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Multicast routing is an effective way to transmit messages to multiple hosts in a network. However, it is vulnerable to intermittent
connectivity property in mobile ad hoc network (MANET) especially for multimedia applications, which have some quality of
service (QoS) requirements.The goal of QoS provisioning is to well organize network resources to satisfy the QoS requirement and
achieve good network delivery services. However, there remains a challenge to provideQoS solutions andmaintain end-to-endQoS
with user mobility. In this paper, a novel penalty adjustment method based on the rough set theory is proposed to deal with path-
delay constraints for multicast routing problems in MANETs. We formulate the problem as a constrained optimization problem,
where the objective function is to minimize the total cost of the multicast tree subject to QoS constraints. The RPGA is evaluated
on three multicast scenarios and compared with two state-of-the-art methods in terms of cost, success rate, and time complexity.
The performance analyses show that this approach is a self-adaptive method for penalty adjustment. Remarkably, the method can
address a variety of constrained multicast routing problems even though the initial routes do not satisfy all QoS requirements.

1. Introduction

Multicasting is a service method in which a source node
can deliver copies of messages to multiple recipients at
different locations in a communication network.Multicasting
techniques play a critical role in many applications such as
video conference, internet games, and web-based learning.
In this paper, multicast routing problems mainly focus on
finding a minimum Steiner tree and satisfying quality-of-
service (QoS) requirements. Unfortunately, the problem of
finding a Steiner tree is known to be a NP-complete problem
[1], even if links have unit costs.

The multicast tree in mobile ad hoc networks (MANETs)
is vulnerable to intermittent connectivity property during
the transmission period [2]. Due to the nodal mobility
and the dynamic topology of mobile networks, a service
provider should find a cost-effective tree for its multicast
customers in real time and assure certain QoS requirements
[3]. Without the support of communication infrastructure,
the challenge of the dynamic routing on a changing topology
is how to decide a multicast tree as soon as possible. To
enhance the effectiveness and efficiency, this work uses

a routing representation scheme to encode the multicast tree.
Therefore, this paper models the multicast routing problem
with QoS constraints to support multimedia transmission in
MANETs [4, 5].

The battery limitation of a mobile node is a critical con-
straint while developing multicast routing protocols. Genetic
algorithm (GA) presents a potential solution for the mul-
ticonstrained multicast routing problem [6]. Traditionally,
penalty-function methods are the most popular constraint-
handling techniques. According to the degree of constraint
violation, penalty coefficient should be determined carefully
[7].The static-penalty (SP) method applies a static coefficient
for each constraint and then adjusts penalty coefficient
manually [8]. To adjust penalty coefficient automatically,
the dynamic-penalty (DP) method combines the generation
number and a scaling constant to adjust coefficient automati-
cally [9]. Furthermore, the adaptive-penalties (AP) method
tries to avoid infeasible solutions by adjusting the penalty
coefficient according to the convergent situation [10].

Different from several related researches [2, 4, 5], this
paper synthesizes the rough set theory (RST) and penalized
techniques as a rough penalty genetic algorithm (RPGA).
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The emphasis of the proposed RPGA uses a rough-penalty
(RP) method to releases/enforces some penalties on ineffi-
cient/efficient constraints during evolution. To facilitate the
effectiveness of multiple penalties, the RPGA incorporates
with a therapeutic crossover to enlarge the genetic diversity
in a population and guide to find the optimal solution. The
performance of the RPGA is evaluated by three kinds of
constrainedmulticast routing scenarios. Experimental results
show that the proposed RPGAnot only can find near-optimal
solutions but also can obtain robust feasible results for QoS-
based multicast routing problems.

The rest of paper is organized as follows. Section 2models
the multicast routing problems with QoS constraints in
MANETs. In Section 3, the operations of the proposed RPGA
are described in detail. Section 4 introduces the proposed RP
method. Section 5 reports the experimental results, algorithm
analyses, and performance comparisons for three test net-
works. Finally, the paper is summarized in Section 6.

2. Problem Description and Formulation

2.1. Network Modeling. At a certain time period in a
MANET, we assume that the service provider knows (1)

traffic load from node 𝑖 to node 𝑗 (𝑖 ̸= 𝑗), (2) QoS require-
ments/constraints (e.g., delay constraint), (3) bandwidth
available of each link, (4) link cost for the traffic to pass
through each link, and (5) time delay for the traffic to
pass through each OD pair. We consider the multicast
routing problem with bandwidth and delay constraints. The
communication network ismodeled as a connectedweighted,
directed graph 𝐺 = (𝑉, 𝐸), where 𝑉 = {V

