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A simplicial branch and bound duality-bounds algorithm is presented to globally solving the linear multiplicative programming
(LMP).We firstly convert the problem (LMP) into an equivalent programming one by introducing 𝑝 auxiliary variables. During the
branch and bound search, the required lower bounds are computed by solving ordinary linear programming problems derived by
using a Lagrangian duality theory. The proposed algorithm proves that it is convergent to a global minimum through the solutions
to a series of linear programming problems. Some examples are given to illustrate the feasibility of the present algorithm.

1. Introduction

1.1. Problem andApplications. In this paper, linearmultiplica-
tive programming problems are given by:

(LMP) V = min ℎ (𝑥) =

𝑝

∑

𝑖=1

(𝑐
𝑇

𝑖
𝑥 + 𝑐𝑖0) (𝑑

𝑇

𝑖
𝑥 + 𝑑𝑖0) ,

s.t. 𝑥 ∈ 𝑋 = {𝑥 ∈ 𝑅
𝑛
| 𝐴𝑥 ⩽ 𝑏, 𝑥 ⩾ 0} ,

(1)

where 𝑝 ⩾ 2, 𝑐
𝑇

𝑖
= (𝑐𝑖1, 𝑐𝑖2, . . . , 𝑐𝑖𝑛), 𝑑

𝑇

𝑖
= (𝑑𝑖1, 𝑑𝑖2, . . . , 𝑑𝑖𝑛) ∈

R𝑛, 𝑖 = 1, 2, . . . , 𝑝, 𝑏𝑇 = (𝑏1, 𝑏2, . . . , 𝑏𝑚) ∈ R𝑚, 𝑐𝑖0, 𝑑𝑖0 ∈ R,

𝑖 = 1, 2, . . . , 𝑝, 𝐴 is an 𝑚 × 𝑛 matrix, 𝑋 ⊆ 𝑅
𝑛 is a nonempty,

compact convex set. We assume also that for each 𝑖 =

1, 2, . . . , 𝑝, 𝑑𝑇
𝑖
𝑥 + 𝑑𝑖0 > 0. Generally, the problem (LMP) is a

special case of non-convex programming problem, known to
be an NP-hard even at 𝑝 = 1 [1].

Problem (LMP) has many important applications. Since
it subsumes quadratic programming, bilinear programming
and linear zero-one programming as special cases, the appli-
cations appear quite numerous. Readers may refer to Benson

[2] for the following analysis. Now the quadratic program-
ming problem is given as follows:

min 1

2
𝑦
𝑇
𝑄𝑦 + 𝑑

𝑇
𝑦 + 𝑐,

s.t. 𝑦 ∈ 𝑌 = {𝑦 ∈ 𝑅
𝑛
| 𝐴𝑦 ⩽ 𝑏, 𝑦 ⩾ 0} ,

(2)

where 𝑄 is an 𝑛 × 𝑛 symmetric matrix of rank 𝑝, 𝑑 ∈ 𝑅
𝑛 and

𝑐 ∈ 𝑅. From Tuy [3], there exist linearly independent sets of
𝑛-dimensional vectors, {V1, V2, . . . , V𝑝} and {𝑤1, 𝑤2, . . . , 𝑤𝑝},
such that, for all 𝑦 ∈ 𝑅

𝑛,

1

2
𝑦
𝑇
𝑄𝑦 =

1

2

𝑝

∑

𝑖=1

(V
𝑇

𝑖
𝑦) (𝑤

𝑇

𝑖
𝑦) . (3)

Thus, problem (LMP) encompasses the general quadratic
programming problem as a special case, and the applications
of problem (LMP) include all of the applications of general
quadratic programming. Among the latter, for example,
quadratic assignment problems [4], problems in economies
of scale [5], the constrained linear regression problem [6],
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VLSI chip design problems [7], the linear complementarity
problem [5], and portfolio analysis problems [6].

The bilinear programming problem can be converted into
the LMP and it may be written by

min 1

2
𝑏
𝑇
𝑦 + 𝑑
𝑇
𝑧 + 𝑦
𝑇
𝑄𝑧,

s.t. 𝑦 ∈ 𝑌 = {𝑦 ∈ 𝑅
𝑚
| 𝐶𝑦 ⩽ 𝑐, 𝑦 ⩾ 0} ,

𝑧 ∈ 𝑍 = {𝑧 ∈ 𝑅
𝑛
| 𝐸𝑧 ⩽ 𝑒, 𝑧 ⩾ 0} ,

(4)

where 𝑏 ∈ 𝑅
𝑚, 𝑑 ∈ 𝑅

𝑛, 𝑐 ∈ 𝑅
𝑞, 𝑒 ∈ 𝑅

𝑟, 𝑄 is an 𝑚 × 𝑛

matrix of rank 𝑝, 𝐶 and 𝐸 are 𝑞 × 𝑚 matrix and 𝑟 × 𝑛

matrix, respectively. From Konno and Yajima [8], by using
a constructive procedure, it can be written in the form

min 1

2
𝑏
𝑇
𝑦 + 𝑑
𝑇
𝑧 +

𝑝

∑

𝑖=1

(V
𝑇

𝑖
𝑦) (𝑤

𝑇

𝑖
𝑧) ,

s.t. 𝑦 ∈ 𝑌, 𝑧 ∈ 𝑍,

(5)

where V1, V2, . . . , V𝑝 ∈ 𝑅
𝑚 and 𝑤1, 𝑤2, . . . , 𝑤𝑝 ∈ 𝑅

𝑛. The latter
is a special case of the LMP with 𝑥

𝑇
= [𝑦
𝑇
, 𝑧
𝑇
], ℎ(𝑥) =

𝑏
𝑇
𝑦 + 𝑑

𝑇
𝑧 + ∑

𝑝

𝑖=1
(𝛼
𝑇

𝑖
𝑥)(𝛽
𝑇

𝑖
𝑥), 𝛼𝑇
𝑖
= [V𝑇
𝑖
, 0
𝑇
] and 𝛽

𝑇

𝑖
= [0
𝑇
,

𝑤
𝑇

𝑖
], 𝛼𝑖, 𝛽𝑖 ∈ 𝑅

𝑚+𝑛
, 𝑖 = 1, 2, . . . , 𝑝, and 𝑋 = {(𝑦, 𝑧) ∈ 𝑅

𝑚+𝑛
|

𝐶𝑦 ⩽ 𝑐, 𝐸𝑧 ⩽ 𝑒, 𝑦, 𝑧 ⩾ 0}. Therefore, among the applications
problem (P) are all of the applications of bilinear program-
ming, including, for example, location-allocation problems
[9], constrained bimatrix games [10], the three-dimensional
assignment problem [11], certain linear max-min problems
[12], and many problems in engineering design, economic
management and operations research.

