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A nonlinear Schrödinger equation with a higher-order dispersive term describing the propagation of ultrashort femtosecond pulses
in optical fibres is considered and is transformed into a second-order nonlinear ordinary differential equation. We investigate the
exact travelling wave solutions of the nonlinear Schrödinger equation using three methods, namely, the auxiliary equationmethod,
the first integral method, and the direct integral method. As a result, Jacobi elliptic function solution, hyperbolic function solution,
trigonometric function solution, and rational solution with parameters are obtained successfully. When the parameters are taken
as special values, the two known solitary wave solution and periodic wave solution are derived from the solutions obtained. The
aim of the paper is to compare the efficiency of the three methods.

1. Introduction

We are concerned with the following nonlinear Schrödinger
equation with a higher-order dispersive term [1]:
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where 𝜓 = 𝜓(𝑥, 𝑡) is slowly varying envelop of the electric
field, the subscripts 𝑥 and 𝑡 are the spatial and tempo-
ral partial derivative in retard time coordinates, and 𝛼
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,
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, 𝛼
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, 𝛼
4
, and 𝛼

5
are real parameters related to the group

velocity, self-phase modulation, third-order dispersion, self-
steepening, and self-frequency shift arising from stimulated
Raman scattering, respectively. Equation (1) can be applied to
describe the propagation of ultrashort femtosecond pulses in
optical fibres.

The nonlinear Schrödinger (NLS) equations occur in
many branches of physics such as nonlinear optics, quantum
mechanics, condensed matter physics, and plasma physics
[2, 3]. There have been various Schrödinger-type equations
in the study of nonlinear phenomena. All these phenomena
can be better understood with the help of exact analytical

solutions. Recently, a considerable amount of research work
has been devoted to searching for exact solution of NLS
equation with a variety of nonlinearities. For example, Li
andWang [4] applied the (𝐺󸀠/𝐺)-expansion method to study
the higher-order nonlinear Schrödinger equation (1) and
obtained travelling wave solutions under constraint condi-
tion.Ma and Lee [5] proposed the transformed rational func-
tion method for solving the (3 + 1)-dimensional Jimbo-
Miwa equation and obtained exact solutions. Wu and Dai [6]
investigated quintic nonlinear derivative Schrödinger equa-
tion and obtained soliton solutions including chirped bright,
dark, and kink soliton solutions with the aid of a special auxi-
liary equation. Ma [7] introduced a class of bilinear differen-
tial operators which describe generalized bilinear differential
equations and discussed their links with the Bell polynomial.
More details are presented in [8, 9].

Exact solutions (especially travelling wave solution) of
nonlinear evolution equation (NLEE) play an important role
in the study of nonlinear physical phenomenon [2, 10].
During the past decades, various analytical and numerical
methods for constructing the travelling wave solutions to
NLEE have been proposed, such as Hirota’s bilinear method
[11, 12], the Bäcklund transformation method [13], the sine-
cosine method [14], the tanh-function method [15, 16], the
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Exp-function method [17, 18], the Jacobi elliptic expansion
method [19], the first integral method [20], and the Riccati
equation method [21, 22]. The reader is referred to [1, 23, 24]
and the references therein.

In this paper, our main purpose is to investigate the
travelling wave solutions for nonlinear Schrödinger equation
with a higher-order dispersive term (1). The rest of the paper
is organized as follows. In Section 2, we describe these meth-
ods for solving nonlinear evolution equations including the
auxiliary equation method, the first integral method, and the
direct integral method. In Section 3, we apply these methods
to (1) and obtain enveloped travelling wave solutions. Finally,
the concluding remarks are presented in Section 4.