1
, V
2
, . . . , V

𝑛
} is a

finite set of network nodes and 𝐸 = {𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑚
} is the

set of network links. The link 𝑒 = (𝑢, V) ∈ 𝐸 connects node
𝑢 ∈ 𝑉 to node V ∈ 𝑉with positive cost function (i.e., cost(𝑒) :
𝐸 → 𝑅

+), available bandwidth (i.e., BW(𝑒) : 𝐸 → 𝑅+),
and delay function (i.e., delay(𝑒) : 𝐸 → 𝑅+). The number of
nodes and links (i.e., the cardinalities of 𝑉 and 𝐸) is 𝑛 and𝑚,
respectively. For each multicast session, messages are routed
from a source node 𝑠 to a set of multicast destination group
𝐷 = {𝑑

1
, 𝑑
2
, . . . , 𝑑

𝑘
} ⊆ 𝑉. A multicast tree 𝑇(𝑠, 𝐷) = (𝑉

𝑇
, 𝐸
𝑇
)

represents a solution to the multicast routing problem, where
𝑉
𝑇
⊆ 𝑉 and 𝐸

𝑇
⊆ 𝐸. Thus, this tree 𝑇(𝑠, 𝐷) is a subgraph of 𝐺

with root 𝑠 and a set of nodes𝐷. Let 𝑃
𝑇
(𝑠, 𝑑) represent a path

in the tree, 𝑇(𝑠, 𝐷), from source node 𝑠 to a destination node
𝑑 ∈ 𝐷 − {𝑠}. We have the following definitions.

Definition 1. The cost of multicast tree 𝑇(𝑠, 𝐷) is the sum of
the links’ cost in the tree. The link cost may represent its
monetary cost or resource utilization:

cost (𝑇) = ∑
𝑒∈𝐸𝑇

cost (𝑒) . (1)

Definition 2. Thebottleneck bandwidth of path𝑃
𝑇
(𝑠, 𝑑) is the

minimum value of links’ bandwidth along the path, which
represents the residual bandwidth of a communication path:

BW (𝑃
𝑇
(𝑠, 𝑑)) = min (BW (𝑒) | ∀𝑒 ∈ 𝑃

𝑇
(𝑠, 𝑑)) ,

∀𝑃
𝑇
(𝑠, 𝑑) ⊂ 𝑇, ∀𝑑 ∈ 𝐷.

(2)

Definition 3. The delay of path 𝑃
𝑇
(𝑠, 𝑑) is the sum of links’

delay along the path from 𝑠 to𝑑.The link delaymay include its
nodal processing, queueing, transmission, and propagation
delays:

delay (𝑃
𝑇
(𝑠, 𝑑)) = ∑

𝑒∈𝑃𝑇(𝑠,𝑑)

delay (𝑒) ,

∀𝑃
𝑇
(𝑠, 𝑑) ⊂ 𝑇, ∀𝑑 ∈ 𝐷.

(3)

Definition 4. The delay of multicast tree 𝑇 is the maximum
value of paths’ delay in the tree, that is,

delay (𝑇)

= max (delay (𝑃
𝑇
(𝑠, 𝑑)) | ∀𝑃

𝑇
(𝑠, 𝑑) ⊂ 𝑇, ∀𝑑 ∈ 𝐷) .

(4)

Figure 1 depicts an example of a network graph, link
parameters, and a multicast tree. Parameters along links are
triple (cost, delay, bandwidth). In Figure 1, the source node
is Node 1 (i.e., 𝑠 = 1). The destination nodes are nodes 3, 7,
and 8 (i.e., 𝐷 = {3, 7, 8}). The Steiner tree 𝑇(𝑠, 𝐷) consists
of three paths 𝑃

𝑇
(1, 3) = {(1, 4), (4, 5), (5, 3)}, 𝑃

𝑇
(1, 7) =

{(1, 4), (4, 5), (5, 7)}, and 𝑃
𝑇
(1, 8) = {(1, 4), (4, 5), (5, 8)}. The

total cost of the Steiner tree can be calculated by (1), that is,
cost(𝑇) = 20. By using (2), we can calculate the bottleneck
bandwidth of each path along the Steiner tree, that is,
BW(𝑃

𝑇
(1, 3)) = 8, BW(𝑃

𝑇
(1, 7)) = 8, and BW(𝑃

𝑇
(1, 8)) =

7. We can also apply (3) to calculate delay(𝑃
𝑇
(1, 3)) = 9,

delay(𝑃
𝑇
(1, 7)) = 8, and delay(𝑃

𝑇
(1, 7)) = 10. Finally, we can

derive the total delay of the Steiner tree delay(𝑇) = 9 by (4).