A linear zero-one programming problem may be written
as

(Q)min 1

2
𝑏
𝑇
𝑦,

s.t. 𝑦 ∈ 𝑌 = {𝑦 ∈ 𝑅
𝑚
| 𝐶𝑦 ⩽ 𝑐, 𝑦 ⩾ 0} ,

𝑦𝑖 ∈ {0, 1} , 𝑖 = 1, 2, . . . , 𝑛,

(6)

where 𝑏 ∈ 𝑅
𝑚, 𝑐 ∈ 𝑅

𝑝, 𝐶 is 𝑝×𝑚matrix. From Raghavachari
[13], for 𝑀 > 0 sufficiently large, 𝑦∗ is an optimal solution
to problem (Q) if and only if 𝑦∗ is an optimal solution to the
problem

(QC)min 1

2
𝑏
𝑇
𝑦 +𝑀

𝑛

∑

𝑖=1

𝑦𝑖 (1 − 𝑦𝑖) ,

s.t. 𝑦 ∈ 𝑌 = {𝑦 ∈ 𝑅
𝑚
| 𝐶𝑦 ⩽ 𝑐, 𝑦 ⩾ 0} ,

0 ⩽ 𝑦𝑖 ⩽ 1, 𝑖 = 1, 2, . . . , 𝑛.

(7)

Since problem (QC) is a special case of the LMP, it follows
that all of the numerous applications of linear zero-one
programming are embodied among the applications of the
LMP. For an overview of some of these applications, see
Nemhauser and Wolsey [14].

1.2. Purpose and Content. The LMP is a global optimization
problem. In the past 20 years, many algorithms have been
proposed globally to a multiplicative programming one. The
methods can be classified as parameterization based meth-
ods [2, 15–17], outer-approximation and branch-and-bound
methods [18–25], vertex enumeration methods [26, 27], a
method based on image space analysis [28], a primal and
dual simplex method [29], an outcome-space cutting plane
method [30], heuristic methods [31, 32], and decomposition
method [33].

In this paper, a simplicial branch and bound duality-
bounds algorithm is presented to the problem (LMP) by
solving a sequence of linear programming one over parti-
tioned subsets.The algorithm implements a simplicial branch
and bound search, finding a global optimal solution to the
problem, equivalent to the problem (LMP). Branching takes
place in a space of only dimension 𝑝 in the algorithm, where
𝑝 is the number of terms in the objective function of problem
(LMP). During the search, the required lower bounds are
computed by solving ordinary linear programming problems.
When the algorithm is infinite, any accumulation point of this
sequence of feasible solutions is guaranteed to globally solve
the problem. The proposed branch and bound algorithm is
summarized as follows. Firstly, the branch and bound search
takes place in a space of only dimension 𝑝, where 𝑝 is
the number of terms in the objective function of problem
(LMP), rather than in the decision space R𝑛. Secondly,
the subproblems that must be solved during the search are
all linear programming problems that can be solved very
efficiently, for example, by a simplex method.The algorithms
in this article are motivated by the seminal works of [34], the
sum of linear ratios problem, andHorst and Tuy [35] by using
branch and bound for global optimization.

The organization and content of this article can be sum-
marized as follows. In Section 2, some preliminary results and
operations are presented to implement the simplicial branch
and bound duality-bounds algorithm. The simplicial branch
and bound duality-bounds algorithm is given in Section 3. In
Section 4, the convergence of the algorithm is established. In
Section 5 some examples are solved to demonstrate that the
proposed algorithm is effective. Some concluding remarks are
given in Section 6.

2. Preliminaries

In this section, we firstly show how to convert the LMP
into an equivalent nonconvex programming (LMP(𝑆0)) by
introducing a 𝑝-dimension vector 𝑦 for finding a simplex.
Then, for each 𝑝-dimensional simplex 𝑆 created by the
branching process, the lower bound LB(𝑆) can be found by
solving an ordinary linear program by using the Lagrangian
weak duality theorem of nonlinear programming.

2.1. Initial Simplex. To globally solve the LMP, the branch
and bound algorithm to be developed will be used for
searching values of 𝑑𝑇

𝑖
𝑥 + 𝑑𝑖0, 𝑖 = 1, 2, . . . , 𝑝, at optimality.

For each 𝑖 = 1, 2, . . . , 𝑝, let 𝑙𝑖 = min𝑥∈𝑋{𝑑
𝑇

𝑖
𝑥 + 𝑑𝑖0}, and

𝛾𝑖 = max𝑥∈𝑋{𝑑
𝑇

𝑖
𝑥 + 𝑑𝑖0}. By introducing additional variable
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vector 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑝) ∈ R𝑝, we construct a set 𝑌 as
follows:

𝑌 = {𝑦 ∈ R
𝑝
| 𝑑
𝑇

𝑖
𝑥 + 𝑑𝑖0 − 𝑦𝑖 ⩽ 0,

𝑖 = 1, 2, . . . , 𝑝, 𝑦 ∈ 𝐷, for some𝑥 ∈ 𝑋} ,

(8)

where𝐷 ≜ {𝑦 ∈ R𝑝 | 𝑙𝑖 ⩽ 𝑦𝑖 ⩽ 𝛾𝑖, 𝑖 = 1, 2, . . . , 𝑝}.
In order to construct simplex 𝑆

0, denoting 𝛾 =

min𝑥∈𝑋∑
𝑝

𝑖=1
(𝑑
𝑇

𝑖
𝑥 + 𝑑𝑖0). Let 𝑆

0
∈ 𝑅
𝑝 be the convex hull of

V0, V1, . . . , V𝑝, where V0
𝑗
= 𝛾𝑗, 𝑗 = 1, 2, . . . , 𝑛, and, for each

𝑗 = 1, 2, . . . , 𝑛,

V
𝑖

𝑗
=

{{

{{

{

𝛾𝑗 if 𝑗 ̸= 𝑖,

𝛾 − ∑
𝑗 ̸= 𝑖

𝛾𝑗 if 𝑗 = 𝑖.
(9)

Notice that either 𝛾 = ∑
𝑝

𝑖=1
𝛾𝑖 or 𝛾 < ∑

𝑝

𝑖=1
𝛾𝑖, and for any 𝑗 =

1, . . . , 𝑝, (V𝑗 − V0)𝑇 = (0, 0, . . . , 𝛾 − ∑
𝑝

𝑖=1
𝛾𝑖, . . . , 0), where 𝛾 −

∑
𝑝

𝑖=1
𝛾𝑖 is the 𝑗th component of V𝑗−V0. We can easily show the

following theorem (see Benson [34]).

Theorem 1. 𝑆0 is either a single point or 𝑆0 is a 𝑝-dimensional
simplex. In either case, 𝑆0 ⊇ 𝑌.

Remark 2. From Theorem 1, 𝑆0 is either a single point or 𝑆0
is a 𝑝-dimensional simplex. Notice that if 𝑆0 is a single one,
that is, 𝑆0 = {𝑦

∗
} is a single one, then 𝑋 = {𝑥

∗
} is a single

point set and𝑥∗ is a global optimal solution to the LMP,where
𝑥
∗ is any optimal solution to the linear program obtained by

setting 𝑥 equal to 𝑥
∗ in problem (LMP(𝑆0)). Therefore, we

will assume in the remainder of this article that 𝑆0 is a 𝑝-
dimensional simplex.

2.2. Equivalent Problem. For any simplex 𝑆 ⊂ R𝑝, define the
problem

(LMP (𝑆)) V (𝑆) = min ℎ (𝑥, 𝑦) =

𝑝

∑

𝑖=1

(𝑐
𝑇

𝑖
𝑥 + 𝑐𝑖0) 𝑦𝑖,

s.t. 𝑑
𝑇

𝑖
𝑥 + 𝑑𝑖0 − 𝑦𝑖 ⩽ 0,

𝑖 = 1, 2, . . . , 𝑝,

𝐴𝑥 − 𝑏 ⩽ 0,

𝑥 ⩾ 0, 𝑦 ∈ 𝑆.