2. Description of Methods

2.1. The Auxiliary Equation Method. For a given nonlinear
partial differential equationwith a physical field 𝑢(𝑥, 𝑡) in two
independent variables 𝑥, 𝑡,
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Step 1. Making use of the travelling wave transformation,

𝑢 (𝑥, 𝑡) = 𝑢 (𝜉) , 𝜉 = 𝑘 (𝑥 − V𝑡) . (3)

Then, (2) is reduced to the following ordinary differential
equation (ODE):
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Step 2. We introduce a new ansatz:
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where𝑁 is a positive integer and 𝑎
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, 𝑏
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, and 𝑐

𝑖
are constants,

while the new variable 𝜙 = 𝜙(𝜉) satisfies the Riccati equation
[21]:
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Step 3. We define the degree of 𝑢(𝜉) as 𝐷[𝑢(𝜉)] = 𝑁. The
degree of 𝑢(𝑝)(𝜉) can be calculated by
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(7)

Step 4. Substituting (5) along with (6) into (4) and setting all
coefficients of 𝜙𝑗(𝜉)√𝑅 + 𝜙2(𝜉)

𝑚

(𝑗 = 0, 1, . . . , 𝑚 = 0, 1) to
zero, we get a system of nonlinear algebraic equations.

Step 5. Solving the overdetermined system in Step 4 by
the symbolic computation system Mathematica, we obtain
travelling wave solutions of (1).

Remark 1. One of the main steps in the method is to
determine the value of 𝑁 in (5). The value of 𝑁 can
be determined by considering the homogeneous balance
between the highest-order derivative and nonlinear term
appearing in (4). If 𝑁 is not a positive integer, then we first
make the transformation 𝑢 = 𝜓𝑁.

2.2.The First Integral Method. Thenonlinear partial differen-
tial equation in two independent variables 𝑥, 𝑡
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can be transformed into a nonlinear ODE

𝐺(𝑢, −𝑘V𝑢󸀠, 𝑘𝑢󸀠, 𝑘2V2𝑢󸀠󸀠, −𝑘2V𝑢󸀠󸀠, 𝑘2𝑢󸀠󸀠, . . .) = 0, (9)

under thewave transformation 𝑢(𝑥, 𝑡) = 𝑢(𝜉), where thewave
variable 𝜉 = 𝑘(𝑥 − V𝑡).

Next, we introduce a new independent variable

𝑋 (𝜉) = 𝑢 (𝜉) , 𝑌 (𝜉) =
𝑑𝑋 (𝜉)

𝑑𝜉
= 𝑋̇ (𝜉) , (10)

which leads (9) to a system of nonlinear ODEs

𝑋̇ (𝜉) = 𝑌 (𝜉) ,

𝑌̇ (𝜉) = 𝑃 (𝑋 (𝜉) , 𝑌 (𝜉)) .

(11)

By the qualitative theory of ordinary differential equations,
if we can find the integrals to (11), then the general solutions
to (11) can be obtained directly. In order to obtain one first
integral of (11), we will apply the DivisionTheorem.

3. Application

In this section, we will illustrate three methods mentioned
above and obtain the exact travelling wave solutions of (1).

Assume that the solution of (1) can be written as

𝜓 (𝑥, 𝑡) = 𝑢 (𝜉) exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] , 𝜉 = 𝑡 − 𝜆𝑥 + 𝜉
0
, (12)

where 𝑘, 𝜔, and 𝜆 are constants to be determined. Substitut-
ing (12) into (1) and separating the real and imaginary parts,
we obtain the ODEs for 𝑢(𝜉):
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Integrating (13) once and setting the constant of integration
to zero, we get
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(14) and (15) are transformed into the following equation:
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3.1. Using the Auxiliary Equation Method to Solve (1). Con-
sidering the homogeneous balance between 𝑢󸀠󸀠 and 𝑢3 in (17)
yields𝑁 = 1. So we assume that (1) has the following formal
solutions:

𝑢 (𝜉) = 𝑎
0
+ 𝑎
1
𝜙 (𝜉) + 𝑏

1
√𝑅 + 𝜙2 (𝜉) + 𝑐

1
𝜙
−1

(𝜉) , (18)

where 𝑎
0
, 𝑎
1
, 𝑏
1
, and 𝑐

1
are constants to be determined.