2.2. Problem Definition. The optimal multicast tree 𝑇

depends on the operator objectives, such as network cost,
transmission delay, or target QoS [11]. Therefore, solving the
multicast routing problem is equivalent to find the optimal
distribution tree on the basis of a certain cost function under
a given set of constraints. In this paper, the multicast routing
in MANETs can be modeled as a combinatorial optimization
problem in the following:

minimize cost (𝑇 (𝑠, 𝐷))

subject to: delay (𝑃
𝑇
(𝑠, 𝑑)) ≤ Δ

𝑑
∀𝑑 ∈ 𝐷,

BW (𝑃
𝑇
(𝑠, 𝑑)) ≥ 𝐵

𝑑
∀𝑑 ∈ 𝐷.

(5)

The objective function is to minimize the total cost of
themulticast tree.The path-delay constraint enforces that the
total delay of each OD pair must be smaller than or equal to
its delay bound Δ

𝑑
. The minimum bandwidth requirement

is denoted as 𝐵
𝑑
. Therefore, the multicast routing problem

is to determine a multicast tree connecting the source node
to every destination node such that the cost of this tree is
minimum, while the path-delay and bottleneck-bandwidth
from the source node to any destination node satisfy the
prescribed QoS requirements.

2.3. Routing Table. Since there are so many candidate paths
between two nodes in the network graph 𝐺 = (𝑉, 𝐸),
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Figure 1: An example of a network graph, link parameters, and a Steiner tree.

Table 1: An example of routing table for OD pair (1, 7) in Figure 1.

Routing table of path from node 1 to node 7
Route
no.

Route
path

Cost of the
path

Delay along the
path

Bottleneck
bandwidth

0 1-4-7 10 5 8
1 1-6-7 11 6 10
2 1-4-5-7 12 8 8
...

...
...

...
...

𝑅 − 1 1-2-3-8-7 24 10 12

traditional GAs may consume considerable computational
effort in searching infeasible solutions because genetic oper-
ations do not always preserve feasibility. Therefore, to reduce
the search space, this work uses the 𝐾 shortest path routing
algorithm to precalculate the first𝑅 shortest paths and record
in a routing table. For the network topology in Figure 1, an
example of its routing table for OD pair (1,7) will look like
Table 1, which includes the first 𝑅 shortest paths from node 1
to node 7 with the route path, total cost, aggregate delay, and
bottleneck bandwidth.

3. RPGA for Multicasting Routing Problem

The proposed RPGA adopts a RP method to enhance the
searching abilities of original GAs for handling constrained
multicasting routing problems. To enhance the exploration
ability, the RPGA adopts the RST to enlarge the genetic diver-
sity by releasing inefficient constraints and also enforcing
efficient ones when the generation number is odd. The flow
chart of RPGA (in Figure 2) consists of several genetic oper-
ations, such as initialization, selection, crossover, mutation,
replacement, and RP method. To enhance the exploitation
ability, the proposed RPGA applies the therapeutic crossover
to improve the convergence rate during the evolution.

Fitness
calculation

Selection

Mutation

Stopping? Modify penalty
coefficients

End

Start

Yes

No

Crossover

Release inefficient
constraints by

rough set theory

Odd generation
number?

Yes

No

initial population
Randomly generate

Figure 2: Flow chart of the RPGA.

3.1. Encoding and Initialization. In this paper, the encoding
method is based on a routing representation for multicast
trees. The RPGA maintains a population of chromosomes,
which represent a candidate set of Steiner trees for the
multicast routing problem. Given a source node 𝑠 and a set
of destination nodes 𝐷 = {𝑑

1
, 𝑑
2
, . . . , 𝑑

𝑘
}, a chromosome

can be represented by a string of integers with length 𝑘. The
chromosome is denoted as �⃗� = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑘
), where 𝑥

𝑖
is

an integer in interval [0, 𝑅 − 1] to represent a route number
for the OD pair from 𝑠 to 𝑢

𝑖
in the routing table. In the
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1 2 0
x1 x2 x3

Chromosome

Routing table for path
from node 1 to node 3
Route no. Route path

0 1-2-3
1 1-4-5-3
2 1-2-5-3

1-4-7-5-3

Routing table for path
from node 1 to node 7
Route no. Route path

0 1-4-7
1 1-6-7
2 1-4-5-7

1-2-3-8-7

Routing table for path
from node 1 to node 8
Route no. Route path

0 1-4-5-8
1 1-4-7-8
2 1-6-7-8

1-4-6-7-8
· · · · · ·· · ·· · ·· · ·· · ·

s = {1}, D = {d1 = 3, d2 = 7, d3 = 8}

R − 1 R − 1 R − 1

Figure 3: Representation of chromosome, genes, and routing table.

example of Figure 1, the second OD pair (i.e., source node 1
to destination node 7) is routed along Path 1-4-5-7. The route
number of this path in its routing table (in Table 1) is 2. Thus,
we should assign the route number as the value of the second
gene, that is, 𝑥

2
= 2. Therefore, the relationship between

chromosome, gene, and routing table for the example in
Figure 1 can be illustrated as Figure 3. The RPGA starts with
a random population within the gene value interval [0, 𝑅 −

1], no matter whether these multicast trees satisfy the QoS
constraints or not. The emphasis is that the RPGA can find
the global optimum for constrained problems even though
the initial population is infeasible.

