR is 30.

noises are zeromeanwhite noise. Figure 2 shows the structure
stiffness identification value without noise, from which we
can see that identified value of stiffness converges to the
true value quickly. Figure 3 shows the identification result

of measurements with 1% of noise. Due to the effect of the
noise, there is a certain error between identified value and
true value. Table 2 shows the error level; the maximum error
is within the 1% with the situation of 1% of noise. Figure 4
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Table 2: Structural stiffness identification results.

Stiffness Noise level
No noise Error level % SNR = 40 Error level % SNR = 30 Error level %

𝐾
1

12000 0 12118 0.98 11459 −4.51
𝐾
2

11000 0 10904 −0.87 11491 4.46
𝐾
3

10000 0 10039 0.39 9628 −3.72
𝐾
4

9000 0 8991 −0.10 9038 0.42

shows the measurements with 3% of noise. From Table 2, we
can see that the maximum error is 4.6%, and it is within the
acceptable range of the engineering.

4. Conclusion

The paper using the method of Newmark-𝛽 disperses the
equations ofmotion and deduces the state transition equation
containing the stiffness parameters to be identified. By the
extended Kalman filter algorithm to identify the stiffness
parameters, the conclusion can be drown as follows.

(i) Expanding order state equation is nonlinear state
equation of state variables, and the state transition
matrix is generally through the partial derivative
of the nonlinear equation, which solving process is
complicated. This paper directly deduces the state
transition matrix by Newmark-𝛽 method, and the
result is concise and intuitive.

(ii) Noise affects the identification precision. When there
is no noise in acquisition response, the identification
stiffness converges to the true stiffness precisely.
With the noise increases, the error of identification
precision increases too. When the SNR amounts to
forty, the error is within 1%, and, when the SAR is
thirty, the error is within 5%. The speed of error
increasing surpasses that of noise increasing.

(iii) Noise affects the speed of identification. When there
is no noise in the acquisition response, the algorithm
convergence accesses the truth value. And, when
noise increases, the speed of algorithm convergence
becomes slow. In the practical condition that noise
has affected acquisition response, the time length of
acquisition should be guaranteed so that the algo-
rithm converges to the stable value, which can ensure
reliable identification results.

(iv) From the results of numerical simulation, the pro-
posed algorithm has different identification preci-
sions to the various layers of shear structure, which
is in the increasing condition from the bottom to the
top. The incentive of structure is under the affection
of earthquake, and greater response of structural layer
can be obtained from the higher ground; the different
responses between the layers will affect algorithm
identification precision.
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