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This paper investigates the problem of the minimum length link scheduling (MLLS) in multiuser MIMO (MU-MIMO) networks.
Generally, in the networks with MU-MIMO capability, the number of concurrent transmissions can be as large as that of
antenna elements at the receiver. As a result, link interference is no longer binary but demonstrates a strong correlation among
multiple links, which cannot be captured by the conventional conflict graph interference model. Hence, we propose a novel
hypergraph interference model, which can accurately and efficiently characterize the relationship of multiple interferences induced
by concurrent transmissions, and provide a tractable formalization of theminimum length link scheduling inMU-MIMOnetworks
(MU-MIMO MLLS). Afterwards, we prove that the MU-MIMO MLLS problem is NP-hard and introduce two approximation
algorithms to find the near-optimal feasible schedule. Finally, extensive simulation experiments are presented.

1. Introduction

Link scheduling in wireless networks is one of the key and
classical research topics for the communication and network
communities. In wireless networks, nodes communicate with
each other through a shared common channel. On one
hand, to shorten the communication latency, node pairs are
required to communicate concurrently as much as possible;
on the other hand, concurrent transmissions induce the
cochannel interference, which results in severe deterioration
or even interruption of an ongoing transmission. To control
the cochannel interference, link scheduling is required to
coordinate the transmission of different links. A good sched-
ule not only avoids communication failures by silencing the
interferers of every receive node in each time slot but also
minimizes the number of time slots and hence the com-
munication latency. To sum up, link scheduling in wireless
networks usually requires the minimum length conflict-free
assignment of time slots in which each communication link is
activated at least once [1, 2] and the link scheduling problem
is difficult because many subsets of nonconflicting nodes are
candidates for each time slot, and the subset selected for

transmission in one slot affects the number of concurrent
transmissions in the next time slot.

The interference model, which characterizes the
interference relationship of communication links, has a
major impact on the complexity of wireless link scheduling.
The conflictgraph based interference model, as a simple and
powerful modeling tool, has been widely employed [3, 4].
In [3], Hajek and Sasaki consider the MLLS problem and
propose an optimal scheduling scheme with polynomial
time complexity. However, they consider only the primary
interference; that is, two links are interfered with each other
when they are neighboring. In practice, the transmission of
a link can interrupt that of the other even when they are not
neighboring. At this time, link scheduling is shown as an NP-
hard problem. Just recently, constant factor approximation
bounds have emerged for link scheduling under the
conflictgraph interference model with 𝑘-hop interference
[4].

The conventional conflict graph interference model can-
not capture the interference when multiple-input multiple-
output (MIMO) is deployed. As a revolutionary technology
from an information theoretic perspective and physical layer
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communications, MIMO has been introduced as a de facto
component of wireless standards [5, 6]. In the networks
with multiuser MIMO capability (MU-MIMO networks), a
node with multiple antenna elements can decode a com-
posite signal from different transmitters. Therefore, more
communication links are permitted to transmit concurrently.
In general, the number of concurrent transmissions can be
as large as that of antenna elements at the receiver. For
example, given a network consisting of a receiver 𝑅

1
with

two antenna elements, and three senders 𝑆
1
, 𝑆
2
, and 𝑆

3
with

single antenna, respectively, consider the interference of 𝑆
1

on 𝑆
2
: when 𝑆

3
is silent, there is no interference; however,

when 𝑆
3
is active, 𝑆

1
and 𝑆
2
cannot transmit simultaneously.

That is, the interference relationship between 𝑆
1
and 𝑆

2
has

strong correlation with the activity of 𝑆
3
. Such dependence

has not been characterized in the binary conflict graph
model.

Recently there is a few existing works in the literature
trying to explore the optimal link scheduling problem inMU-
MIMO networks. Chu and Wang [7] presented an integer
linear programming (ILP) formulation of the optimal link
scheduling problem in MU-MIMO networks, and proposed
an opportunistic scheduling algorithm that can adaptively
select different transmission strategies. Blough et al. [8]
considered the same problem in MU-MIMO networks with
interference suppression capabilities, and formulized the
one-shot optimal link scheduling problem as an integer
linear programming. However, all of them cannot be applied
directly to the MLLS with MU-MIMO capability: on one
hand, the goal of [7, 8] is maximizing throughput while the
objective of MU-MIMO MLLS is minimizing the schedule
length; on the other hand, both work in [7, 8] model the
optimal link scheduling problem in MU-MIMO networks as
an ILP formulation, which is well-defined in mathematics
while difficult to find approximation algorithms providing a
guaranteed performance.

In this paper, we address the issue of theminimum length
link scheduling in MU-MIMO networks, aiming for provid-
ing at least one transmission time slot for every communica-
tion linkwith aminimumschedule length. Firstly, we propose
a novel interference model based on hypergraph to charac-
terize multiple interferences in MU-MIMO networks. The
concept of hypergraph is extended fromgraph, and is a nature
way for representing multiple interferences among multiple
links. Afterwards, two algorithms for the problem of MU-
MIMO MLLS are proposed: the first one is a performance
guaranteed approximation algorithm whose approximation
ratio is at most 2𝑛/log

2
(𝑛); the second one is a time efficient

heuristic algorithm based on degrees of interference (DOI)
greedy. Extensive simulations are presented to test how well
the proposed algorithms based hypergraph model may be
applied in practice.