3.2. Fitness Function with Self-Adaptive Penalty Adjustment.
The fitness value of each chromosome represents the quality
of the corresponding multicast tree (i.e., �⃗� = 𝑇(𝑠, 𝐷)).
However, the penalty adjustment for QoS constraints is
difficult to adapt suitably. In this paper, we mix the aspects of
the Joines and Houck’s DP method [9] with the RST to find a
Steiner tree that satisfies the QoS constraints and minimizes
total routing cost as well.

TheproposedRPmethod adjusts penalty terms according
to both violation magnitude and evolution time. To solve
constrained optimization problems effectively, each individ-
ual in generation 𝑡 is evaluated using an expanded objective
function (6):

𝜓 (�⃗�) = cost (�⃗�) +

𝑚

∑
𝑘=1

((𝐶 × 𝑡)
𝜋(𝑘,𝑡)

×max (0, Φ
𝑘
(�⃗�))
2

) ,

(6)

where 𝐶 is a “severity” factor, 𝑚 is the total number of
constraints, and Φ

𝑘
is the violation magnitude of constraint

𝑘. This fitness function combines a coefficient (𝐶 × 𝑡) with
an exponent 𝜋(𝑘, 𝑡) to increase penalty pressure over time.
For constraint 𝑘 in generation 𝑡, the exponent 𝜋(𝑘, 𝑡) is a
representative penaltymultiplier that is initially assigned as 2.
And then, the penaltymultiplier is tuned iteratively according
to the discernible mask �⃗� and the representative attribute
value 𝛾

𝑘
of superior class 𝑋good. The exponent 𝜋(𝑘, 𝑡) is

defined as

𝜋 (𝑘, 𝑡) =
{

{

{

𝜋 (𝑘, 𝑡 − 1) × 𝛾
𝑘
, if 𝜇

𝑘
= 1,

𝜋 (𝑘, 𝑡 − 1) , if 𝜇
𝑘
= 0,

∀𝑘 = 1, . . . , 𝑚; ∀𝑡 = 1, . . . ,MaxGeneration,

𝜋 (𝑘, 0) = 2 ∀𝑘 = 1, . . . , 𝑚.

(7)

Remarkably, the discernible mask �⃗� can be used to enable
𝜋(𝑘, 𝑡) by differentiating significant characteristics between
classes𝑋good and𝑋bad. If the 𝑘th constraint is discernible (i.e.,
𝜇
𝑘
= 1), the exponent 𝜋(𝑘, 𝑡) is adjusted by the representative

attribute value (𝛾
𝑘
); otherwise, the exponent retains the same

value as in the previous generation. All these RP coefficients
will be introduced in Section 4.

3.3. Selection Operation. A selection operation uses fitness
to determine the solution quality and to select high-quality
chromosomes for the recombination operation [12]. The
RPGA employs a stochastic universal selection to create
selection pressure towards the global optimal solution. The
measurement of a chromosome’s fitness is its value of the
expanded objective function in (6).

3.4. Crossover Operation. The crossover operation represents
the mixing of genetic material from two selected parents
to produce one child chromosome. The RPGA proposes
a therapeutic crossover that incorporates a gene-therapy
method with a conventional crossover scheme to enhance
the exploitation ability and speed up the convergence rate
[13].

Each time the selection operation chooses two crossover
parents from the population. The therapeutic crossover gives
each gene locus an equal chance of being a crossover point
(i.e., belongs to a therapeutic genome 𝑖 ∈ 𝐺

𝑐
where 𝐺

𝑐
∈

{1, 2, . . . , 𝑘}). The proposed gene-therapy method evaluates
the merit of two selected genomes by comparing the changes
in the chromosome fitness before and after interchanging the
genomes with the other mating chromosome [13].
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user is Number of OD pair;
Node is all nodes in the network;
Parents is the chromosomes which be selected;
nKids is the numbers of chromosomes create by crossover;
r1, r2 is the chromosomes which are crossover;
coeC is the number of gene will be crossover;
thisScore is the multi path score;
thisGeneScore is the path score in the multi path;
xoverPoint is genes in the chromosome which be select to crossover;
lengthXP is length of xoverPoint;