Substituting (18) along with (6) into (17), collecting the
coefficients of 𝜙𝑖(𝜉)(√𝑅 + 𝜙2(𝜉))𝑗 (𝑖 = −3, −2, −1, 0, 1, 2, 3,
𝑗 = 0, 1), and setting each coefficient to zero, one obtains
the system of algebraic equations. Then solving the obtained
algebraic equations, we have a set of nontrivial solutions.
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Case 3. One has
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From the expression in (12), (19), (20), (21) and the
solutions of (6), we derive the following travelling wave
solutions of (1).
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where 𝜓
1,1

and 𝜓
1,2

are the known solitary wave solution
found by Liu (formulae (30) and (31) in [23]).
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where 𝜓
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are the known periodic wave solution
obtained in [23] (formulae (34) and (35) in [23]).
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Family 5. If 𝑅 = 0, 𝛼
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3.2. Using the First Integral Method to Solve (1). The first
integral of (17) can be assumed in the following form:
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is an arbitrary constant of integration. Substituting
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of 𝑋𝑗 to zero, one obtains a system of nonlinear algebraic
equations. Then, solving the algebraic equations, we get the
following.
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1
𝜔) 𝑥 + 𝜉

0

× exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] .
(35)

3.3. Using the Direct Integral Method to Solve (1). Multiplying
(17) by 𝑢󸀠 and integrating (17) with respect to 𝜉 yield

𝑢
󸀠2

= 𝐶 −
𝐴

2
𝑢
2

−
𝐵

4
𝑢
4

, (36)

where 𝐶 is an integration constant. In [24], Lai et al. have
given the solutions of the following nonlinearODEwith four-
degree term:

𝐹
󸀠
2

= 𝐶
0
+ 𝐶
2
𝐹
2

+ 𝐶
4
𝐹
4

. (37)

Comparing the coefficient of (36) with that of (37), we
obtain the exact travelling wave solutions for (1) as follows.

When 𝐶 = 1, (𝜆 + 2𝛼
1
𝜔 − 3𝛼

3
𝜔
2

)/𝛼
3
= (1 + 𝑚

2

), (3𝛼
4
+

2𝛼
5
)/3𝛼
3
= −2𝑚

2

𝜓
3,1
(𝑥, 𝑡) = 𝑠𝑛 (𝜉,𝑚) exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] . (38)

When 𝐶 = 1 − 𝑚
2

, (𝜆 + 2𝛼
1
𝜔 − 3𝛼

3
𝜔
2

)/𝛼
3
= (1 −

2𝑚
2

), (3𝛼
4
+ 2𝛼
5
)/3𝛼
3
= 2𝑚
2,

𝜓
3,2
(𝑥, 𝑡) = 𝑐𝑛 (𝜉,𝑚) exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] . (39)

When𝐶 = 𝑚
2

−1, (𝜆+2𝛼
1
𝜔−3𝛼

3
𝜔
2

)/𝛼
3
= (𝑚
2

−2), (3𝛼
4
+

2𝛼
5
)/3𝛼
3
= 2,

𝜓
3,3
(𝑥, 𝑡) = 𝑑𝑛 (𝜉,𝑚) exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] . (40)
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When 𝐶 = 𝑚
2

, (𝜆 + 2𝛼
1
𝜔 − 3𝛼

3
𝜔
2

)/𝛼
3
= (1 + 𝑚

2

), (3𝛼
4
+

2𝛼
5
)/3𝛼
3
= −2,

𝜓
3,4
(𝑥, 𝑡) = 𝑛𝑠 (𝜉, 𝑚) exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] . (41)

When 𝐶 = −𝑚
2

, (𝜆 + 2𝛼
1
𝜔 − 3𝛼

3
𝜔
2

)/𝛼
3
= −(2𝑚

2

−

1), (3𝛼
4
+ 2𝛼
5
)/3𝛼
3
= −2(𝑚

2

− 1),

𝜓
3,5
(𝑥, 𝑡) = 𝑛𝑐 (𝜉,𝑚) exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] . (42)