The remainder of this paper is organized as follows.
Section 2 presents the integer programming formalization
and the proposed hypergraph interference model of MU-
MIMO MLLS. Section 3 introduces two algorithms to
approximate the optimal solution. Section 4 shows the exten-
sive simulation results. Finally, in Section 5, conclusions are
given.

2. System Model

2.1. Problem Statement. Consider a wireless network 𝐺 of 𝑛
communication links, and𝑁 stationary nodes, each of which
is equipped with 𝑀 antenna elements. A link with transmit
node 𝑖 and receive node 𝑗 is denoted by 𝑙

𝑖𝑗
.We assume that: (i)

nodes work in the half-duplex mode, that is a node can either
transmit or receive, but not at the same time; (ii) every link
is of a single data stream as to enhance as many concurrent
transmissions as possible.

The use of a MIMO antenna array is typically modeled
as degree of freedom (DOF) model [9]. For simplicity, a
receive node with 𝑀 antenna elements has up to 𝑀 DOFs,
which can be used for multiplexing 𝐴 desired data streams
and suppressing (𝑀-𝐴) interferences fromother neighboring
concurrent transmission links. And if and only if the number
of the concurrent transmission link in vicinity of receive node
𝑗, including link 𝑙

𝑖𝑗
, does not exceed𝑀, then receive node 𝑗

can successfully decode the data stream carried by link 𝑙
𝑖𝑗
.

2.2. Integer Programming Formulization. We formulize the
problem of MU-MIMO MLLS as an integer programming
(IP) by referencing [7, 8].

Firstly, notations used in the IP formulation are specified
as follows:

𝑇 = {𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑚
}: set of transmission time slots for

link scheduling;
𝐿 = {𝑙

1
, 𝑙
2
, . . . , 𝑙
𝑛
}: set of communication links to be

scheduled;
𝑉 = {V

1
, V
2
, . . . , V

𝑁
}: set of wireless nodes;

𝐿(V): set of links incident into node V;
𝑡
𝑖
, 𝑟
𝑖
: transmit node and receive node of link 𝑙

𝑖
,

respectively;
𝐼𝐿(𝑖): set of links interfered by 𝑡

𝑖
;

𝑥
𝑡

𝑖
: an integer variable, equals to 1 iff link 𝑙

𝑖
is active at

the 𝑡th time slot, otherwise equals 0.

The proposed IP formulation for MU-MIMOMLLS is as
follows

minimize 𝑚 (1)

subject to:
𝑚

∑

𝑡=1

𝑥
𝑡

𝑖
≥ 1 𝑖 = 1, . . . , 𝑛 (2)

∑

𝑗∈𝐿(𝑟𝑖)

𝑥
𝑡

𝑗
≤ 𝑀 +𝑀

𝑖
⋅ (1 − 𝑥

𝑡

𝑖
)

𝑖 = 1, . . . , 𝑛; 𝑡 = 1, . . . , 𝑚

(3)

𝑥
𝑡

𝑖
∈ {0, 1} 𝑖 = 1, . . . , 𝑛; 𝑡 = 1, . . . , 𝑚.

(4)

The objective function (1) states that we aim to minimize
the length of scheduling time slots. Constrain (2) ensures that
each of communication links is assigned at least one trans-
mission time slot in a schedule period.The next constraint (3)
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provides that every active communication link does not suffer
too much cochannel interference. And to make constrain (3)
always feasible when 𝑥𝑡

𝑖
= 0, the constant parameter𝑀

𝑖
needs

to be set large enough. A sufficiently large value is𝑀
𝑖
= 𝑛−𝑀.

From constraint (4), we know that the size of search space is
2
𝑂(𝑛), rising at an exponential rate with the network size 𝑛.

The disadvantage of the IP formulation is that it is difficult
to find approximation algorithms, but the IP formulation
provides a way to calculate the optimal solution through
exhaustive searching in cases of networks with a small size.

2.3. Hypergraph Modeling MU-MIMO MLLS. Typically, a
wireless network can be modeled as a directional graph 𝐺 =

(𝑉, 𝐸).The set𝑉 includes all the nodes in the network, and𝐸 is
a link set, of which for a pair of nodes 𝑢, V ∈ 𝑉, a directional
edge 𝑒 = (𝑢, V) is a member of 𝐸 if node 𝑢’s signals can be
decoded successfully at node V in the absence of interference.
Further, the interference relationship between transmission
links is modeled as a conflict graph 𝐺

𝑐
= (𝑉
𝑐
, 𝐸
𝑐
), where 𝑉

𝑐

is the set of links (in fact, 𝑉
𝑐
is the set 𝐸 in the graph 𝐺) and

𝐸
𝑐
is the set of conflicts; that is, (𝑖, 𝑗) ∈ 𝐸

𝑐
means that the

concurrent transmission of link 𝑙
𝑖
and 𝑙
𝑗
is invalid. However,

the conflictgraph interferencemodel is restrictive and cannot
descript the interference relationship among three links or
more. For example, even when (𝑖, 𝑗) ∉ 𝐸

𝑐
, (𝑖, 𝑘) ∉ 𝐸

𝑐
,

and (𝑗, 𝑘) ∉ 𝐸
𝑐
are given, we cannot conclude whether the

concurrent transmission of link 𝑙
𝑖
, 𝑙
𝑗
, and 𝑙

𝑘
is valid or not.

