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We are concernedwith the nonnegative constraints optimization problems. It is well known that the conjugate gradientmethods are
efficient methods for solving large-scale unconstrained optimization problems due to their simplicity and low storage. Combining
the modified Polak-Ribière-Polyak method proposed by Zhang, Zhou, and Li with the Zoutendijk feasible direction method, we
proposed a conjugate gradient type method for solving the nonnegative constraints optimization problems. If the current iteration
is a feasible point, the direction generated by the proposed method is always a feasible descent direction at the current iteration.
Under appropriate conditions, we show that the proposed method is globally convergent. We also present some numerical results
to show the efficiency of the proposed method.

1. Introduction

Due to their simplicity and their low memory requirement,
the conjugate gradient methods play a very important role
for solving unconstrained optimization problems, especially
for the large-scale optimization problems. Over the years,
many variants of the conjugate gradient method have been
proposed, and some are widely used in practice. The key fea-
tures of the conjugate gradient methods are that they require
no matrix storage and are faster than the steepest descent
method.

The linear conjugate gradient method was proposed by
Hestenes and Stiefel [1] in the 1950s as an iterative method for
solving linear systems

𝐴𝑥 = 𝑏, 𝑥 ∈ 𝑅
𝑛

, (1)

where 𝐴 is an 𝑛 × 𝑛 symmetric positive definite matrix. Pro-
blem (1) can be stated equivalently as the followingminimiza-
tion problem

min 1

2
𝑥
𝑇

𝐴𝑥 − 𝑏
𝑇

𝑥, 𝑥 ∈ 𝑅
𝑛

. (2)

This equivalence allows us to interpret the linear conjugate
gradient method either as an algorithm for solving linear

systems or as a technique for minimizing convex quadratic
functions. For any 𝑥 ∈ 𝑅

𝑛, the sequence {𝑥
𝑘
} generated by the

linear conjugate gradient method converges to the solution
𝑥
∗ of the linear systems (1) in at most 𝑛 steps.
The first nonlinear conjugate gradient method was intro-

duced by Fletcher and Reeves [2] in the 1960s. It is one of the
earliest known techniques for solving large-scale nonlinear
optimization problems

min𝑓 (𝑥) , 𝑥 ∈ 𝑅
𝑛

, (3)

where𝑓 : 𝑅
𝑛

→ 𝑅 is continuously differentiable.The nonlin-
ear conjugate gradient methods for solving (3) have the fol-
lowing form:

𝑥
𝑘+1

= 𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
,

𝑑
𝑘
= {

−∇𝑓 (𝑥
𝑘
) , 𝑘 = 0,

−∇𝑓 (𝑥
𝑘
) + 𝛽
𝑘
𝑑
𝑘−1

, 𝑘 ≥ 1,

(4)

where 𝛼
𝑘
is a steplength obtained by a line search and 𝛽

𝑘
is

a scalar which deternimes the different conjugate gradient
methods. If we choose𝑓 to be a strongly convex quadratic and
𝛼
𝑘
to be the exact minimizer, the nonliear conjugate gradient

method reduces to the linear conjugate gradient method.
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Several famous formulae for 𝛽
𝑘
are the Hestenes-Stiefel (HS)

[1], Fletcher-Reeves (FR) [2], Polak-Ribière-Polyak (PRP) [3,
4], Conjugate-Descent (CD) [5], Liu-Storey (LS) [6], andDai-
Yuan (DY) [7] formulae, which are given by

𝛽
HS
𝑘

=
∇𝑓(𝑥
𝑘
)
⊤

𝑦
𝑘−1

𝑑
⊤

𝑘−1
𝑦
𝑘−1

, 𝛽
FR
𝑘

=

∇𝑓 (𝑥
𝑘
)


2

∇𝑓 (𝑥
𝑘−1

)


2
, (5)

𝛽
PRP
𝑘

=
∇𝑓(𝑥
𝑘
)
⊤

𝑦
𝑘−1

∇𝑓 (𝑥
𝑘−1

)


2
, 𝛽

CD
𝑘

= −

∇𝑓 (𝑥
𝑘
)


2

𝑑
⊤

𝑘−1
∇𝑓 (𝑥
𝑘−1

)
, (6)