Begin
for i = 1:nKids

Pick chromosomes r1 and r2 from parents;
coeC is decrease by generations from 1 to 0.2;
Randomly select xoverPoint which probability small than coeC;

if thisScore(r1) ≤ thisScore(r2)
xoverKids(i) = thisPopulation(r1);
for j = 1 to lengthXP

if thisGeneScore(r2(j)) < thisGeneScore(r1(j))
Record path r1(j) as a;
Record path r2(j) as b;
if the route paths in a and b have the same intermediate node (m)

Interchange the sub-routes (s, m) or (m, d) in a and b;
else

xoverKids(i, j) = r2(j);
end if

end if
end for

else

xoverKids(i) = thisPopulation(r2);
for j = 1 to lengthXP

if thisGeneScore(r1(j)) < thisGeneScore(r2(j))
Record path r1(j) as b;
Record path r2(j) as a;
if the route paths in a and b have the same intermediate node (m)

Interchange the sub-routes (s, m) or (m, d) in a and b;
else

xoverKids(i, j) = r1(j);
end if

end if
end for

end if
end for
End

Pseudocode 1: Pseudocode of the crossover operation for routing problem.

According to their relative merit, these two genomes
combine to generate a new genome for their offspring.
Therefore, offspring inherit more genetic material from the
superior genome than the inferior one.We depict the pseudo-
code of the therapeutic crossover in Pseudocode 1.

3.5. Mutation Operation. A mutation operation used in GAs
can increase population diversity to enhance its exploration
ability [13]. This work uses the bit-flip mutation with a fixed
small probability 𝑝

𝑚
. According to this mutation probability

𝑝
𝑚
, themutation operation randomly selects a subset of genes

and chooses new paths from its routing table. Thus, the route
numbers of these new paths in its routing table replace the
original values of selected genes. The resulting chromosome
is a new multicast tree and can increase population diversity.

3.6. Replacement and Termination. The proposed RPGA
adopts a replacement-with-elitism method to prevent best
solutions from being lost through a selection process.
A successive population is produced from three sources:
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(1) the replacement-with-elitismmethod selects the best 10%
chromosomes to join the new population; (2) the crossover
operation recombines 80%of child chromosomes; and (3) the
mutation operation constructs other child chromosomes for
the next generation. The RPGA will stop when it reaches the
predefined maximum iterations.

4. RP Method for Constraint Handling

To address the multicast routing problem with QoS con-
straints, the challenge is how to optimize the objective func-
tion value against its constraint violations. Traditional GAs
are ineffective in searching feasible solutions because genetic
operations do not always preserve feasibility [14]. Therefore,
penalty-function methods are the most popular constraint-
handling techniques for constrained optimization [15].

The novel RP method has been proposed in our previous
work for numerical constrained problems [13].This proposed
RPGA inspired by the Pawlak’s RST [16, 17] has been
proved better than several existing algorithms for solving
a variety of numerical optimization problems [13]. The RP
method can automatically adjust penalty coefficients during
the evolution. Furthermore, the method does not depend on
extra functional analyses for its solution space. Therefore,
this study aims to effectively extend the original RPGA as a
new constraint-handling technique to address the multicast
routing problem with QoS constraints in MANETs. During
the genetic evolution, the proposed RP method uses the
attribute reduction concept to find appropriate penalizing
strategies and release some inefficient constraints.

4.1. Flow of RP Method. The pseudocode of the RP method
is depicted in Pseudocode 2. The proposed RP method not
only penalizes constraint violations to exploit feasible space
but also releases ineffective constraints to explore infeasible
space. Therefore, the RP method is a self-adaptive approach
that can measure infeasibility and can adjust each penalty
coefficient automatically.

4.2. Rough Penalty Classification. Thiswork uses information
granulation as a key function for implementing a divide-and-
conquer strategy. Elementary information granules are indis-
cernibility classes of constraint violations. The information
system is an information table of attribute values containing
rows labeled by objects and columns labeled by attributes [18].

Remark 5. A partition granularity (𝜌) is defined for clas-
sifying the magnitude of constraint violations. The design
principle is that solution quality increases as its constraint
penalty moves closer to zero. Therefore, this study uses a
smaller range in near-zero regions than in other regions.