While generally the interference relationship in MU-MIMO
networks involves multiple communication links. Thus, the
conflict graph interferencemodel is not appropriate to handle
the case of MU-MIMO networks.

2.3.1. Hypergraph Model

Construct. Here, we present a new graph model, hypergraph
[10, 11], to characterize the interference relationship in MU-
MIMO networks. Let 𝐺

𝐻
= (𝑉
𝐻
, 𝐸
𝐻
) denote a hypergraph,

where 𝑉
𝐻
is the set of links, the same as 𝑉

𝑐
and 𝐸, and 𝐸

𝐻
=

{𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑞
} is also the set of conflicts, similar to 𝐸

𝑐
. The

difference between 𝐸
𝐻

and 𝐸
𝑐
is that the element of 𝐸

𝑐
is

limited to 2-tuple of 𝐸, while the element of 𝐸
𝐻
, named as

hyperedge, is extended to a subset of 𝐸. And for any link set
𝑆 ⊆ 𝑉
𝐻
, 𝑆 ∈ 𝐸

𝐻
if and only if satisfies three rules as follows.

R1: (Invalidity Rule). When all the links of 𝑆 are
assigned in a same transmission time slot, there is at
least one link in 𝑆 failing to transmit data successfully.
R2: (Minimality Rule). If any link in 𝑆 is removed, no
failure will occur if only the remaining links in 𝑆 are
scheduled.
R3: (Integrality Rule). All link set 𝑆, satisfying condi-
tions R1 and R2, must be contained in 𝐸

𝐻
.

2.3.2. Hypergraph Model

Problem Formalization. Given a hypergraph model 𝐺
𝐻

=

(𝑉
𝐻
, 𝐸
𝐻
), the problem of MU-MIMO MLLS can be trans-

formed to the problem of finding the optimal coloring of the

n0

n1

n2 n3

n4

n5

n6

Figure 1: A Multi-user MIMO Network.

hypergraph 𝐺
𝐻
: give all node in 𝑉

𝐻
a color, and for every

hyperedge 𝑆 ∈ 𝐸
𝐻
, having at least two nodes as endpoints,

the nodes of this hyperedge that connect 𝑆 are not all of the
same color. Denote the hypergraph coloring solution by 𝐶 =

{𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑚
}, where 𝐶

𝑖
is the link set with the same color

𝑖. Then, the coloring solution with the least number of colors
is the optimal solution to the problem of MU-MIMOMLLS.
And the problem of MU-MIMO MLLS could be formulized
as follows:

minimize 𝑚,where 𝐶 = 𝐶
1
∪ 𝐶
2
∪ ⋅ ⋅ ⋅ ∪ 𝐶

𝑚

subject to: colors (𝑆) ≥ 2 ∀𝑆 ∈ 𝐸
𝐻
,

(5)

where colors(𝑆) means the number of colors appeared in the
hyperedge 𝑆.

Example 1. Consider the network in Figure 1, where there
are four communication links and seven nodes, all of which
are equipped with two antenna elements. According to the
proposed hypergraph model, we can model the network as
hypergraph 𝐺

𝐻
= (𝑉
𝐻
, 𝐸
𝐻
) showed in Figure 2, in which

𝑉
𝐻

= {𝑙
13
, 𝑙
24
, 𝑙
50
, 𝑙
60
} and 𝐸

𝐻
= {{𝑙
13
, 𝑙
24
, 𝑙
50
}, {𝑙
24
, 𝑙
50
, 𝑙
60
}}.

And we can easily find a coloring solution C = {{𝑙
13
, 𝑙
24
},

{𝑙
50
, 𝑙
60
}}; thus, all the four communication links are assigned

in two transmission time slots.

2.3.3. Hypergraph Model

Analysis

Lemma 2. Given a MU-MIMO hypergraph 𝐺
𝐻
= (𝑉
𝐻
, 𝐸
𝐻
),

then, for any 𝑆 ∈ 𝐸
𝐻
, the cardinality of S is𝑀 + 1; that is 𝐺

𝐻

is𝑀+ 1-uniform hypergraph.