𝛽
LS
𝑘

= −
∇𝑓(𝑥
𝑘
)
⊤

𝑦
𝑘−1

𝑑
⊤

𝑘−1
∇𝑓 (𝑥
𝑘−1

)
, 𝛽

DY
𝑘

=

∇𝑓 (𝑥
𝑘
)


2

𝑑
⊤

𝑘−1
𝑦
𝑘−1

, (7)

where 𝑦
𝑘−1

= ∇𝑓(𝑥
𝑘
)−∇𝑓(𝑥

𝑘−1
) and ‖⋅‖ stands for the Euclid-

ean norm of vectors. In this paper, we focus our attention
on the Polak-Ribière-Polyak (PRP) method. The study of
the PRP method has received much attention and has made
good progress. The global convergence of the PRP method
with exact line search has been proved in [3] under strong
convexity assumption on 𝑓. However, for general nonlinear
function, an example given by Powell [8] shows that the PRP
method may fail to be globally convergent even if the exact
line search is used. Inspired by Powell’s work, Gilbert and
Nocedal [9] conducted an elegant analysis and showed that
the PRPmethod is globally convergent if 𝛽PRP

𝑘
is restricted to

be nonnegative and 𝛼
𝑘
is determined by a line search satisfy-

ing the sufficient descent condition 𝑔
⊤

𝑘
𝑑
𝑘

≤ −𝑐 ‖ 𝑔
𝑘
‖
2 in

addition to the standard Wolfe conditions. Other conjugate
gradient methods and their global convergence can be found
in [10–15] and so forth.

Recently, Li andWang [16] extended themodified Fletch-
er-Reeves (MFR) method proposed by Zhang et al. [17] for
solving unconstrained optimization to the nonlinear equa-
tions

𝐹 (𝑥) = 0, (8)

where 𝐹 : 𝑅
𝑛

→ 𝑅
𝑛 is continuously differentiable, and pro-

posed a descent derivative-freemethod for solving symmetric
nonlinear equations. The direction generated by the method
is descent for the residual function. Under appropriate
conditions, the method is globally convergent by the use of
some backtracking line search technique.

In this paper, we further study the conjugate gradient
method. We focus our attention on the modified Polak-
Ribière-Polyak (MPRP) method proposed by Zhang et al.
[18]. The direction generated by MPRP method is given by

𝑑
𝑘
= {

−𝑔 (𝑥
𝑘
) , 𝑘 = 0,

−𝑔 (𝑥
𝑘
) + 𝛽

PRP
𝑘

𝑑
𝑘−1

− 𝜃
𝑘
𝑦
𝑘−1

, 𝑘 > 0,

(9)

where 𝑔(𝑥
𝑘
) = ∇𝑓(𝑥

𝑘
), 𝛽PRP
𝑘

= 𝑔(𝑥
𝑘
)
𝑇

𝑦
𝑘−1

/‖𝑔(𝑥
𝑘−1

)‖
2, 𝜃
𝑘
=

𝑔(𝑥
𝑘
)
𝑇

𝑑
𝑘−1

/‖𝑔(𝑥
𝑘−1

)‖
2, and 𝑦

𝑘−1
= 𝑔(𝑥

𝑘
) − 𝑔(𝑥

𝑘−1
). The

MPRP method not only reserves good properties of the
PRP method but also possesses another nice property; that
it is, always generates descent directions for the objective

function. This property is independent of the line search
used. Under suitable conditions, the MPRP method with
the Armoji-type line search is also globally convergent. The
purpose of this paper is to develop an MPRP type method
for the nonnegative constraints optimization problems. Com-
bining the Zoutendijk feasible direction method with MPRP
method, we propose a conjugate gradient type method for
solving the nonnegative constraints optimization problems.
If the initial point is feasible, the method generates a feasible
point sequence. We also do numerical experiments to test
the proposed method and compare the performance of the
method with the Zoutendijk feasible direction method. The
numerical results show that the method that we propose
outperforms the Zoutendijk feasible direction method.

2. Algorithm

Consider the following nonnegative constraints optimization
problems:

min 𝑓 (𝑥)

s.t. 𝑥 ≥ 0,

(10)

where 𝑓 : 𝑅
𝑛

→ 𝑅 is continuously differentiable. Let 𝑥
𝑘
≥ 0

be the current iteration. Define the index set
𝐼
𝑘
= 𝐼 (𝑥

𝑘
) = {𝑖 | 𝑥

𝑘
(𝑖) = 0} , 𝐽

𝑘
= {1, 2, . . . , 𝑛} \ 𝐼

𝑘
,

(11)

where 𝑥
𝑘
(𝑖) is the 𝑖th component of 𝑥

𝑘
. In fact the index set

𝐼
𝑘
is the active set of problem (10) at 𝑥

𝑘
.