4.3. Rough Decision System. A decision system is an IS with
the form 𝐷𝑇 = (𝑈,𝐴 ∪ {𝑑}, 𝐷) in which each individual is
treated as an object of a nonempty finite set 𝑈. Attribute set
𝐴 = {𝛼

1
, 𝛼
2
, . . . , 𝛼

𝑚
} is a nonempty finite set of conditional

attributes, where each penaltymultiplier (𝛼
𝑘
) corresponds to a

conditional attribute. The supervised knowledge is expressed

by a decision attribute (denoted by 𝑑 ∉ 𝐴). An information
function 𝐷 maps each object to a decision attribute, that is,
𝐷 : 𝑈 → 𝑉

𝑑
for 𝑑 ∉ 𝐴, 𝑉

𝑑
= {0, 1}. For a minimization

problem, the information function is designed as follows:

𝐷(�⃗�
𝑗
) = 𝑑
𝑗
=
{

{

{

1, if 𝑓 (�⃗�
𝑗
) < 𝑓average,

0, if 𝑓 (�⃗�
𝑗
) ≥ 𝑓average,

(8)

where

𝑓average =
1

𝑝

𝑝

∑
𝑗=1

𝑓 (�⃗�
𝑗
) . (9)

Remark 6. Because the penalty multiplier should be adjusted
according to the region of its constraint violation, this
work enlarges the penalty multiplier when its violation
level increases. In the illustration in Figure 4, the penalty
multiplier will be assigned as (𝛼)−2, (𝛼)−1, (𝛼)0, (𝛼)+1, (𝛼)+2,
and (𝛼)

+3 for constraint regions 1, 2, 3, 4, 5, and 6, where 𝛼
denotes the coefficient and the partition granularity (𝜌) is six.

4.4. Significant Penalty and Attribute Reduction. Based on
the concept of attribute reduction, attributes may not be
equally important, and some of them can be eliminated
from a decision table without degrading information qual-
ity. Attribute reduction can be generalized by introducing
attribute evaluation, which can express the merit of each
attribute in the information table [19].

Remark 7. Decision attribute 𝑑 in𝐷𝑇 determines a partition
CLASS(𝑑) of object set 𝑈, where CLASS(𝑑) is the object
classification with respect to decision attribute 𝑑. The mini-
mal subset of penalized constraints is applied to distinguish
above-average individuals (i.e., their decision attributes are
“1”) and below-average ones (i.e., those values are “0”). The
representative value of each relevant attribute is assigned as
the attribute value with the maximum cardinality in the same
class.

5. Computational Experiments

5.1. Test Platform and Parameter Setting. In this paper, the
proposed RPGA is evaluated by solving multicast routing
problems in MANETs. We use the well-known network
generation tool [20] to create an asynchronous network based
on the Waxman’s techniques [21] and depicted in Figure 5.
Thenetwork illustrates a randomgraph inwhich 40 nodes are
connected, and each node has average of four connections to
other nodes (i.e., average degree of a node is 4). Each link has
its own cost, delay, and bandwidth information. In order to
reduce the complexity of the graph representation, Figure 5
only shows the cost/delay information along one direction
link (from a smaller ID node to a larger ID one). For example,
traffic along the link from node 20 to node 34 will spend
54 units cost and delay 14msec. In all cases, the maximum
number of iterations is 40, the population size is 20, and the
number of elite individuals is 2. For each test problem, 30
independent runs with different seeds are performed using
the MATLAB environment.
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conN is mean constraint numbers
popnum is population numbers
IT is information table, which is (𝑐𝑜𝑛𝑁 + 1) ∗ 𝑝𝑜𝑝𝑛𝑢𝑚 matrix
gp is good population which decision variable = 1 from IT
bp is bad population which decision variable = 0 from IT
𝑔𝑐
𝑘
is good characteristic from gp

𝑏𝑐
𝑘
is bad characteristic from bp

t is the number of current generation
𝜋
𝑘
(𝑡) is a RP exponent for the t generation

𝜆
𝑘
is a RP coefficient

𝐶 is constraints weight
𝜏 is next generation penalty coefficient
Begin

Create information table 𝐼𝑇;
//Divide 𝐼𝑇 to two group 𝑔𝑝 and 𝑏𝑝

For i = 1 to 𝑝𝑜𝑝𝑛𝑢𝑚
IF decision variable = 1 Pick 𝐼𝑇(𝑖) to good population 𝑔𝑝;
Else Pick 𝐼𝑇(𝑖) to bad population 𝑏𝑝;
End if

End for
//Find characteristic from 𝑔𝑝 and 𝑏𝑝

For 𝑘 = 1 to 𝑐𝑜𝑛𝑁
𝑔𝑐
𝑘
= mod all 𝑔𝑝

𝑘
;

𝑏𝑐
𝑘
= mod all 𝑏𝑝

𝑘
;

End for
//Find RP coefficient 𝜇
For 𝑘 = 1 to 𝑐𝑜𝑛𝑁

If 𝑔𝑐
𝑘
= 𝑏𝑐
𝑘
𝜆
𝑘
= 𝑔𝑐
𝑘
;

Else 𝜆
𝑘
= 1;

End if
End for
//Modify RP penalty exponent 𝜋(k, t)
For 𝑘 = 1 to 𝑐𝑜𝑛𝑁

𝜋
𝑘
(𝑡) = 𝜋

𝑘
(𝑡 − 1) ∗ 𝜆

𝑘
;

𝜏
𝑘
= (𝐶 × 𝑡) ∧ 𝜋

𝑘
(𝑡), for all 𝑘 = 1 to 𝑐𝑜𝑛𝑁;

End for
End

Pseudocode 2: Pseudocode of the RP method.