Proof. We adopt the counterexample method: (1) if there is
any hyperedge 𝑆 ∈ 𝐸

𝐻
, satisfying card(𝑆) ≤ 𝑀 (card(𝑆)

denotes the cardinality of 𝑆), then, according to the receive
condition in the DOFmodel, all links in 𝑆 could concurrently
transmit together; that is, the link set 𝑆 is a feasible link set,
which evidently conflicts with the Invalidity Rule R1; (2) if
there is any hyperedge 𝑆 ∈ 𝐸

𝐻
, satisfying card(𝑆) ≥ 𝑀 +

2, then after removing one link 𝑙 in 𝑆, card(𝑆 \ {𝑙}) equals
𝑀 + 1 and 𝑆 \ {𝑙} is still an infeasible link set, which directly



4 Journal of Applied Mathematics

Procedure B(GH, k): if 𝐺𝐻 = (𝑉𝐻, 𝐸𝐻) is 𝑘-colorable, return a independent link set of
size ℎ

𝑘
(
𝑉𝐻

); otherwise, an arbitrary subset of size ℎ
𝑘
(
𝑉𝐻

).
Input: An integer 𝑘 ≥ 2 and a hypergraph 𝐺

𝐻
= (𝑉
𝐻
, 𝐸
𝐻
).

Output: A subset 𝑈 of 𝑉
𝐻
with the size |𝑈| = ℎ

𝑘
(
𝑉𝐻

).
(1) 𝑛 =

𝑉𝐻
; ℎ = ℎ𝑘(𝑛);

(2) 𝑙 = ⌊𝑛/ℎ𝑘⌋;
(3) Partition 𝑉

𝐻
into sets 𝑉

1
, . . . , 𝑉

𝑙
where |𝑉| = ⋅ ⋅ ⋅ = 𝑉𝑙−1

 = ℎ𝑘 and ℎ𝑘 ≤
𝑉𝑙
 < 2ℎ𝑘;

(4) for 𝑖 = 1 to 𝑙

(5) for each subset 𝑈 of 𝑉
𝑖
of size |𝑈| = ℎ

(6) if 𝑈 is independent in 𝐺
𝐻

(7) return (𝑈);
(8) endif
(9) endfor
(10) endfor
(11) return an arbitrary subset of 𝑉

𝐻
of size ℎ;

Procedure 1

l24

l50

l13
l60

Figure 2: Coloring on Hypergraph.

conflicts with the Minimality Rule R2. Considering (1) and
(2) together, we can conclude that, for any 𝑆 ∈ 𝐸

𝐻
, card(𝑆) =

𝑀 + 1.

Lemma 3. TheMU-MIMOMLLS problem is NP-hard.

Proof. We reduce the problem of finding the chromatic
number of a𝑀 + 1-uniform hypergraph to the MU-MIMO
MLLS problem. The chromatic number of a hypergraph 𝐺

𝐻

is the smallest number 𝑘 such that 𝐺
𝐻
is 𝑘-colorable and 𝐺

𝐻

is 𝑘-colorable if its vertices can be colored using 𝑘 different
colors in such away that for every hyperedge in𝐺

𝐻
, the nodes

of this hyperedge are not all of the same color. According to
the hypergraphmodeling abovementioned and Lemma 2, we
know that every link scheduling solution corresponds to a
coloring solution of hypergraph 𝐺

𝐻
. Meanwhile, due to the

three construction rules, every hypergraph coloring is also
a link scheduling solution. Thus, the minimum scheduling
length is equal to the chromatic number of the𝑀+1-uniform
hypergraph 𝐺

𝐻
. And several results [12, 13] show that it is

NP-complete to optimally color 𝑟-uniform hypergraphs, for
various values of 𝑟 (𝑟 ≥ 3). Specific statements can be found
in the corresponding papers.

3. Algorithms

In this section, two algorithms based on the uniform hyper-
graph coloring for the problem of MU-MIMO MLLS are

proposed. Here, we firstly give some definitions: given a 𝑟-
uniform hypergraph 𝐺

𝐻
= (𝑉
𝐻
, 𝐸
𝐻
), a link set 𝑈 ⊆ 𝑉

𝐻

is called independent if 𝑈 does not contain any hyperedge
in 𝐸
𝐻
. An 𝑚-coloring of 𝐺

𝐻
is a mapping 𝐶: 𝑉

𝐻
→

{𝐶
1
, . . . , 𝐶

𝑚
} such that no hyperedge of 𝐺

𝐻
with one single

color. Equivalently, an 𝑚-coloring of 𝐺
𝐻
is a partition of the

vertex set𝑉
𝐻
into𝑚 independent sets.The chromatic number

of 𝐺
𝐻
, denoted by 𝜒(𝐺

𝐻
), is the minimal 𝑚, for which 𝐺

𝐻

admits an𝑚-coloring.

3.1. Performance-Guaranteed (𝑃-𝐺) Approximation Algo-
rithm. Similar to Wigderson’s paper [14], we find an
independent set with the following algorithm, named as
performance-guaranteed (𝑃-𝐺) algorithm, whose approxi-
mation ratio is 2𝑛/log

2
(𝑛). It is worth noting that the idea

of partitioning the vertex set of a 𝑘-colorable hypergraph 𝐺
𝐻

on 𝑛 into groups of size 𝑘log
𝑘
𝑛 and performing an exhaustive

search for an independent set of size log
𝑘
𝑛 in each group is

due to Berger and Rompel’s paper [15].
Define

ℎ
𝑘
(𝑛) = log

𝑘
𝑛 =

log 𝑛
log 𝑘

. (6)

Lemma 4. For a 𝑘-colorable hypergraph 𝐺
𝐻
with n vertices,

Procedure 1 outputs an independent set of size ℎ
𝑘
(𝑛), in time

polynomial in 𝑛 (see, Procedure 1).