(10)

In order to solve the LMP, the branch and bound algo-
rithm is used to solves problem (LMP(𝑆0)) instead.The valid-
ity of solving problem (LMP(𝑆0)), in order to solve the LMP,
follows from the next result.

Theorem3. If (𝑥∗, 𝑦∗) is a global optimal solution for problem
(LMP(𝑆0)), then 𝑥

∗ is a global optimal solution for prob-
lem (LMP). If 𝑥∗ is a global optimal solution for problem
(LMP), then (𝑥

∗
, 𝑦
∗
) is a global optimal solution for problem

(LMP(𝑆0)), where 𝑦∗
𝑖
= 𝑑
𝑇

𝑖
𝑥
∗
+ 𝑑𝑖0, 𝑖 = 1, 2, . . . , 𝑝. The global

optimal values V and V(𝑆0) of problems (LMP) and (LMP(𝑆0)),
respectively, are equal.

Proof. By using the fact that 𝑆0 ⊇ 𝑌, the proof of this theorem
follows easily from the defintions of problem (LMP(𝑆0)).

2.3. Duality Bound. For each 𝑝-dimensional simplex 𝑆 cre-
ated by the branching process, the algorithm computes a
lower bound LB(𝑆) for the optimal value V(𝑆) of prob-
lem (LMP(𝑆)). The next theorem shows that, by using the
Lagrangian weak duality theorem of nonlinear program-
ming, the lower bound LB(𝑆) can be found by solving an ordi-
nary linear programming.

Theorem 4. Let 𝑆 ⊆ R𝑝 be a 𝑝-dimensional simplex with ver-
tices 𝑦0, 𝑦1, . . . , 𝑦𝑝, and let 𝐽 = {0, 1, 2, . . . , 𝑝}. Then LB(𝑆) ⩽
V(𝑆), where LB(𝑆) is the optimal value of the linear program-
ming problem

(𝐿𝑃 (𝑆)) 𝐿𝐵 (𝑆) = max
𝑝

∑

𝑖=1

𝜃𝑖𝑑𝑖0 − 𝜆
𝑇
𝑏 + 𝑡

𝑠.𝑡. −

𝑝

∑

𝑖=1

𝜃𝑖𝑑𝑖 − 𝐴
𝑇
𝜆 ⩽ 𝐶,

𝑝

∑

𝑖=1

𝑦
𝑗

𝑖
𝜃𝑖 + 𝑡 ⩽

𝑝

∑

𝑖=1

𝑦
𝑗

𝑖
𝑐𝑖0,

𝑗 = 0, 1, 2, . . . , 𝑝,

𝜃 ⩾ 0, 𝜆 ⩾ 0, 𝑡 𝑓𝑟𝑒𝑒,

(11)

where 𝐶∈R𝑛 and 𝐶=(min𝑗∈𝐽(∑
𝑝

𝑖=1
𝑦
𝑗

𝑖
𝑐𝑖1),min𝑗∈𝐽(∑

𝑝

𝑖=1
𝑦
𝑗

𝑖
𝑐𝑖2),

. . . ,min𝑗∈𝐽(∑
𝑝

𝑖=1
𝑦
𝑗

𝑖
𝑐𝑖𝑛))
𝑇
.

Proof. By the definition of V(𝑆) and the weak duality theorem
of Lagrangian duality, V(𝑆) ⩾ LB(𝑆), where

LB (𝑆) = max
𝜃⩾0
𝜆⩾0

{

{

{

min
𝑦∈𝑆

𝑥⩾0

[

𝑝

∑

𝑖=1

(𝑐
𝑇

𝑖
𝑥 + 𝑐𝑖0) 𝑦𝑖

+

𝑝

∑

𝑖=1

𝜃𝑖 [𝑑
𝑇

𝑖
𝑥 + 𝑑𝑖0 − 𝑦𝑖]

+ 𝜆
𝑇
𝐴𝑥 − 𝜆

𝑇
𝑏]

]

}

}

}

= max
𝜃⩾0
𝜆⩾0

{

𝑝

∑

𝑖=1

𝜃𝑖𝑑𝑖0 − 𝜆
𝑇
𝑏

+min
𝑦∈𝑆

𝑥⩾0

[⟨

𝑝

∑

𝑖=1

(𝑦𝑖𝑐
𝑇

𝑖
+ 𝜃𝑖𝑑
𝑇

𝑖
) + 𝜆
𝑇
𝐴, 𝑥⟩

+

𝑝

∑

𝑖=1

𝑦𝑖 (𝑐𝑖0 − 𝜃𝑖)]} .

(12)
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Since

min
𝑦∈𝑆

⟨

𝑝

∑

𝑖=1

(𝑦𝑖𝑐
𝑇

𝑖
+ 𝜃𝑖𝑑
𝑇

𝑖
) + 𝜆
𝑇
𝐴, 𝑥⟩

=

{{

{{

{

0,

𝑝

∑
𝑖=1

(𝑦𝑖𝑐
𝑇

𝑖
+ 𝜃𝑖𝑑
𝑇

𝑖
) + 𝜆
𝑇
𝐴 ⩾ 0, ∀𝑥 ⩾ 0,

−∞, otherwise,
(13)

it follows that,

LB (𝑆) = max {

𝑝

∑

𝑖=1

𝜃𝑖𝑑𝑖0 − 𝜆
𝑇
𝑏 +min
𝑦∈𝑆

[

𝑝

∑

𝑖=1

𝑦𝑖 (𝑐𝑖0 − 𝜃𝑖)]}

s.t.
𝑝

∑

𝑖=1

(𝑦𝑖𝑐
𝑇

𝑖
+ 𝜃𝑖𝑑
𝑇

𝑖
) + 𝜆
𝑇
𝐴 ⩾ 0, ∀𝑦 ∈ 𝑆,

𝜆 ⩾ 0, 𝜃 ⩾ 0.

(14)

Since 𝑆 is a compact polyhedron with extreme points 𝑦𝑗, 𝑗 =

0, 1, 2, . . . , 𝑝, for each 𝜃 ∈ R𝑝 and 𝜆 ⩾ 0, ∑𝑝
𝑖=1

(𝑦𝑖𝑐
𝑇

𝑖
+ 𝜃𝑖𝑑
𝑇

𝑖
) +

𝜆
𝑇
𝐴 ⩾ 0 holds for all 𝑦 ∈ 𝑆 if and only if it holds for all

𝑦 ∈ {𝑦
0
, 𝑦
1
, . . . , 𝑦

𝑝
}. So, for all 𝑗 ∈ 𝐽, we can get ∑𝑝

𝑖=1
(𝑦
𝑗

𝑖
𝑐
𝑇

𝑖
+

𝜃𝑖𝑑
𝑇

𝑖
) + 𝜆
𝑇
𝐴 ⩾ 0, that is,

−

𝑝

∑

𝑖=1

𝜃𝑖𝑑
𝑇

𝑖
− 𝜆
𝑇
𝐴 ⩽

𝑝

∑

𝑖=1

𝑦
𝑗

𝑖
𝑐
𝑇

𝑖
, ∀𝑗 ∈ 𝐽. (15)