LB 3/7 LB 1/7 LB 0 1/7 UB 3/7 UB UB

LargerSmaller

Penalty multiplier

Region Id

(𝛼)11 (𝛼)2 (𝛼)3
(𝛼)−1

(𝛼)−2

22212122
Range

(1) (2) (3) (4) (5) (6)
1 1

Figure 4: Penalty multiplier classification.

5.2. Performance Metrics. In this paper, the performance
metrics of solution algorithms consist of (1) the total cost of
the obtained multicast tree; (2) the success rate with respect
to the QoS constraints; and (3) the required CPU time for
computing the multicast routing problems. The success rate
(𝜃req) concerns about the percentage of feasible routes with
respect to the QoS requirements. We can define the success

rate as follows [22]:

𝜃req =
𝑁ack
𝑁req

, (10)

where 𝑁ack is the number of OD pairs that satisfy all QoS
constraints and 𝑁req is the total number of OD pairs in this
multicast group.
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Figure 5: A randomly generated network with 40 nodes and average degree four.

Table 2:The results obtained by different partition granularities (𝜌)
when 𝛼 = 1.01.

Partition (𝜌) Cost Success rate CPU time
4 1032.9 0.966666667 1.089747617
6 1006.4 0.98245614 1.075849966
8 1021.5 0.970175439 1.085799014

5.3. Algorithm Analyses for Different Parameter Settings. It
is well known that the performance of GAs significantly
depends on the configuration of its operating parameters.
To investigate the impact of various parameter settings in
the RP method, this study experiments on two parameters:
the partition granularity (𝜌) and the penalty coefficient (𝛼).
The test network (in Figure 5) has 40 nodes with average
degree of 4.We randomly select 20 nodes (50%of total nodes)
as the test multicast group, that is, one source node and 19
destination nodes. All OD pairs have the same delay bound
for 60msec.

Firstly, this study conducts 30 runs to find the appropriate
partition granularity (𝜌) for this problem. When the penalty
coefficient is fixed (𝛼 = 1.01), the experimental results for
different partition granularities changing from 𝜌 = 4, 𝜌 = 6,
to 𝜌 = 8 are shown in Table 2. We normalize these results
relative to that of 𝜌 = 6 and show the percentage comparison
in Figure 6. Obviously, the RPGA with 6 partitions can
achieve better results than other partition settings with
respect to all the three performance metrics.

Secondly, when the partition granularity is given (𝜌 = 6),
the experiments on different penalty coefficients (𝛼 = 1.0001,
1.001, 1.01, 1.1, and 10) are tested for 30 runs.The experimental

0.96
0.97
0.98
0.99

1
1.01
1.02
1.03

Cost Success rate CPU time

Partition granularity (𝜌)

𝜌 = 4
𝜌 = 6
𝜌 = 8

Figure 6: Comparison with different partition granularities (in
percentage relative to 𝜌 = 6).

Table 3: The results obtained by different penalty coefficients (𝛼)
when 𝜌 = 6.

Coefficient (𝛼) Cost Success rate CPU time
10 1022.833333 0.989473684 1.084000564
1.1 1031.966667 0.978947368 1.068427877
1.01 1006.4 0.98245614 1.075849966
1.001 1031.7 0.975438596 1.065008048
1.0001 1022.333333 0.973684211 1.059503391

results on the average of cost, success rate and computing time
are depicted in Table 3. The normalized percentages relative
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Figure 7: Comparison with different penalty coefficients (in per-
centage relative to 𝛼 = 1.01).

to 𝛼 = 1.01 are shown in Figure 7. Noticeably, the RPGAwith
𝛼 = 1.01 can achieve better results than other settings on all
the cost, success rate, and computing time metrics.

5.4. Comparison with Other Existing Methods. The perfor-
mance of the proposed RPGA is compared with two well-
known penalty methods, which are the Wang’s penalty (WP)
method [22] and the DP method [9] for three kinds of
multicast scenario. In the first test scenario, the test network
has 40 nodes with average degree of 4, which is the same as
Figure 5. The multicast group includes 20 OD pairs. All OD
pairs have the same delay bound for 60msec.We execute each
method for 30 independent runs and report the experimental
results in Table 4.