Proof. If 𝐺
𝐻
is 𝑘-colorable, it contains an independent set 𝐼

of size |𝐼| ≥ 𝑛/𝑘. Then, for some 1 ≤ 𝑖 ≤ 𝑘, we have |𝐼 ∩ 𝑉
𝑖
| ≥

|𝐼|/𝑙 ≥ 𝑛/𝑘𝑙 ≥ ℎ
𝑘
(𝑛). Checking all subsets of 𝑉

𝑖
of size ℎ

𝑘
(𝑛)

will reveal an independent set of size ℎ
𝑘
(𝑛). The number of

subsets of size ℎ
𝑘
(𝑛) to be checked by the algorithm does not

exceed 𝑙 ( 2ℎ𝑘(𝑛)𝑘
ℎ𝑘(𝑛)

) = (𝑂(1)𝑘)
ℎ𝑘(𝑛) = 𝑛

𝑂(1).

The idea of our proposedAlgorithm𝑃-𝐺 is simple: as long
as there are some uncolored vertices (their union is denoted
by 𝑊), call Procedure 1 for finding an independent set 𝑈 in
the subhypergraph spanned by 𝑊, denoted by 𝐺𝑊

𝐻
, give the

output 𝑈 a fresh color, and update𝑊.
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Algorithm P-G(GH): Providing a coloring solution for hypergraph 𝐺
𝐻
= (𝑉
𝐻
, 𝐸
𝐻
).

Input: A 𝑟-uniform hypergraph 𝐺
𝐻
= (𝑉
𝐻
, 𝐸
𝐻
).

Output: A coloring solution of 𝐺
𝐻
.

(1) 𝑘 = 2;
(2) 𝑖 = 1;𝑊 = 𝑉

𝐻
;

(3) while 𝑊 ̸= 0

(4) 𝑈 = 𝐵(𝐺
𝑊

𝐻
, 𝑘);

(5) if 𝑈 is not independent
(6) 𝑘 = 𝑘 + 1;
(7) else
(8) 𝐶

𝑖
= 𝑈; % color 𝑈 by color 𝑖 %

(9) 𝑖 = 𝑖 + 1; 𝑘 = 2;
(10) 𝑊 = 𝑊 \ 𝑈;
(11) endif
(12) endwhile;
(13) return a coloring 𝐶 = {𝐶

1
, 𝐶
2
, . . . , 𝐶

𝑖−1
};

Algorithm 1

Lemma 5. Algorithm 𝑃-𝐺 outputs a coloring solution in time
polynomial in 𝑛 (see, Algorithm 1).

Proof. Inevitably, any hypergraph 𝐺
𝑊

𝐻
= (𝑉

𝑊

𝐻
, 𝐸
𝑊

𝐻
) is

|𝑉
𝑊

𝐻
|-colorable; thus, Procedure 1 is called at most

∑
1

|𝑉
𝑊

𝐻
|=𝑛

∑
|𝑉
𝑊

𝐻
|

𝑘=2
1 = 𝑛(𝑛 − 2)/2 = 𝑂(𝑛

2
) times, and according

to Lemma 4, the time complexity of Procedure 1 is 𝑛𝑂(1);
hence, the time complexity of Algorithm 𝑃-𝐺 is polynomial
in 𝑛.

Lemma 6. The approximation ratio of Algorithm 𝑃-𝐺 is at
most 2𝑛/log

2
(𝑛) (see, Algorithm 1).