Notice that for all 𝑗 ∈ 𝐽, the left-hand-side of (15) is the
same linear function of 𝜃 and 𝜆, then (15) is equivalent
to −∑

𝑝

𝑖=1
𝜃𝑖𝑑𝑖 − 𝐴

𝑇
𝜆 ⩽ 𝐶, where 𝐶 ∈ R𝑛 and 𝐶 =

(min𝑗∈𝐽(∑
𝑝

𝑖=1
𝑦
𝑗

𝑖
𝑐𝑖1), . . . ,min𝑗∈𝐽(∑

𝑝

𝑖=1
𝑦
𝑗

𝑖
𝑐𝑖𝑛))
𝑇

.
Therefore,

(LB (𝑆)) = max [

𝑝

∑

𝑖=1

𝜃𝑖𝑑𝑖0 − 𝜆
𝑇
𝑏

+min
𝑦∈𝑆

(

𝑝

∑

𝑖=1

𝑦𝑖 (𝑐𝑖0 − 𝜃𝑖))]

s.t. −

𝑝

∑

𝑖=1

𝜃𝑖𝑑𝑖 − 𝐴
𝑇
𝜆 ⩽ 𝐶,

𝜃 ⩾ 0, 𝜆 ⩾ 0.

(16)

That is,

(LB (𝑆)) = max
𝑝

∑

𝑖=1

𝜃𝑖𝑑𝑖0 − 𝜆
𝑇
𝑏 + 𝑡

s.t. −

𝑝

∑

𝑖=1

𝜃𝑖𝑑𝑖 − 𝐴
𝑇
𝜆 ⩽ 𝐶,

𝑝

∑

𝑖=1

𝑦𝑖 (𝑐𝑖0 − 𝜃𝑖) ⩾ 𝑡,

𝜃 ⩾ 0, 𝜆 ⩾ 0.

(17)

For any 𝜃 ∈ R𝑝, 𝑦𝑖(𝑐𝑖0 − 𝜃𝑖) is a linear function. Because
simplex 𝑆 is a compact polyhedron with extreme points
𝑦
0
, 𝑦
1
, . . . , 𝑦

𝑝, this implies for any 𝜃 ∈ R𝑝,∑𝑝
𝑖=1

𝑦𝑖(𝑐𝑖0 −𝜃𝑖) ⩾ 𝑡

holds if and only if

𝑝

∑

𝑖=1

𝑦
𝑗

𝑖
(𝑐𝑖0 − 𝜃𝑖) − 𝑡 ⩾ 0, 𝑗 = 0, 1, 2, . . . , 𝑝. (18)

The proof is complete.

Proposition 5. Let 𝑆1, 𝑆2 ⊆ R𝑝 be a 𝑝-dimensional subsim-
plices of 𝑆 formed by the branching process such that 𝑆1 ⊆ 𝑆

2
⊆

𝑆
0. Then

(i) 𝐿𝐵(𝑆1) ⩾ 𝐿𝐵(𝑆
2
).

(ii) Let 𝑆 ⊆ R𝑝be a 𝑝-dimensional simplex with vertices
𝑦
0
, 𝑦
1
, . . . , 𝑦

𝑝. Then 𝐿𝐵 > −∞.

Proof. Theproof is similar to [34, Proposition 3], it is omitted
here.

Remark 6. From part (ii) of Proposition 5, for any 𝑝-
dimensional simplex 𝑆 created by the algorithm during the
branch and bound search, the duality bounds-based lower
bound LB(𝑆) for the optimal value V(𝑆) of problem (LMP(𝑆))
is either finite or equal to +∞. When LB(𝑆) = +∞,
problem (LMP(𝑆)) is infeasible and, as we shall see, 𝑆 will
be eliminated from further consideration by the deletion
by bounding process of the algorithm. The monotonicity
property in part (i) of Proposition 5 will be used to help to
show the convergence of the algorithm.

Now, we show how to determine an upper bound of the
global optimal value for (LMP(𝑆)). For each 𝑝-dimensional
simplex 𝑆 generated by the algorithm such that LB(𝑆) is finite,
the algorithm generates a feasible solution 𝑤 to problem
(LMP). As the algorithm finds more and more feasible
solutions to it an upper bound for the optimal value V of it
improves iteratively. These feasible solutions are found from
dual optimal ones to the lower bounding problems (LP(𝑆))
that are solved by the algorithm, as given in the following
result.

Proposition 7. Let 𝑆 ⊆ R𝑝 be a 𝑝-dimensional simplex with
vertices 𝑦

0
, 𝑦
1
, . . . , 𝑦

𝑝, and suppose that LB(𝑆) ̸= + ∞. Let
𝑤 ∈ R𝑛 be optimal dual variables corresponding to the first
𝑛 constraints of linear program LP(𝑆). Then 𝑤 is a feasible
solution for problem (LMP).

Proof. The dual linear program to problem (LP(S)) is

DLP (𝑆) LB (𝑆)

= min 𝐶
𝑇
𝑤 +

𝑝

∑

𝑗=0

𝑞𝑗

𝑝

∑

𝑖=1

𝑦
𝑗

𝑖
𝑐𝑖0
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s.t. − 𝑑
𝑇

𝑖
𝑤

+

𝑝

∑

𝑗=0

𝑦
𝑗

𝑖
𝑞𝑗 ⩾ 𝑑𝑖0, 𝑖 = 1, 2, . . . , 𝑝,

− 𝐴𝑤 ⩾ −𝑏,

𝑝

∑

𝑗=0

𝑞𝑗 = 1, 𝑤 ⩾ 0.

(19)

The constraints of problem (DLP(S)) imply that 𝐴𝑤 ⩽ 𝑏,
𝑤 ⩾ 0.

3. Global Optimizing Algorithm

To globally solve problem (LMP(𝑆)), the algorithm to be
presented uses a branch and bound approach.There are three
fundamental processes in the algorithm, a branching process,
a lower bounding one, and an upper bounding one.

3.1. Branching Rule. Thebranch and bound approach is based
on partitioning the 𝑝-dimensional simplex 𝑆

0 into smaller
subsimplices that are also of dimension 𝑝, each concerned
with a node of the branch and bound tree, and each node
is associated with a linear subproblem on each subsimplicie.
These subsimplices are obtained by the branching process,
which helps the branch and bound procedure identify a
location in the feasible region of problem (LMP(𝑆0)) that
contains a global optimal solution to the problem.

During each iteration of the algorithm, the branching
process creates a more refined partition of a portion in 𝑆 = 𝑆

0

that cannot yet be excluded from consideration in the search
for a global optimal solution for problem (LMP(𝑆)). The
initial partition𝑄1 consists simply of 𝑆, since at the beginning
of the branch and bound procedure, no portion of 𝑆 can as yet
be excluded from consideration.