The purpose of this paper is to develop a conjugate
gradient type method for problem (10). Since the iterative
sequence is a feasible point sequence, the search directions
should be feasible descent directions. Let 𝑥

𝑘
≥ 0 be the

current iteration. By the definition of feasible direction, we
have that [19] 𝑑 ∈ 𝑅

𝑛 is a feasible direction of (10) at 𝑥
𝑘
if and

only if 𝑑
𝐼𝑘

≥ 0. Similar to the Zoutendijk feasible direction
method, we consider the following problem:

min ∇𝑓(𝑥
𝑘
)
𝑇

𝑑

s.t. 𝑑
𝐼𝑘
≥ 0, ‖𝑑‖ ≤ 1.

(12)

Next, we show that, if 𝑥
𝑘
is not a KKT point of (10), the solu-

tion of problem (12) is a feasible descent direction of 𝑓 at 𝑥
𝑘
.

Lemma 1. Let 𝑥
𝑘
≥ 0 and let 𝑑 be a solution of problem (12);

then ∇𝑓(𝑥
𝑘
)
𝑇

𝑑 ≤ 0. Moreover ∇𝑓(𝑥
𝑘
)
𝑇

𝑑 = 0 if and only if 𝑥
𝑘

is a KKT point of problem (10).

Proof. Since 𝑑 = 0 is a feasible point of problem (12), there
must be ∇𝑓(𝑥

𝑘
)
𝑇

𝑑 ≤ 0. Consequently, if ∇𝑓(𝑥
𝑘
)
𝑇

𝑑 ̸= 0, there
must be ∇𝑓(𝑥

𝑘
)
𝑇

𝑑 < 0. This implies that the direction 𝑑 is a
feasible descent direction of 𝑓 at 𝑥

𝑘
.

We suppose that∇𝑓(𝑥
𝑘
)
𝑇

𝑑 = 0. Problem (12) is equivalent
to the following problem:

min ∇𝑓(𝑥
𝑘
)
𝑇

𝑑

s.t. 𝑑
𝐼𝑘
≥ 0, ‖𝑑‖

2

≤ 1.

(13)
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Then there exist 𝜆
𝐼𝑘
and 𝜇 such that the following KKT con-

dition holds:

∇𝑓 (𝑥
𝑘
) − (

𝜆
𝐼𝑘

0
) + 2𝜇𝑑 = 0,

𝜆
𝐼𝑘
≥ 0, 𝑑

𝐼𝑘
≥ 0, 𝜆

𝑇

𝐼𝑘

𝑑
𝐼𝑘
= 0,

𝜇 ≥ 0,

𝑑

≤ 1, 𝜇 (


𝑑


2

− 1) = 0.

(14)

Multiplying the first of these expressions by 𝑑, we obtain

∇𝑓(𝑥
𝑘
)
𝑇

𝑑 − 𝜆
𝑇

𝑑 + 2𝜇

𝑑


2

= 0, (15)

where 𝜆 = (
𝜆𝐼𝑘

0

). By combining the assumption ∇𝑓(𝑥
𝑘
)
𝑇

𝑑 =

0 with the second and the third expressions of (14), we find
that 𝜇 = 0. Substituting it into the first expressions of (14), we
obtain that

∇𝑓
𝐼𝑘
(𝑥
𝑘
) − 𝜆
𝐼𝑘
= 0, ∇𝑓

𝐽𝑘
(𝑥
𝑘
) = 0. (16)

Let 𝜆
𝑖
= 0, 𝑖 ∈ 𝐽

𝑘
; then 𝜆

𝑖
≥ 0, 𝑖 ∈ 𝐼

𝑘
∪ 𝐽
𝑘
. Moreover, we have

∇𝑓 (𝑥
𝑘
) − (

𝜆
𝐼𝑘

𝜆
𝐽𝑘

) = 0,

𝜆
𝑖
≥ 0, 𝑥

𝑘
(𝑖) ≥ 0, 𝜆

𝑖
𝑥
𝑘
(𝑖) = 0, 𝑖 ∈ 𝐼

𝑘
∪ 𝐽
𝑘
.