Proof. For a hypergraph 𝐺
𝐻

= (𝑉
𝐻
, 𝐸
𝐻
), we denote the

chromatic number of 𝐺
𝐻

by 𝜒; that is, 𝐺
𝐻

is 𝜒-colorable.
Furthermore, the optimal coloring of 𝐺

𝐻
is the solution of

coloring 𝐺
𝐻
by 𝜒 colors. In addition, for any subhypergraph

of 𝐺
𝐻
, which is spanned by the subset 𝑊 and denoted by

𝐺
𝑊

𝐻
= (𝑉
𝑊

𝐻
, 𝐸
𝑊

𝐻
) as above mentioned, due to 𝑉𝑊

𝐻
⊆ 𝑉
𝐻
, it

is obvious that 𝐺𝑊
𝐻
is also 𝜒-colorable. Through Procedure 1,

the size of the independent set 𝑈 picked by Algorithm 𝑃-𝐺
is at least ℎ

𝜒
(|𝐺
𝑊

𝐻
|). And we know that ℎ

𝜒
(𝑛) is a positive,

nondecreasing function. Then, Algorithm 𝑃-𝐺 produces a
coloringwith atmost𝑓

𝜒
(𝑛) = ∑

𝑛

𝑖=1
(1/ℎ
𝜒
(𝑖)) colors, since each

link in 𝑉
𝐻
contributes at most 1/ℎ

𝜒
(𝑛

) colors, where 𝑛 is

the number of links remaining in the subhypergraph 𝐺𝑊
𝐻

at
the time when the link was assigned a color. It is proofed that
when ℎ

𝜒
(𝑛) grows no faster than 𝑛1/𝑡 (𝑡 > 1), 𝑓

𝜒
(𝑛) is at most

𝑡/(𝑡−1) ⋅𝑛/ℎ
𝜒
(𝑛) [16]. Specifically in our proposed Algorithm

𝑃-𝐺, ℎ
𝜒
(𝑛) = log 𝑛/ log𝜒 grows no faster than 𝑛3/4. Thereby,

Algorithm 𝑃-𝐺 colors the 𝜒-colorable hypergraph 𝐺
𝐻
on 𝑛

vertices in at most 4𝑛 ⋅ log𝜒/ log 𝑛, then the approximation
ratio of Algorithm 𝑃-𝐺 is at most 𝑔(𝜒) = 4𝑛 ⋅ log𝜒/(𝜒 ⋅

log 𝑛). Finally, 𝑔(𝜒) (𝜒 ≥ 2) is decreasing function that is
max(𝑔(𝜒)) = 2𝑛/log

2
𝑛.

3.2. DOI-Based Greedy (𝐷-𝐺) Heuristic Algorithm. Although
Algorithm 𝑃-𝐺 can provide a guaranteed performance, its
time complexity is 𝑛𝑂(1). The distinguishing time complexity
promotes us to design another time efficient heuristic color-
ing algorithm.

Recall that the goal of link scheduling is to keep the
cochannel interference at a proper level. Here, the concept
of degree of interference, denoted by DOI (𝑙), is defined to
measure the interferences induced by a link 𝑙 and presents the
impact of the link 𝑙 brought to the other links. DOI (𝑙) is equal
to the amount of communication links affected by the link 𝑙
when link 𝑙 is in activation. The main idea of Algorithm𝐷-𝐺
is to assign the link with maximum degrees-of-interference
as early as possible; hence, the interferences in the whole
network would reduce drastically and then a relative larger
independent link set might be picked in next scheduling
time slots. To improve the performance, we refresh the DOI
information every time after picking an independent link set.

Lemma 7. The time complexity of Algorithm 𝐷-𝐺 is
𝑂(𝑛
2 log 𝑛) (see, Algorithm 2).

Proof. The bottleneck of Algorithm 𝐷-𝐺 is the procedure of
QuickSort (𝐺𝑊

𝐻
), which is called at most 𝑛 times, and the

expected running time of QuickSort (𝐺𝑊
𝐻
) is 𝑂(𝑛 log 𝑛).

4. Simulation and Discussion

We evaluate the performance of our proposed Algorithms
𝑃-𝐺 and𝐷-𝐺 via extensive simulations.The network settings
include wireless nodes that are distributed in a square area of
1250m × 1250m and form an ad hoc network with random
or grid topology; each node is equipped with 𝑀 antennas
and has a communication range of 250m and an interference
range of 400m (Figure 3). A simulation result is obtained by
averaging over 50 runs of simulations, and all simulations run
on a 2.8GHz Intel Core Duo machine with 4GB of RAM.
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Algorithm D-G(GH): Providing a coloring solution for hypergraph 𝐺
𝐻
= (𝑉
𝐻
, 𝐸
𝐻
)

Input: An 𝑟-uniform hypergraph 𝐺
𝐻
= (𝑉
𝐻
, 𝐸
𝐻
).

Output: A coloring of 𝐺
𝐻
.

(1) 𝑖 = 1;𝑊 = 𝑉
𝐻
;

(2) while 𝑊 ̸= 0

(3) QuickSort (𝐺𝑊
𝐻
); % sort 𝐺𝑊

𝐻
by the DOI item in a decreasing order %

(4) 𝑈 = 0

(5) while (𝑗 ≤ |𝑊|)
(6) if 𝑈 ∪ {𝑊(𝑗)} is an independent set
(7) 𝑈 = 𝑈 ∪ {𝑊(𝑗)}; %𝑊(𝑗) is the 𝑗th element of𝑊 %
(8) else
(9) break;
(10) endif
(11) endwhile
(12) 𝐶

𝑖
= 𝑈; % color 𝑈 by color 𝑖 %

(13) 𝑖 = 𝑖 + 1;
(14) 𝑊 = 𝑊 \ 𝑈;
(15) endwhile;
(16) return a coloring 𝐶 = {𝐶

1
, 𝐶
2
, . . . , 𝐶

𝑖−1
};

Algorithm 2

Figure 3: A network with random topology, 60 nodes and 250 com-
munication links.