During iteration 𝑘 of the algorithm, 𝑘 ⩾ 1, the branching
process is used to help create a new partition 𝑄𝑘+1. First, a
screening procedure is used to remove any rectangle from𝑄𝑘
that can, at this point of the search, be excluded from further
consideration, and 𝑄𝑘+1 is temporarily set equal to the set
of simplices that remain. Later in iteration 𝑘, a rectangle 𝑆𝑘
in 𝑄𝑘+1 is identified for further examination. The branching
process is then evoked to subdivide 𝑆𝑘 into two subsimplices
𝑆
𝑘

1
, 𝑆
𝑘

2
. This subdivision is accomplished by a process called

simplicial bisection.

Definition 8 (see [35]). Let 𝑆 be a 𝑝-dimensional simplex
with vertex set {V0, V1, . . . , V𝑝}. Let 𝑤 be the midpoint of
any of the longest edges [V𝑟, V𝑡] of 𝑆. Then {𝑆

1
, 𝑆
2
} is called

a 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑎𝑙𝑏𝑖𝑠𝑒𝑐𝑡𝑖𝑜𝑛 of 𝑆, where the vertex set of 𝑆
1 is

{V0, V1, . . . , V𝑟−1, 𝑤, V𝑟+1, . . . , V𝑝} and the vertex set of 𝑆
2 is

{V0, V1, . . . , V𝑡−1, 𝑤, V𝑡+1, . . . , V𝑝}.

3.2. Lower Bound and Upper Bound. The second fundamen-
tal process of the algorithm is the lower bounding one. For
each simplex 𝑆 ⊆ 𝑆

0 created by the branching process, this

process gives a lower bound LB(𝑆) for the optimal value V(𝑆)
of the following problem LMP(𝑆),

V (𝑆) = min ℎ (𝑥) =

𝑝

∑

𝑖=1

(𝑐
𝑇

𝑖
𝑥 + 𝑐𝑖0) 𝑦𝑖,

s.t. 𝑑
𝑇

𝑖
𝑥 + 𝑑𝑖0 − 𝑦𝑖 ⩽ 0

𝐴𝑥 − 𝑏 ⩽ 0,

𝑥 ⩾ 0, 𝑦 ∈ 𝑆.

(20)

For each simplex 𝑆 created by the branching process, LB(𝑆)
is found by solving a single linear programming LP(𝑆) as
follows,

(LB (𝑆)) = max
𝑝

∑

𝑖=1

𝜃𝑖𝑑𝑖0 − 𝜆
𝑇
𝑏 + 𝑡
∗

s.t. −

𝑝

∑

𝑖=1

𝜃𝑖𝑑𝑖 − 𝐴
𝑇
𝜆 ⩽ 𝐶,

𝑝

∑

𝑖=1

𝑦
𝑗

𝑖
𝜃𝑖 + 𝑡 ⩽

𝑝

∑

𝑖=1

𝑦
𝑗

𝑖
𝑐𝑖0,

𝑗 = 0, 1, 2, . . . , 𝑝,

𝜃 ⩾ 0, 𝜆 ⩾ 0, 𝑡 free,

(21)

where 𝑦0, 𝑦1, . . . , 𝑦𝑝 denote the vertices of the 𝑝-dimensional
simplex 𝑆.

During each iteration 𝑘 ⩾ 0, the lower bounding process
computes a lower bound LB𝑘 for the optimal value V(𝑆0) of
problem (LMP(𝑆0)). For each 𝑘 ⩾ 0, this lower process bound
LB𝑘 is given by

LB𝑘 = min {LB (𝑆) | 𝑆 ∈ 𝑄𝑘} . (22)

The upper bounding process is the third fundamental one
of the branch and bound algorithm. For each 𝑝-dimensional
simplex 𝑆 created by the branching process, this process finds
an upper bound for (LMP(𝑆)). Let 𝑤 ∈ R𝑛 be optimal dual
variables corresponding to the first 𝑛 constraints of linear
program LP(S), and set 𝑥∗ = 𝑤

∗. Then, from definition of
problem (DLP(𝑆)), we have that 𝐴𝑥∗ ⩽ 𝑏, 𝑥

∗
⩾ 0. This

implies that 𝑥∗ is a feasible solution to (LMP(𝑆)). Therefore,
an upper boundUB(𝑆) of (LMP(𝑆)) is ℎ(𝑥∗). In each iteration
of the algorithm, this process finds an upper bound for V.
For each 𝑘 ⩾ 0, let 𝑤 ∈ R𝑛 be optimal dual variables
corresponding to the first 𝑛 constraints of linear program
LP(𝑆), then this upper bound UB𝑘 is given by

UB𝑘 = ℎ (𝑥) , (23)

where 𝑥 is the incumbent feasible solution to the problem.

3.3. Deleting Technique. As the branch and bound search pro-
ceeds, certain 𝑝-dimensional simplices created by the algo-
rithm are eliminated from further consideration. There are
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two ways occuring, either by deletion by bounding or by
deletion by infeasibility.

During any iteration 𝑘, 𝑘 ⩾ 1, let UB𝑘 be the smallest
objective function value achieved in problem (LMP) by the
feasible solutions to problem (LMP(S)) thus far generated by
the algorithm. A simplex 𝑆 ⊆ 𝑆

0 is deleted by bounding when

LB (𝑆) ⩾ UB𝑘 (24)

holds. When (30) holds, searching simplex 𝑆 further will not
improve upon the best feasible solution found thus far for
problem (LMP).

As soon as each 𝑝-dimensional simplex 𝑆 is created by
simplicial bisection in the algorithm, it is subjected to the
deletion by infeasibility test. Let 𝑦0, 𝑦1, . . . , 𝑦𝑝 denote the
vertices of such a simplex 𝑆. If for some 𝑖 ∈ {1, 2, . . . , 𝑝}, either

min {𝑦0
𝑖
, 𝑦
1

𝑖
, . . . , 𝑦

𝑝

𝑖
} > 𝐿 𝑖, (25)

or

max {𝑦0
𝑖
, 𝑦
1

𝑖
, . . . , 𝑦

𝑝

𝑖
} < 𝑙𝑖, (26)

then simplex 𝑆 is said to pass the deletion by infeasibility
test and it is eliminated by the algorithm from further
consideration. If for each 𝑖 ∈ {1, 2, . . . , 𝑝}, both (25) and (26)
fail to hold, then simplex 𝑆 fails the deletion by infeasibility
test and it is retained for further scrutiny by the algorithm.
The validity of the deletion by infeasibility test follows from
the fact that if (25) or (26) holds for some 𝑖, then for each
𝑦 ∈ 𝑆, there is no 𝑥 ∈ 𝑋 such that

𝑑
𝑇

𝑖
𝑥 + 𝑑𝑖0 − 𝑦𝑖 = 0. (27)

This implies problem (LMP(S)) infeasible.

3.4. Branch and Bound Algorithm. Based on the results and
algorithmic process discussed in this section, the branch and
bound algorithm for globally solving the LMP can be stated
as follows.

Step 1 (Initialization).

(0.1) Initialize the iteration counter 𝑘 := 0; the set of all
active nodes𝑄0 := {𝑆

0
}; the upper bound UB0 = +∞.

(0.2) Solve linear program (LP(𝑆0)) for its finite optimal
value LB(𝑆0). Let 𝑤 ∈ R𝑛 be optimal dual variables
corresponding to the first 𝑛 constraints of linear
program LP(𝑆0). Set 𝑥0 = 𝑤, UB0 = ℎ(𝑥

0
), LB0 =

LB(𝑆0). Set 𝑘 = 1, and go to iteration 𝑘.