(17)

This implies that 𝑥
𝑘
is a KKT point of problem (10).

On the other hand, we suppose that 𝑥
𝑘
is a KKT point of

problem (10). Then there exist 𝜆
𝑖
, 𝑖 ∈ 𝐼

𝑘
∪ 𝐽
𝑘
, such that the

following KKT condition holds:

∇𝑓 (𝑥
𝑘
) − (

𝜆
𝐼𝑘

𝜆
𝐽𝑘

) = 0,

𝜆
𝑖
≥ 0, 𝑥

𝑘
(𝑖) ≥ 0, 𝜆

𝑖
𝑥
𝑘
(𝑖) = 0, 𝑖 ∈ 𝐼

𝑘
∪ 𝐽
𝑘
.

(18)

From the second of these expressions, we get 𝜆
𝐽𝑘

= 0. Substi-
tuting it into the first of these expressions, we have ∇𝑓

𝐼𝑘
(𝑥
𝑘
) =

𝜆
𝐼𝑘

≥ 0 and ∇𝑓
𝐽𝑘
(𝑥
𝑘
) = 0, so that ∇𝑓(𝑥

𝑘
)
𝑇

𝑑 = ∇𝑓
𝐼𝑘
(𝑥
𝑘
)
𝑇

𝑑
𝐼𝑘

=

𝜆
𝑇

𝐼𝑘

𝑑
𝐼𝑘

≥ 0. However, we had shown that ∇𝑓(𝑥
𝑘
)
𝑇

𝑑 ≤ 0, so
∇𝑓(𝑥
𝑘
)
𝑇

𝑑 = 0.
By the proof of Lemma 1 we find that ∇𝑓

𝐼𝑘
(𝑥
𝑘
) ≥ 0 and

∇𝑓
𝐽𝑘
(𝑥
𝑘
) = 0 are necessary conditions of the fact that 𝑥

𝑘
is a

KKT point of problem (10). We summarize these observation
results as the following result.

Lemma 2. Let 𝑥
𝑘
≥ 0; then 𝑥

𝑘
is a KKT point of problem (10)

if and only if ∇𝑓
𝐼𝑘
(𝑥
𝑘
) ≥ 0 and ∇𝑓

𝐽𝑘
(𝑥
𝑘
) = 0.

Proof. Firstly, we suppose that 𝑥
𝑘
is a KKT point of problem

(10). Similar to the proof of Lemma 1, it is easy to get that
∇𝑓
𝐼𝑘
(𝑥
𝑘
) ≥ 0 and ∇𝑓

𝐽𝑘
(𝑥
𝑘
) = 0.

Secondly, we suppose that ∇𝑓
𝐼𝑘
(𝑥
𝑘
) ≥ 0 and ∇𝑓

𝐽𝑘
(𝑥
𝑘
) = 0.

Let 𝜆
𝐼𝑘

= ∇𝑓
𝐼𝑘
(𝑥
𝑘
) ≥ 0, 𝜆

𝐽𝑘
= 0; then the KKT condition (18)

holds, so that 𝑥
𝑘
is a KKT point of problem (10).

Based on the above discussion, we propose a conjugate
gradient type method for solving problem (10) as follows. Let

feasible point 𝑥
𝑘
be current iteration. For the boundary of the

feasible region 𝑥
𝑘𝐼𝑘

= 0, we take

𝑑
𝑘𝑖
= {

0, 𝑔
𝑖
(𝑥
𝑘
) > 0,

−𝑔
𝑖
(𝑥
𝑘
) , 𝑔

𝑖
(𝑥
𝑘
) ≤ 0,

∀𝑖 ∈ 𝐼
𝑘
, (19)

where 𝑔
𝑖
(𝑥
𝑘
) = ∇𝑓

𝑖
(𝑥
𝑘
). For the interior of the feasible region

𝑥
𝑘𝐽𝑘

> 0, similar to the direction 𝑑
𝑘
in the MPRP method, we

define 𝑑
𝑘𝐽𝑘

by the following formula:

𝑑
MPRP
𝑘𝐽𝑘

=
{

{

{

−𝑔
𝐽𝑘
(𝑥
𝑘
) , 𝑘 = 0,

−𝑔
𝐽𝑘
(𝑥
𝑘
) + 𝛽

PRP
𝑘

𝑑
𝑘−1𝐽𝑘

− 𝜃
MPRP
𝑘

𝑦
𝑘−1

, 𝑘 > 0,

(20)

where 𝑔
𝐽𝑘
(𝑥
𝑘
) = ∇𝑓

𝐽𝑘
(𝑥
𝑘
), 𝛽PRP
𝑘

= 𝑔
𝐽𝑘
(𝑥
𝑘
)
𝑇

𝑦
𝑘−1

/‖𝑔(𝑥
𝑘−1

)‖
2,

𝜃
MPRP
𝑘

= 𝑔
𝐽𝑘
(𝑥
𝑘
)
𝑇

𝑑
𝑘−1𝐽𝑘

/‖𝑔(𝑥
𝑘−1

)‖
2, and 𝑦

𝑘−1
= 𝑔
𝐽𝑘
(𝑥
𝑘
) −

𝑔
𝐽𝑘
(𝑥
𝑘−1

).
It is easy to see from (19) and (20) that

−

𝑔
𝐼𝑘
(𝑥
𝑘
)


2

≤ 𝑔
𝐼𝑘
(𝑥
𝑘
)
𝑇

𝑑
𝑘𝐼𝑘

≤ 0,

𝑔
𝐽𝑘
(𝑥
𝑘
)
𝑇

𝑑
𝑘𝐽𝑘

= −

𝑔
𝐽𝑘
(𝑥
𝑘
)


2

.

(21)

The above relations indicate that

𝑔(𝑥
𝑘
)
𝑇

𝑑
𝑘
= 𝑔
𝐼𝑘
(𝑥
𝑘
)
𝑇

𝑑
𝑘𝐼𝑘

+ 𝑔
𝐽𝑘
(𝑥
𝑘
)
𝑇

𝑑
𝑘𝐽𝑘

≤ −

𝑔
𝐽𝑘
(𝑥
𝑘
)


2

,

(22)

𝑔(𝑥
𝑘
)
𝑇

𝑑
𝑘
≥ −


𝑔
𝐼𝑘
(𝑥
𝑘
)


2

−

𝑔
𝐽𝑘
(𝑥
𝑘
)


2

=
𝑔(𝑥𝑘)



2

,

(23)

where 𝑔(𝑥
𝑘
) = ∇𝑓(𝑥

𝑘
).

Theorem 3. Let 𝑥
𝑘
≥ 0, 𝑑

𝑘
be defined by (19) and (20) then

𝑔(𝑥
𝑘
)
𝑇

𝑑
𝑘
≤ 0. (24)

Moreover, 𝑥
𝑘
is a KKT point of problem (10) if and only if

𝑔(𝑥
𝑘
)
𝑇

𝑑
𝑘
= 0.

Proof. Clearly, inequality (22) implies that

𝑔(𝑥
𝑘
)
𝑇

𝑑
𝑘
≤ 0. (25)

If 𝑥
𝑘
is a KKT point of problem (10), similar to the proof

of Lemma 1, we also get that 𝑔(𝑥
𝑘
)
𝑇

𝑑
𝑘
= 0.

If 𝑔(𝑥
𝑘
)
𝑇

𝑑
𝑘
= 0, by (22), we can get that

𝑔
𝐼𝑘
(𝑥
𝑘
)
𝑇

𝑑
𝑘𝐼𝑘

= 0,

𝑔
𝐽𝑘
(𝑥
𝑘
)
𝑇

𝑑
𝑘𝐽𝑘

= −

𝑔
𝐽𝑘
(𝑥
𝑘
)


2

= 0.

(26)

The equality 𝑔
𝐼𝑘
(𝑥
𝑘
)
𝑇

𝑑
𝑘𝐼𝑘

= 0 and the definition of 𝑑
𝑘𝐼𝑘

(19)
imply that

𝑔
𝐼𝑘
(𝑥
𝑘
) ≥ 0. (27)
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Let 𝜆
𝐼𝑘

= 𝑔
𝐼𝑘
(𝑥
𝑘
) ≥ 0; 𝜆

𝐽𝑘
= 0, then the KKT condition (18)

also holds, so that 𝑥
𝑘
is a KKT point of problem (10).

By combining (22) with Theorem 3, we conclude that 𝑑
𝑘

defined by (19) and (20) provides a feasible descent direction
of 𝑓 at 𝑥

𝑘
, if 𝑥
𝑘
is not a KKT point of problem (10).