When𝐶 = −1, (𝜆+2𝛼
1
𝜔−3𝛼

3
𝜔
2

)/𝛼
3
= −(2−𝑚

2

), (3𝛼
4
+

2𝛼
5
)/3𝛼
3
= −2(𝑚

2

− 1),

𝜓
3,6
(𝑥, 𝑡) = 𝑛𝑑 (𝜉,𝑚) exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] . (43)

When 𝐶 = 1, (𝜆 + 2𝛼
1
𝜔 − 3𝛼

3
𝜔
2

)/𝛼
3
= −(2 − 𝑚

2

), (3𝛼
4
+

2𝛼
5
)/3𝛼
3
= −2(1 − 𝑚

2

),

𝜓
3,7
(𝑥, 𝑡) = 𝑠𝑐 (𝜉, 𝑚) exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] . (44)

When 𝐶 = 1, (𝜆 + 2𝛼
1
𝜔−3𝛼

3
𝜔
2

)/𝛼
3
= −(2𝑚

2

−1), (3𝛼
4
+

2𝛼
5
)/3𝛼
3
= −2𝑚

2

(𝑚
2

− 1),

𝜓
3,8
(𝑥, 𝑡) = 𝑠𝑑 (𝜉,𝑚) exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] . (45)

When 𝐶 = 1 − 𝑚
2

, (𝜆 + 2𝛼
1
𝜔 − 3𝛼

3
𝜔
2

)/𝛼
3
= −(2 −

𝑚
2

), (3𝛼
4
+ 2𝛼
5
)/3𝛼
3
= −2,

𝜓
3,9
(𝑥, 𝑡) = 𝑐𝑠 (𝜉, 𝑚) exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] . (46)

When𝐶 = −𝑚
2

(1−𝑚
2

), (𝜆+2𝛼
1
𝜔−3𝛼

3
𝜔
2

)/𝛼
3
= −(2𝑚

2

−

1), (3𝛼
4
+ 2𝛼
5
)/3𝛼
3
= −2,

𝜓
3,10

(𝑥, 𝑡) = 𝑑𝑠 (𝜉, 𝑚) exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] . (47)

When𝐶 = −(𝑚
2

− 1)
2

/4, (𝜆+2𝛼
1
𝜔−3𝛼

3
𝜔
2

)/𝛼
3
= −(𝑚

2

+

1)/2, (3𝛼
4
+ 2𝛼
5
)/3𝛼
3
= 1/2,

𝜓
3,11

(𝑥, 𝑡) = [𝑚𝑐𝑛 (𝜉,𝑚) ± 𝑑𝑛 (𝜉,𝑚)] exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] .
(48)

When 𝐶 = 1/4, (𝜆 + 2𝛼
1
𝜔 − 3𝛼

3
𝜔
2

)/𝛼
3

= −(1 −

2𝑚
2

)/2, (3𝛼
4
+ 2𝛼
5
)/3𝛼
3
= −1/2,

𝜓
3,12

(𝑥, 𝑡) =
1 ± 𝑐𝑛 (𝜉,𝑚)

𝑠𝑛 (𝜉,𝑚)
exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] . (49)

When 𝐶 = (1 − 𝑚
2

)/4, (𝜆 + 2𝛼
1
𝜔 − 3𝛼

3
𝜔
2

)/𝛼
3
= −(𝑚

2

+

1)/2, (3𝛼
4
+ 2𝛼
5
)/3𝛼
3
= (𝑚
2

− 1)/2,

𝜓
3,13

(𝑥, 𝑡) =
1 ± 𝑠𝑛 (𝜉, 𝑚)

𝑐𝑛 (𝜉,𝑚)
exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] . (50)

When 𝐶 = 𝑚
2

/4, (𝜆 + 2𝛼
1
𝜔 − 3𝛼

3
𝜔
2

)/𝛼
3
= −(𝑚

2

−

2)/2, (3𝛼
4
+ 2𝛼
5
)/3𝛼
3
= −1/2,

𝜓
3,14

(𝑥, 𝑡) =
1 ± 𝑑𝑛 (𝜉,𝑚)