Four algorithms are implemented and compared in our
simulations: (1) the algorithm of exhaustive searching (𝐸-𝐴)
to compute the optimal solution of MU-MIMO MLLS;
(2) the centralized algorithm of opportunistic scheduling
(𝑂-𝑆) modified from [7]; (3) the approximation algorithm
of performance guaranteed (𝑃-𝐺) illustrated in Section 3.1;
and (4) the heuristic algorithm of DOI-based greedy (𝐷-𝐺)
in Section 3.2. Algorithm 𝐸-𝐴 and Algorithm 𝑂-𝑆 use the IP
formulation presented in Section 2.2, while Algorithm 𝑃-𝐺
and Algorithm 𝐷-𝐺 are based on the proposed hypergraph
model in Section 2.3. And the later three algorithms only pro-
duce suboptimal solutions. To be noted here, our simulation
experiments were only partially successful. In certain cases,
where the networks are of a small size (refer to the number
of links), Algorithm 𝐸-𝑆 converged quickly to the optimal
solution. While in other cases, convergence was much slower
and in some cases memory usage rose dramatically pre-
venting the optimal solution from being found. In addition,
slow convergence also occurred in the cases with a large
network size when executing the approximation or heuristic
algorithms. Hence, we set the network size to network cases
with a small or medium size.

Here, two performance metrics are considered for the
evaluation of the scheduling algorithms: (a) average schedul-
ing length (ASL) is defined as the average number of time
slots required for assigning all the communication links at
least once in a schedule period; (b) average running time
(ART) is defined as the average time spendt in executing
the simulation one time. We investigate three impact fac-
tors, namely, network size, network topology, and degree of
freedom. For each factor, both the average scheduling length
and the average running time are compared. If not otherwise
specified, wireless networks are with random topology, and
the node’s degree of freedom are 2, that is, each wireless node
is equipped with two antenna elements.

Next, we discuss the results from our simulation experi-
ments.

4.1. Impact of Network Size. In this section, we represent the
network size as the number of communication links. The
impact of network size is shown in Figures 4(a) and 4(b).
As above mentioned, the calculation of the exact optimal
solution for the large or even medium scale network is infea-
sible with our machine, while the proposed approximation
Algorithm 𝑃-𝐺 and the heuristic Algorithm 𝐷-𝐺 can scale
to quite large number of communication links and produce
suboptimal solutions that are not too bad. Irrespective of
the network size, our proposed two algorithms perform
better than the reference algorithm (Algorithm𝑂-𝑆) in terms
of average scheduling length, and the performance gain is
between 7% and 15%. Besides, Algorithm 𝑃-𝐺 has the closest
performance to that of the optimal solutionwhen the network
is of medium or large number of communication links (the
ASL performance curves of Algorithm𝑃-𝐺 and𝐷-𝐺 intersect
when the number of links is around 50). The main reason
for the performance improvement is that in every schedule
time slot, the concurrent link set selected byAlgorithm𝑃-𝐺 is
guaranteed to be of a certain size, and the size increases along
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Figure 4: Impact of network size.
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Figure 5: Impact of network topology.

with the network size. Although Algorithm 𝑃-𝐺 has ASL
performance advantage, the performance difference between
Algorithm𝑃-𝐺 and Algorithm𝐷-𝐺 is less than 10%when the
network size is controlled below 115 communication links.

The comparison of the ART performance of three algo-
rithms is shown in Figure 4(b). To represent the performance
difference more effectively, we adopt the denary logarithm
value of average running times. The results verify that the
running time of Algorithm 𝐸-𝑆 is rising at an exponential
rate with the network size; thus, Algorithm 𝐸-𝑆 can be only
executed in the case of very small networks; Algorithm 𝑃-𝐺,

Algorithm 𝐷-𝐺, and Algorithm 𝑂-𝑆 are of polynomial time
complexity, while Algorithm𝐷-𝐺 is of orders-of-magnitudes
advantage over Algorithm 𝑃-𝐺 and Algorithm 𝑂-𝑆 in terms
of ART performance.

4.2. Impact of Network Topology. We perform extensive
simulations with two types of network topology: a randomly
generated topology and a grid. In both two networks, the
number of communication links to be scheduled is set to
the same value, 𝑛 = 112. And the compared algorithms
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Figure 6: Impact of degree of freedom.

are Algorithm 𝑃-𝐺, Algorithm 𝐷-𝐺, and Algorithm 𝑂-𝑆.
From Figure 5, we see that the efficiency of all the three
algorithms is higher with random topology: with random
topology, fewer transmission time slots and little running
time are required. The reason is that in a grid topology, each
wireless node is equidistant from its neighbors; hence, the
distribution of communication links is more homogeneous
and the signals of neighbors arrive at a receiver node with
similar powers; this limits the choices for the scheduling
policies, especially for Algorithm 𝐷-𝐺. Besides, we find
that in both networks, Algorithm 𝐷-𝐺 is of a huge ART
performance benefits, compared with Algorithm 𝑃-𝐺 and
Algorithm 𝑂-𝑆.