Based on the above process, we propose an MPRP type
method for solving (10) as follows.

Algorithm 4 (MPRP type method).

Step 0. Given constants 𝜌 ∈ (0, 1), 𝛿 > 0, 𝜖 > 0. Choose the
initial point 𝑥

0
≥ 0; Let 𝑘 := 0.

Step 1. Compute 𝑑
𝑘

= (𝑑
𝑘𝐼𝑘

, 𝑑
𝑘𝐽𝑘

) by (19) and (20). If
|𝑔(𝑥
𝑘
)
𝑇

𝑑
𝑘
| ≤ 𝜖, then stop. Otherwise, go to the next step.

Step 2. Determine 𝛼
𝑘
= max{𝜌𝑗, 𝑗 = 0, 1, 2, . . .} satisfying 𝑥

𝑘
+

𝛼
𝑘
𝑑
𝑘
≥ 0 and

𝑓 (𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
) ≤ 𝑓 (𝑥

𝑘
) − 𝛿𝛼

2

𝑘

𝑑𝑘


2

. (28)

Step 3. Let the next iteration be 𝑥
𝑘+1

= 𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
.

Step 4. Let 𝑘 := 𝑘 + 1 and go to Step 1.

It is easy to see that the sequence {𝑥
𝑘
} generated by

Algorithm 4 is a feasible point sequence. Moreover, it follows
from (28) that the function value sequence {𝑓(𝑥

𝑘
)} is decreas-

ing. In addition if 𝑓(𝑥) is bounded from below, we have from
(28) that

∞

∑

𝑘=0

𝛼
2

𝑘

𝑑𝑘


2

< ∞. (29)

In particular we have

lim
𝑘→∞

𝛼
𝑘

𝑑𝑘
 = 0. (30)

Next, we prove the global convergence of Algorithm 4
under the following assumptions.

Assumption A. (1)The level set 𝜔 = {𝑥 ∈ 𝑅
𝑛

| 𝑓(𝑥) ≤ 𝑓(𝑥
0
)}

is bound.
(2) In some neighborhood 𝑁 of 𝜔, 𝑓 is continuously

differentiable, and its gradient is the Lipschitz continuous;
namely, there exists a constant 𝐿 > 0 such that

∇𝑓 (𝑥) − ∇𝑓 (𝑦)
 ≤ 𝐿

𝑥 − 𝑦
 , ∀𝑥, 𝑦 ∈ 𝑁. (31)

Clearly, Assumption A implies that there exists a constant
𝛾
1
such that

∇𝑓 (𝑥)
 ≤ 𝛾
1
, ∀𝑥 ∈ 𝑁. (32)

Lemma 5. Suppose that the conditions in Assumption A hold;
{𝑥
𝑘
} and {𝑑

𝑘
} are the iterative sequence and the direction

sequence generated by Algorithm 4. If there exists a constant
𝜖 > 0 such that

𝑔 (𝑥
𝑘
)
 ≥ 𝜖, ∀𝑘, (33)

then there exists a constant𝑀 > 0 such that
𝑑𝑘

 ≤ 𝑀, ∀𝑘. (34)

Proof. By combining (19), (20), and (33) with Assumption A,
we deduce that

𝑑𝑘
 ≤


𝑑
𝑘𝐼𝑘


+

𝑑
MPRP
𝑘𝐽𝑘



≤ 𝛾
1
+

𝑔
𝐽𝑘
(𝑥
𝑘
)

+ 2


𝑔
𝐽𝑘
(𝑥
𝑘
)


𝑦𝑘−1



𝑑
MPRP
𝑘−1𝐽𝑘



𝑔 (𝑥
𝑘−1

)


2

≤ 2𝛾
1
+

2𝛾
1
𝐿𝛼
𝑘−1


𝑑
MPRP
𝑘−1𝐽𝑘



𝜖2


𝑑
MPRP
𝑘−1𝐽𝑘


.