Main Step (at iteration 𝑘)

Step 2 (Termination). If UB𝑘−1 − LB𝑘−1 ⩽ 𝜀, where 𝜀 > 0 is
some accuracy tolerance, then stop, and 𝑥

𝑘−1 is a global 𝜀-
optimal solution for problem (LMP) and V = LB𝑘−1.
Otherwise, set 𝑥𝑘 = 𝑥

𝑘−1, LB𝑘 = LB𝑘−1, UB𝑘 = UB𝑘−1. Go to
Step 3.

Step 3 (Branching). Let 𝑆
𝑘

∈ 𝑄𝑘−1 satisfy 𝑆
𝑘

∈

arg min{LB (𝑆) | 𝑆 ∈ 𝑄𝑘−1}. Use simplicial bisection to divide
𝑆
𝑘 into 𝑆𝑘

1
and 𝑆
𝑘

2
. Let 𝑅̂ = {𝑆

𝑘

1
, 𝑆
𝑘

2
}.

Step 4 (Infeasiblity Test). Delete from 𝑅̂ each simplex that
passes the deletion by infeasiblity test. Let 𝑅 represent the
subset of 𝑅̂ thereby obtained.

Step 5 (Fathoming). For each new sub-simplex 𝑆 ∈ 𝑅, com-
pute optimal value LB(𝑆) of linear program (LP(𝑆0)). If LB(S)
is finite, let 𝑤 ∈ R𝑛 be optimal dual variables corresponding
to the first (𝑝 + 1)𝑛 constraints of linear program (LP(S)).

Step 6 (Updating upper Bound). If ℎ(𝑤) < ℎ(𝑥
𝑘
), set 𝑥𝑘 = 𝑤,

UB𝑘 = ℎ(𝑥
𝑘
).

Step 7 (New Partition). Let 𝑄𝑘 = {𝑄𝑘−1 \ {𝑆
𝑘
}}⋃𝑅.

Step 8 (Deletion). 𝑄𝑘 = 𝑄𝑘 \ {𝑆 : LB(𝑆) − UB𝑘 ⩾ 𝜀}.

Step 9 (Convergence). If𝑄𝑘 = 0, then stop. UB𝑘 is an optimal
value of the LMP, and 𝑥

𝑘 is a global 𝜀-optimal solution for
problem (LMP). Otherwise, set 𝑘 + 1 and go to Step 2.

4. Convergence of the Algorithm

In this section we give a global convergence of algorithm
above. By the construction of the algorithm, when the algo-
rithm is finite, then𝑄𝑘 = 0, so that V(𝑆0) ⩾ UB𝑘+𝜀 = ℎ(𝑥

𝑘
)+𝜀.

Since, by Proposition 5, V = V(𝑆0) and since 𝑥
𝑘
∈ 𝑋, this

implies that V ⩾ ℎ(𝑥
𝑘
)+𝜀 and 𝑥𝑘 is a global 𝜀-optimal solution

to the LMP. Thus, when the algorithm is finite, it globally
solves the LMP as desired.

If the algorithm does not terminate after finitely many
iterations, then it is easy to show that it generates at least one
infinite nested subsequence {𝑆𝑟} of simplices, that is, where
𝑆
𝑟+1

⊆ 𝑆
𝑟 for all 𝑟. In this case, the following result is a key to

convergence in the algorithm.

Theorem 9. Suppose that the Branch and Bound Algorithm is
infinite, and that {𝑆𝑟} is an infinite nested subsequence of sim-
plices generated by the algorithm. Let 𝑤∗ denote any accumu-
lation point of {𝑤𝑟}∞

𝑟=0
where, for each 𝑟, 𝑤𝑟 ∈ R𝑛 denotes any

optimal dual variables corresponding to the first 𝑛 constraints of
linear program (LP(𝑆𝑟)). Then 𝑤

∗ is a global optimal solution
for problem (LMP).

Proof. Suppose that the algorithm is infinite, and let {𝑆𝑟} be
chosen as in the theorem. Then, from Horst and Tuy [35],
⋂𝑟 𝑆
𝑟
= {𝑦
∗
} for some point 𝑦∗ ∈ R𝑝.

For each simplex 𝑆
𝑟, denote its vertices by 𝑦

𝑟,𝑗
, 𝑗 = 0,

1, . . . , 𝑝, denote (𝑤
𝑟
, 𝑞
𝑟

0
, 𝑞
𝑟

1
, . . . , 𝑞

𝑟

𝑝
) as an optimal dual solu-

tion to linear program (LP(𝑆𝑟)). Set 𝑈 = {𝑞 ∈ R𝑝+1 |

∑
𝑝

𝑗=0
𝑞𝑗 = 1, 𝑞𝑗 ⩾ 0, 𝑗 = 0, 1, . . . , 𝑝}, then 𝑈 is compact and

for each 𝑟, 𝑞𝑟 ≜ (𝑞
𝑟

0
, 𝑞
𝑟

1
, . . . , 𝑞

𝑟

𝑝
) ∈ 𝑈.

By Proposition 7, for each 𝑟,𝑤𝑟 ∈ 𝑋. Since𝑋 is bounded,
this implies that {𝑤𝑟}has at least one convergent subsequence.
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Let {𝑤
𝑟
}𝑟∈𝑅 denote any such subsequence, and let 𝑤

∗
=

lim𝑟∈𝑅𝑤
𝑟. Then, since 𝑋 is closed, 𝑤∗ ∈ 𝑋. Now, we show

that 𝑤∗ is a global optimal solution for problem (LMP).
Since 𝑈 is bounded, then there exists an infinite sub-

sequence 𝑅
󸀠 of 𝑅 such that for each 𝑗 = 0, 1, 2, . . . , 𝑝,

lim𝑟∈𝑅󸀠𝑞
𝑟
= 𝑞
∗. We have 𝑞

∗
∈ 𝑈, since 𝑈 is close. Notice

that since lim𝑟∈𝑅𝑤
𝑟

= 𝑤
∗, lim𝑟∈𝑅󸀠𝑤

𝑟
= 𝑤
∗. Also, since

⋂𝑟 𝑆
𝑟
= {𝑦
∗
}, lim𝑟∈𝑅󸀠𝑦

𝑟,𝑗
= 𝑦
∗ for each 𝑗 = 0, 1, 2, . . . , 𝑝.

Set (𝐶
𝑟
)
𝑇

= (min𝑗∈𝐽(∑
𝑝

𝑖=1
𝑦
𝑟,𝑗

𝑖
𝑐𝑖1), min𝑗∈𝐽(∑

𝑝

𝑖=1
𝑦
𝑟,𝑗

𝑖
𝑐𝑖2), . . . ,

min𝑗∈𝐽(∑
𝑝

𝑖=1
𝑦
𝑟,𝑗

𝑖
𝑐𝑖𝑛)). Then, we have

lim
𝑟∈𝑅󸀠

(𝐶
𝑟
)
𝑇
= 𝐶
∗𝑇

= (min
𝑗∈𝐽

(

𝑝

∑

𝑖=1

𝑦
∗

𝑖
𝑐𝑖1) ,min

𝑗∈𝐽
(

𝑝

∑

𝑖=1

𝑦
∗

𝑖
𝑐𝑖2) ,

. . . ,min
𝑗∈𝐽

(

𝑝

∑

𝑖=1

𝑦
∗

𝑖
𝑐𝑖𝑛))

= (𝑦
∗

𝑖
𝑐𝑖1, 𝑦
∗

𝑖
𝑐𝑖2, . . . , 𝑦

∗

𝑖
𝑐𝑖𝑛) .