4.3. Impact of Degree of Freedom. Finally, we turn to perform
simulations in networks with varied degree of freedom.
The networks are with a rand generated topology and 112
communication links to be scheduled. As shown in Figure 6,
the value of degree of freedom impacts the ASL performance
significantly while it has relative little impact to the ART
performance. That is because as the number of antenna
elements (degree of freedom) is increased, the receive node
is more effective and, thus, more communication links can
be grouped in a same schedule time slot.

5. Conclusions

In this paper, we study the issue of the minimum length link
scheduling in a wireless network with the MU-MIMO capa-
bility. Firstly, we formulate theMU-MIMOMLLS problem as
an integer programming problem. Secondly, we introduce a
novel and straight hypergraph method to model the multiple
interferences, which cannot be captured by the traditional

conflict graph model, and then we reformulate the MU-
MIMOMLLS problem based on the new hypergraph model.
And, we show that, the scheduling problem is NP-hard.
Thirdly, we propose two efficient approximation solutions.
For the first algorithm, named as Algorithm 𝑃-𝐺, we show
that the approximation ratio is at most 2𝑛/log

2
(𝑛). To reduce

the time complexity, we also present a time efficient heuristic
algorithm based on degree of interference greedy (Algorithm
𝐷-𝐺). Finally, extensive simulation results show that (1) both
Algorithm 𝑃-𝐺 and Algorithm𝐷-𝐺 can scale to quite a large
number of links and produce satisfying suboptimal solutions;
(2) generally, Algorithm 𝑃-𝐺 has a better ASL performance
thanAlgorithm𝐷-𝐺, while the time complexity of Algorithm
𝐷-𝐺 is largely reduced compared with that of Algorithm
𝑃-𝐺.

Acknowledgments

This work was supported in part by the National Natural
Science Foundation of China under Grant no. 61070203,
No. 61202484, the Ph.D. Program Foundation of Ministry of
Education of China under Grant no. 20124307120033, and the
Excellent Graduate Innovation Foundation of NUDT under
Grant No. B120608.

References

[1] R. Nelson and L. Kleinrock, “Spatial TDMA: a collision-
free multihop channel access protocol,” IEEE Transactions on
Communications, vol. 33, no. 9, pp. 934–944, 1985.

[2] S. C. Ergen and P. Varaiya, “TDMA scheduling algorithms for
wireless sensor networks,” Wireless Networks, vol. 16, no. 4, pp.
985–997, 2010.



Journal of Applied Mathematics 9

[3] B. Hajek and G. Sasaki, “Link scheduling in polynomial time,”
IEEE Transactions on Information Theory, vol. 34, no. 5, part 1,
pp. 910–917, 1988.

[4] G. Sharma, R. R. Mazumdar, and N. B. Shroff, “On the com-
plexity of scheduling in wireless networks,” in Proceedings of the
12th Annual International Conference on Mobile Computing and
Networking (MOBICOM ’06), pp. 227–238, September 2006.

[5] “Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) specifications: Amendment 5: Enhancements for
Higher Throughput,” IEEE P802.11n Standard, 2009.

[6] “Proposed TGac Draft to Wireless LAN Media Access Control
(MAC) and Physical Layer (PHY) Specifications: Enhance-
ments for Higher Throughput,” IEEE P802.11ac/D0, 2011.

[7] S. Chu and X. Wang, “Adaptive and distributed scheduling in
heterogeneous MIMO-based ad hoc networks,” in Proceedings
of the IEEE 6th International Conference on Mobile Adhoc and
Sensor Systems (MASS ’09), pp. 217–226, October 2009.

[8] D.M. Blough, G. Resta, P. Santi, R. Srinivasan, and L.M. Cortés-
Pena, “Optimal one-shot scheduling for MIMO networks,” in
Proceedings of the 8th Annual IEEE Communications Society
Conference on Sensor, Mesh and Ad Hoc Communications and
Networks (SECON ’11), pp. 404–412, June 2011.

[9] L. Zheng and D. N. C. Tse, “Diversity and multiplexing: a fun-
damental tradeoff inmultiple-antenna channels,” IEEETransac-
tions on Information Theory, vol. 49, no. 5, pp. 1073–1096, 2003.

[10] C. Berge, Graphs and Hypergraphs, Elservier, New York, NY,
USA, 1973.

[11] C. Berge, Hypergraphs: The Theory of Finite Set, vol. 45, North-
Holland Publishing, Amsterdam, The Netherlands, 1989.

[12] I. Dinur, O. Regev, and C. Smyth, “The hardness of 3-uniform
hypergraph coloring,” in Proceedings of the 34rd Annual IEEE
Symposium on Foundations of Computer Science, pp. 33–40,
November 2002.

[13] S. Khot, “Hardness results for approximate hypergraph color-
ing,” in Proceedings of the 34th Annual ACM Symposium on
Theory of Computing, pp. 351–359, May 2002.

[14] A. Wigderson, “Improving the performance guarantee for
approximate graph coloring,” Journal of the Association for
Computing Machinery, vol. 30, no. 4, pp. 729–735, 1983.

[15] B. Berger and J. Rompel, “A better performance guarantee for
approximate graph coloring,” Algorithmica, vol. 5, no. 4, pp.
459–466, 1990.
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