(35)

By (30), there exists a constant 𝛾 ∈ (0, 1) and an iteger 𝑘
0
such

that the following inequality holds for all 𝑘 ≥ 𝑘
0
:

2𝐿𝛾
1

𝜖2
𝛼
𝑘−1


𝑑
MPRP
𝑘−1𝐽𝑘


≤ 𝛾. (36)

Hence, we have for any 𝑘 ≥ 𝑘
0

𝑑𝑘
 ≤ 2𝛾

1
+ 𝛾

𝑑𝑘−1


≤ 2𝛾
1
(1 + 𝛾 + 𝛾

2

+ ⋅ ⋅ ⋅ + 𝛾
𝑘−𝑘0−1)

+ 𝛾
𝑘−𝑘0


𝑑
𝑘0



≤
2𝛾
1

1 − 𝛾
+

𝑑
𝑘0


.

(37)

Let

𝑀 = max{𝑑1
 ,

𝑑2
 , . . . ,


𝑑
𝑘0


,
2𝛾
1

1 − 𝛾
+

𝑑
𝑘0


} . (38)

Then
𝑑𝑘

 ≤ 𝑀, ∀𝑘. (39)

Theorem 6. Suppose that the conditions in Assumption A
hold. Let {𝑥

𝑘
} and {𝑑

𝑘
} be the iterative sequence and the direc-

tion sequence generated by Algorithm 4. Then

lim inf
𝑘→∞


𝑔(𝑥
𝑘
)
𝑇

𝑑
𝑘


= 0. (40)

Proof. We prove the result of this theorem by contradiction.
Assume that the theorem is not true; then there exists a
constant 𝜀 > 0 such that


𝑔(𝑥
𝑘
)
𝑇

𝑑
𝑘


≥ 𝜖, ∀𝑘. (41)

So by combining (41) with (23), it is easy to see that (33) holds.

(1) If lim inf
𝑘→∞

𝛼
𝑘

> 0, we get from (30) that 𝑑
𝑘

→

0, so that lim
𝑘→∞

|𝑔(𝑥
𝑘
)
𝑇

𝑑
𝑘
| = 0. This contradicts

assumption (41).
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(2) If lim inf
𝑘→∞

𝛼
𝑘
= 0, there is an infinite index set 𝐾

such that

lim
𝑘∈𝐾, 𝑘→∞

𝛼
𝑘
= 0. (42)

It follows from Step 2 of Algorithm 4, that when 𝑘 ∈ 𝐾 is
sufficiently large, 𝜌−1𝛼

𝑘
does not satify𝑓(𝑥

𝑘
+𝛼
𝑘
𝑑
𝑘
) ≤ 𝑓(𝑥

𝑘
)−

𝛿𝛼
2

𝑘
‖ 𝑑
𝑘
‖
2; that is

𝑓 (𝑥
𝑘
+ 𝜌
−1

𝛼
𝑘
𝑑
𝑘
) − 𝑓 (𝑥

𝑘
) > −𝛿𝜌

−2

𝛼
2

𝑘

𝑑𝑘


2

. (43)

By the mean-value theorem, Lemma 1, and Assumption A,
there is ℎ

𝑘
∈ (0, 1) such that

𝑓 (𝑥
𝑘
+ 𝜌
−1

𝛼
𝑘
𝑑
𝑘
) − 𝑓 (𝑥

𝑘
)

= 𝜌
−1

𝛼
𝑘
𝑔(𝑥
𝑘
+ ℎ
𝑘
𝜌
−1

𝛼
𝑘
𝑑
𝑘
)
𝑇

𝑑
𝑘

= 𝜌
−1

𝛼
𝑘
𝑔(𝑥
𝑘
)
𝑇

𝑑
𝑘

+𝜌
−1

𝛼
𝑘
(𝑔 (𝑥
𝑘
+ ℎ
𝑘
𝜌
−1

𝛼
𝑘
𝑑
𝑘
) − 𝑔 (𝑥

𝑘
))
𝑇

𝑑
𝑘

≤ 𝜌
−1

𝛼
𝑘
𝑔(𝑥
𝑘
)
𝑇

𝑑
𝑘
+ 𝐿𝜌
−2

𝛼
2

𝑘

𝑑𝑘


2

.

(44)

Substituting the last inequality into (43), we get for all 𝑘 ∈ 𝐾

sufficiently large

0 ≤ −𝑔(𝑥
𝑘
)
𝑇

𝑑
𝑘
≤ 𝜌
−1

(𝐿 + 𝛿) 𝛼
𝑘

𝑑𝑘


2

. (45)

Taking the limit on both sides of the equation, then by
combining ‖𝑑

𝑘
‖≤ 𝑀 and recalling lim

𝑘∈𝐾, 𝑘→∞
𝛼
𝑘
= 0, we

obtain that lim
𝑘∈𝐾, 𝑘→∞

|𝑔(𝑥
𝑘
)
𝑇

𝑑
𝑘
| = 0. This also yields a

contradiction.