(28)

FromTheorems 3–4, Proposition 5, and the algorithm, for
each 𝑟, 𝑟

󸀠
∈ 𝑅
󸀠 such that 𝑟󸀠 > 𝑟, LB(𝑆𝑟) ⩽ LB(𝑆𝑟

󸀠

) ⩽ V. There-
fore, for some infinite subsequence 𝑅󸀠󸀠 of 𝑅󸀠, lim𝑟∈𝑅󸀠󸀠LB(𝑆

𝑟
)

exists and satisfies lim𝑟∈𝑅󸀠󸀠LB(𝑆
𝑟
) ⩽ V.

Form an objective function of problem (DLP(𝑆𝑟)), we
obtain the equation

LB (𝑆
𝑟
) = (𝐶

𝑟
)
𝑇
𝑤
𝑟
+

𝑝

∑

𝑗=0

𝑞
𝑟

𝑗

𝑝

∑

𝑖=1

𝑦
𝑟,𝑗

𝑖
𝑐𝑖0,

∀𝑟 ∈ 𝑅
󸀠󸀠
.

(29)

Taking limits over 𝑟 ∈ 𝑅
󸀠󸀠 in this equation yields

lim
𝑟∈𝑅󸀠󸀠

LB (𝑆
𝑟
) = (𝐶

∗
)
𝑇
𝑤
∗
+

𝑝

∑

𝑗=0

𝑞
∗

𝑗

𝑝

∑

𝑖=1

𝑦
∗

𝑖
𝑐𝑖0

= (𝐶
∗
)
𝑇
𝑤
∗
+

𝑝

∑

𝑖=1

𝑦
∗

𝑖
𝑐𝑖0

=

𝑝

∑

𝑖=1

(𝑐
𝑇

𝑖
𝑤
∗
+ 𝑐𝑖0) 𝑦

∗

𝑖
⩽ V,

(30)

where the first equation follows from lim𝑟∈𝑅󸀠󸀠𝑤
𝑟

= 𝑤
∗,

lim𝑟∈𝑅󸀠(𝐶
𝑟
)
𝑇
= 𝐶
∗𝑇
, lim𝑟∈𝑅󸀠󸀠𝑦

𝑟,𝑗
= 𝑦
∗
, 𝑗 = 0, 1, . . . , 𝑝, and

lim𝑟∈𝑅󸀠󸀠𝑞
𝑟

= 𝑞
∗, the second equation holds because 𝑞

∗
∈

𝑈, the third equation follows form 𝐶
∗𝑇

= (𝑦
∗

𝑖
𝑐𝑖1, 𝑦
∗

𝑖
𝑐𝑖2, . . . ,

𝑦
∗

𝑖
𝑐𝑖𝑛), and the inequality holds because lim𝑟∈𝑅󸀠󸀠 LB(𝑆

𝑟
) ⩽ V.

We will now show that (𝑥, 𝑦) = (𝑤
∗
, 𝑦
∗
) is a feasible

solution to problem LMP(𝑆0). First, notice that since 𝑆
0 is

closed, 𝑦∗ ∈ 𝑆
0, and, since 𝑤∗ ∈ 𝑋, 𝐴𝑤

∗
⩽ 𝑏 and 𝑤

∗
⩾ 0.

Let 𝑖 ∈ {1, 2, . . . , 𝑝}, For each 𝑟 ∈ 𝑅
󸀠󸀠, from constraint 𝑖 of

problem (DLP(𝑆𝑟)), −𝑑𝑇
𝑖
𝑤
𝑟
+ ∑
𝑝

𝑗=0
𝑦
𝑟,𝑗

1
𝑞
𝑟

𝑗
= 𝑑𝑖0. Taking limits

over 𝑟 ∈ 𝑅
󸀠󸀠 in the above equation, we obtain

𝑑𝑖0 = −𝑑
𝑇

𝑖
𝑤
∗
+

𝑝

∑

𝑗=0

𝑦
∗

𝑖
𝑞
∗

𝑗

= −𝑑
𝑇

𝑖
𝑤
∗
+ 𝑦
∗

𝑖

𝑝

∑

𝑗=0

𝑞
∗

𝑗

= −𝑑
𝑇

𝑖
𝑤
∗
+ 𝑦
∗

𝑖
,

(31)

where the first equation follows from lim𝑟∈𝑅󸀠󸀠𝑤
𝑟

=

𝑤
∗
, lim𝑟∈𝑅󸀠󸀠𝑦

𝑟,𝑗
= 𝑦
∗
, 𝑗 = 0, 1, . . . , 𝑝, and lim𝑟∈𝑅󸀠󸀠𝑞

𝑟
= 𝑞
∗,

the last equation is due to the fact that 𝑞∗ ∈ 𝑈. By the choice
of 𝑖, since 𝑦∗ ∈ 𝑆

0
, 𝐴𝑤
∗
⩽ 𝑏 and 𝑤

∗
⩾ 0, (31) implies that

(𝑥, 𝑦) = (𝑤
∗
, 𝑦
∗
) is a feasible solution for problem LMP(𝑆0).

Therefore, by Theorem 3,

𝑝

∑

𝑖=1

(𝑐
𝑇

𝑖
𝑤
∗
+ 𝑐𝑖0) 𝑦

∗

𝑖
⩾ V. (32)

From (30) and Theorem 3, (32) implies that the feasible
solution (𝑤

∗
, 𝑦
∗
) to problem LMP(𝑆0) is a global optimal

solution to problem LMP(𝑆0). Therefore, by Theorem 3, 𝑤∗
is a global optimal solution to the LMP.

With Theorem 9, we can easily show two fundamental
convergence properties of the algorithm as follows.

Corollary 10. Suppose that the Branch and Bound Algorithm
is infinite. Then each accumulation point of {𝑥𝑘}∞

𝑘=0
is a global

optimal solution for problem.

Proof. Theproof is similar to in [34, Corollary 1], it is omitted
here.

Corollary 11. Suppose that the Branch and Bound Algorithm
is infinite. Then lim𝑘→∞ LB𝑘 = lim𝑘→∞ LB𝑘 = V.

Proof. The proof is similar to [34, Corollary 2], it is omitted
here.

5. Numerical Examples

Now we give numerical experiments for the proposed global
optimization algorithm to illustrate its efficiency.

Example 12.

min 𝐺 (𝑥) = (𝑥1 + 2𝑥2 − 2) (−2𝑥1 − 𝑥2 + 3)

+ (3𝑥1 − 2𝑥2 + 3) (𝑥1 − 𝑥2 − 1)

s.t. − 2𝑥1 + 3𝑥2 ⩽ 6,

4𝑥1 − 5𝑥2 ⩽ 8,
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5𝑥1 + 3𝑥2 ⩽ 15,

− 4𝑥1 − 3𝑥2 ⩽ −12,

𝑥1 ⩾ 0, 𝑥2 ⩾ 0.