For the mean cost in Table 4, the RPGA can find the
best result in average 30 runs. Furthermore, the standard
deviation of the routing cost obtained by the RPGA is smaller
than that by the DP and similar to that of the WP. That
is, the RPGA can reliably find the minimum-cost Steiner
tree. Compared with the success rate, the RPGA is the best
method with respect to the mean and standard deviation of
the success rate, even though the WP has a high probability
of converging on infeasible solutions. That is, the proposed
RPGA can succeed in finding feasible and minimum-cost
solutions. From the CPU-time metric, the comparison can
help us to realize how much time complexity is needed to
compute the RP method because the RPGA is enhanced
from the DP method. In Table 4, the RPGA only spends a
little computing effort (about extra 6.7% computing time) to
obtain better results than the DP method.

For comparison, all the results are normalized as percent-
ages relative to the results of the RPGA (in Figure 8). Obvi-
ously, the performance comparison shows that the RPGA can
find theminimum-cost multicast tree effectively (with higher
success rate) and efficiently (with lower computing effort)
than the other two methods.

The evolution curves of all three methods on the total
cost and path delay are shown in Figures 9(a) and 9(b),
respectively. In Figure 9(a), we can observe that both the

0.9

0.92

0.94

0.96

0.98

1

1.02

Cost Success rate CPU time

WP
DP
RPGA

Figure 8: Comparison with different penalty methods (in percent-
age relative to the RPGA).

DP and RPGA methods rapidly converge on the low-cost
results after 8 generations; however, the WP method takes 13
generations to slowly converge on a high-cost one. From the
path delay aspect in Figure 9(b), all the three methods can
satisfy the delay bound. The RPGA, DP, and WP methods
take 2, 2, and 4 generations to achieve feasible solutions,
respectively. Therefore, the proposed RPGA has a similar
convergent effect with the DP. Both the RPGA and DP
method outperform the WP with respect to the effectiveness
and efficiency abilities.

In the second test scenario, we randomly generate 8 test
networks with the numbers of nodes from 10 to 80 to mimic
the stress test for these three methods. In those tests, all delay
constraint bounds are 60msec and the multicast group size
is 50% of network nodes. When nodes number increases,
the network overhead increases obviously and end-to-end
delay increases at the same time. The experimental results
depicted in Figure 10 are normalized as percentages relative
to the result of the RPGA for comparison. Compared with
Figures 10(a) and 10(b), we can observe that RPGA can find
the minimum cost of feasible multicast tree, even though the
success rates of the DP in the 60-node network and the WP
in almost all networks are less than 90%.TheWP is the worst
method in these three methods on the success rate. However,
the computing effort of the RPGA is higher than the other
two methods in Figure 10(c). We can also find that the more
number of network nodes in the test scenarios, the closer
computing time needed for all three penalty methods.

In the third test scenario, we change the delay-bound
requirements from 20msec to 90msec in a test network,
which has 40 nodes and its multicast group size is 20. The
comparisons between the success rates and the delay bounds
are shown in Figure 11.The success rate of the RPGA is similar
to that of the DP and is better than that of the WP, especially,
when the delay bounds are lower than 60msec.

6. Conclusions and Future Works

The proposed RP method cooperates with GAs for dealing
with QoS-based multicast routing problems. The principle
of the RP method is that the RPGA releases/enforces some
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Table 4: The results of different penalty methods.

Penalty methods Cost (mean) Cost (st. dev.) Success rate (mean) Success rate (st. dev.) CPU time
WP 1010.366667 82.23745406 0.907017544 0.077799684 1.074814229
DP 1016.5 101.1191683 0.975438596 0.033095275 1.00755095
RPGA 1006.4 83.13910238 0.98245614 0.028772225 1.075849966
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Figure 9: Evolution curves of three methods on the performance metrics: (a) cost and (b) delay.
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penalties on inefficient/efficient constraints during evolution.
Importantly, this approach can find the optimum or near-
optimal solutions even though the initial population includes
infeasible solutions. The performance of the proposed algo-
rithm was measured using three kinds of test scenarios and
compared with two state-of-the-art methods. Experimental
results indicate that the proposed RPGA can find near-
optimal solutions and outperforms two existing methods
for constrained multicast routing problems. The proposed
algorithm is also robust in obtaining feasible solutions of all
the test functions even though the WP method has smaller
success rates for some difficult problems. In conclusion, the
performance assessment also demonstrates that the proposed
RP method has a remarkable capability to balance the objec-
tive function and the constraint violations as an effective and
efficient method for solving a variety of QoS-based multicast
routing problems.

We have observed that the computing effort of the RPGA
is higher than that of other two penalty methods in small-
scale networks. In the future, we will study the scalability of
the proposed RPGA in finding multicast routes for dynamic
MANETs with large-scale dimension. Since MANETs allow
ubiquitous service access without any fixed infrastructure,
developing a distributed algorithm for highmobility environ-
ments is also our future work.
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