3. Numerical Experiments

In this section, we report some numerical experiments. We
test the performance of Algorithm 4 and compare it with the
Zoutendijk method.

The code was written in Matlab, and the program was
run on a PC with 2.20GHz CPU and 1.00GB memory. The
parameters in the method are specified as follows. We set 𝜌 =

1/2, 𝛿 = 1/10. We stop the iteration if |∇𝑓(𝑥
𝑘
)
𝑇

𝑑
𝑘
| ≤ 0.0001

or the iteration number exceeds 10000.
We first test Algorithm 4 on small and medium size

problems and compared them with the Zoutendijk method
in the total number of iterations and the CPU time used. The
test problems are from the CUTE library [20].The numerical
results of Algorithm 4 and the Zoutendijk method are listed
in Table 1. The columns have the following meanings.

𝑃(𝑖) is the number of the test problem,Dim is the
dimension of the test problem, Iter is the number of iterations,
andTime is CPU time in seconds.

We can see fromTable 1 that Algorithm 4 has successfully
solved 12 test problems, and the Zoutendijk method has
successfully solved 8 test problems. From the number of iter-
ations, Algorithm 4 has 12 test results better than Zoutendijk
method. From the computation time, Algorithm 4 performs

Table 1: The numerical results.

𝑃(𝑖) Dim Algorithm 4 Zoutendijk method
Iter Time Iter Time

3 2 1973 1.5710 — —
4 2 201 0.2290 — —

6

2 30 0.0160 — —
3 35 0.0160 — —
4 39 0.0470 — —
10 124 0.1210 — —
50 220 0.5370 — —

8 3 44 0.0150 40 0.2188
11 3 3 0.0000 4 0.1094
15 4 10 0.0160 20 0.1563
18 6 322 0.0690 1936 12.0938
19 11 438 0.5440 8338 72.4219
23 50 12 0.0300 4 0.5000
24 100 142 0.3750 — —
25 100 38 0.0810 6 0.3438

26 100 8 0.0470 6 0.1250
1000 4 47.9060 4 190.1406

Table 2: Test results for VARDIM with various dimensions.

Problem Dim Algorithm 4 Zoutendijk method
Iter Time Iter Time

VARDIM

1000 46 13.4485 — —
2000 55 49.0090 — —
3000 65 97.1020 — —
4000 78 164.6213 — —
5000 90 271.0340 — —

Table 3: Test results for Problem 1 with various dimensions.

Problem Dim Algorithm 4 Zoutendijk method
Iter Time Iter Time

Problem 1

1000 17 0.1400 8 110.2578
2000 26 16.8604 8 263.2660
3000 39 39.6561 11 554.0310
4000 51 68.1729 30 910.1090
5000 55 110.5660 — —

much better than the Zoutendijk method did. We then test
Algorithm 4 and the Zoutendijk method on two problems
with a larger dimension. The problem of VARDIM comes
from [20], and the following problem comes from [16]. The
results are listed in Tables 2 and 3.

Problem 1. The nonnegative constraints optimization prob-
lem

min 𝑓 (𝑥)

s.t. 𝑥 ≥ 0,

(46)
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with Engval function 𝑓 : 𝑅
𝑛

→ 𝑅 is defined by

𝑓 (𝑥) =

𝑛

∑

𝑖=2

{(𝑥
2

𝑖−1
+ 𝑥
2

𝑖
)
2

− 4𝑥
𝑖−1

+ 3} . (47)

We can see fromTable 2 that Algorithm 4 has successfully
solved the problem of VARDIMwhose scale varies from 1000
dimensions to 5000 dimensions. However, the Zoutendijk
method fails to solve the problem of VARDIM with larger
dimension. From Table 3, although the number of iterations
of Algorithm 4 is more than the Zoutendijk method, the
computation time of Algorithm 4 is less than the Zoutendijk
method, and this feature becomesmore evident as increase of
the dimension of the test problem.

In summary, the results from Tables 1–3 show that
Algorithm 4 is more efficient than the Zoutendijk method
and provides an efficient method for solving nonnegative
constraints optimization problems.
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