(33)

Prior to initiating the algorithm, we useTheorem 1 to find
a simplex 𝑆0 containing 𝑋. By solving three linear programs,
we determine that the vertices 𝑆0 are given by V0 = 𝑦

0
=

(−1.6667, 1.1351), V1 = 𝑦
1
= (3.8649, 1.1351), V2 = 𝑦

2
=

(−1.6667, 6.6667). Also, for each 𝑖 = 1, 2, we compute the
minimum 𝑙𝑖 and themaximum𝐿 𝑖 of ⟨𝑑𝑖, 𝑥⟩+𝑑𝑖0 over𝑋 for use
in the deletion by infeasiblity test (25) and (26). This entails
solving four linear programs and get 𝑙1 = −2.8919, 𝑙2 =

−2.6667, 𝐿1 = −1.6667, 𝐿2 = 1.1351.

Initialization. By solving the following linear programming
(LP(𝑆0)), we get LB(𝑆0) = −49.7086 and the dual variables
𝑤
0
= (1.2857, 2.8571),

max 3𝜃1 − 𝜃2 − 6𝜆1 − 8𝜆2 − 15𝜆3 + 12𝜆4 + 𝑡

s.t. − 2𝜃1 + 𝜃2 − 2𝜆1 + 4𝜆2 + 5𝜆3 − 4𝜆4 ⩾ −1.7386,

− 𝜃1 − 𝜃2 + 3𝜆1 − 5𝜆2 + 3𝜆3 − 3𝜆4 ⩾ 16.6668,

− 1.6667𝜃1 + 1.1351𝜃2 + 𝑡 ⩽ 10.7115

3.8649𝜃1 + 1.1351𝜃2 + 𝑡 ⩽ −0.35165,

− 1.6667𝜃1 + 6.6667𝜃2 + 𝑡 ⩽ 46.6669,

𝜃 ⩾ 0, 𝜆 ⩾ 0, 𝑡 free.

(34)

We set 𝑥0 = 𝑤
∗
, UB0 = −16.224, LB0 = −49.7086, 𝐺

0
=

{𝑆
0
}, and 𝑘 = 1. Select the convergence tolerance to be equal

to 𝜀 = 10
−2.

Iteration 1. Since UB0 − LB0 < 𝜀, 𝑆0 is split by simplicial
bisection into 𝑆1

1
and 𝑆1
2
where the vertices of 𝑆1

1
are (−1.6667,

1.1351), (1.0991, 3.9009), (−1.6667, 6.6667) and the ver-
tices of 𝑆1

2
are (−1.6667, 1.1351), (3.8649, 1.1351), (1.0991,

3.9009). Neither 𝑆
1

1
nor 𝑆

1

2
is deleted by the deletion by

infeasibility test. By solving problem (LP(𝑆1
1
)), we obtain the

lower bound LB(𝑆1
1
) = −38.6454 and the dual variable 𝑤 =

(1.2857, 2.8571). Since ℎ(𝑤) = −16.224 = ℎ(𝑥
1
), where 𝑥1 =

𝑥
0, we do not update 𝑦1 and UB1 = UB0. By solving problem

(LP(𝑆1
2
)), we obtain the lower bound LB(𝑆1

2
) = −18.09944

and the dual variable 𝑤 = (1.2857, 2.8571). With problem
(LP(𝑆1

1
)), the dual to problem (LP(𝑆1

2
)) does not lead to an

update of 𝑦1 and UB1. We have 𝑄1 = {𝑆
1

1
, 𝑆
1

2
}. and neither 𝑆1

1

nor 𝑆1
2
is deleted by Step 8 from 𝑄

1. At the end of Iteration
1, 𝑥1 = (1.2857, 2.8571), UB1 = −16.224, LB1 = −38.6454,

𝐺
1
= {𝑆
1

1
, 𝑆
1

2
}.

The algorithm finds a global 𝜀-optimal value −16.2837
after 7 iterations at the global 𝜀-optimal solution 𝑥

∗
= (1.547,

2.421).

Table 1: Computational results of test problems.

Example 𝑝 (𝑚, 𝑛) Iter Time
1 4 (10, 10) 39.8 28.7
2 4 (10, 20) 44.2 30.3
3 4 (20, 20) 69.1 38.5
4 5 (10, 10) 43.6 29.9
5 5 (10, 20) 50.7 35.0
6 5 (20, 20) 82.8 45.7
7 6 (10, 20) 56.2 30.4
8 7 (10, 20) 67.0 34.5
9 8 (10, 20) 85.6 49.9
10 9 (10, 20) 116.7 78.0

Example 13.

min 𝐺 (𝑥) = (−𝑥1 + 2𝑥2 − 0.5) (−2𝑥1 + 𝑥2 + 6)

+ (3𝑥1 − 2𝑥2 + 6.5) (𝑥1 + 𝑥2 − 1)

s.t. − 5𝑥1 + 8𝑥2 ⩽ 24,

5𝑥1 + 8𝑥2 ⩽ 44,

6𝑥1 − 3𝑥2 ⩽ 15,

− 4𝑥1 − 5𝑥2 ⩽ −10,

𝑥1 ⩾ 0, 𝑥2 ⩾ 0.

(35)

Prior to initiating the algorithm, we useTheorem 1 to find
a simplex 𝑆0 containing 𝑋. By solving three linear programs,
we determine that the vertices 𝑆0 are given by V0 = 𝑦

0
=

(9, 6), V1 = 𝑦
1
= (−6.5, 6), V2 = 𝑦

2
= (9, 3.5). Also, for each

𝑖 = 1, 2, we compute the minimum 𝑙𝑖 and the maximum 𝐿 𝑖 of
⟨𝑑𝑖, 𝑥⟩ + 𝑑𝑖0 over 𝑋 for use in the deletion by infeasiblity test
(25) and (26). This entails solving four linear programs and
get 𝑙1 = 1, 𝑙2 = 1, 𝐿1 = 9, 𝐿2 = 6.

The algorithm terminates at the beginning of Iteration 29
with the global 𝜀-optimal solution 𝑥

∗
= (1.5549, 0.7561) and

𝜀-optimal value 10.6756 for problem (35).

Example 14. In this example, we solve 10 different random
instances for various sizes and objective function structures.
These test problems are generated by fixing 𝜀 = 10

−5.
And then all elements of 𝐴, 𝑐𝑖, 𝑑𝑖, 𝑐𝑖0 and 𝑑𝑖0 are randomly
generated, whose ranges are [1, 10]. Since the test problems
are coded in C++ and the experiments are conducted on a
Pentium IV (3.06GHZ) microcomputer, the computational
results of five problems are summarized in Table 1. The
following indices characterize the performance in algorithm:
Iter: the average number of iterations; Time: the average
execution time in seconds.

6. Conclusion

We have presented and validated a new simplicial branch
and bound algorithm globally to the linear multiplicative
programming.The algorithm implements a simplicial branch
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and bound search, finding a global optimal solution to the
problem that is equivalent to the LMP. We believe that the
new algorithm has advantage in several potentially practical
and computational cases. Besides, numerical examples show
that the proposed algorithm is feasible.
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