𝑠𝑛 (𝜉,𝑚)
exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] . (51)

When 𝐶 = 𝑚
2

/4, (𝜆 + 2𝛼
1
𝜔 − 3𝛼

3
𝜔
2

)/𝛼
3
= −(𝑚

2

−

2)/2, (3𝛼
4
+ 2𝛼
5
)/3𝛼
3
= −𝑚

2

/2,

𝜓
3,15

(𝑥, 𝑡) = [𝑠𝑛 (𝜉,𝑚) ± 𝑖𝑐𝑛 (𝜉,𝑚)] exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] . (52)

When 𝐶 = 1/4, (𝜆 + 2𝛼
1
𝜔 − 3𝛼

3
𝜔
2

)/𝛼
3
= −(𝑚

2

−

2)/2, (3𝛼
4
+ 2𝛼
5
)/3𝛼
3
= −𝑚

2

/2,

𝜓
3,16

(𝑥, 𝑡) =
𝑠𝑛 (𝜉, 𝑚)

1 ± 𝑑𝑛 (𝜉,𝑚)
exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] . (53)

When 𝐶 = (𝑚
2

− 1)/4, (𝜆 + 2𝛼
1
𝜔 − 3𝛼

3
𝜔
2

)/𝛼
3
= −(𝑚

2

+

1)/2, (3𝛼
4
+ 2𝛼
5
)/3𝛼
3
= (1 − 𝑚

2

)/2,

𝜓
3,17

(𝑥, 𝑡) =
𝑑𝑛 (𝜉,𝑚)

1 ± 𝑚𝑠𝑛 (𝜉,𝑚)
exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] . (54)

When 𝐶 = (1 − 𝑚
2

)/4, (𝜆 + 2𝛼
1
𝜔 − 3𝛼

3
𝜔
2

)/𝛼
3
= −(𝑚

2

+

1)/2, (3𝛼
4
+ 2𝛼
5
)/3𝛼
3
= (𝑚
2

− 1)/2,

𝜓
3,18

(𝑥, 𝑡) =
𝑐𝑛 (𝜉,𝑚)

1 ± 𝑠𝑛 (𝜉,𝑚)
exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] . (55)

Remark 2. When the modulus 𝑚 → 1, Jacobi elliptic func-
tion 𝑠𝑛(𝜉,𝑚) → tanh(𝜉), 𝑐𝑛(𝜉, 𝑚) → sech(𝜉), and 𝑑𝑛(𝜉) →
sech(𝜉). Hence, we can obtain the hyperbolic function solu-
tions. For example,𝜓

3,1
and𝜓

3,2
are turned into the kink type

envelope wave solution

𝜓
3,1,1

= exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] tanh (𝑡 − 𝜆𝑥 + 𝜉
0
) ,

𝐴 = 2, 𝐵 = −2

(56)

and the bell type envelope wave solution

𝜓
3,2,1

= exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] sech (𝑡 − 𝜆𝑥 + 𝜉
0
) ,

𝐴 = −1, 𝐵 = 2.

(57)

Formula (57) is the same as the solution 𝜓
1,2
.

In particular, 𝜓
3,4
, 𝜓
3,12

, and 𝜓
3,15

degenerate into

𝜓
3,4,1

= exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] coth (𝑡 − 𝜆𝑥 + 𝜉
0
) ,

𝐴 = 2, 𝐵 = −2,

𝜓
3,12,1

= [coth (𝑡 − 𝜆𝑥 + 𝜉
0
) + csch (𝑡 − 𝜆𝑥 + 𝜉

0
)]

× exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] , 𝐴 =
1

2
, 𝐵 = −

1

2
,

𝜓
3,15,1

= [tanh (𝑡 − 𝜆𝑥 + 𝜉
0
) + 𝑖sech (𝑡 − 𝜆𝑥 + 𝜉

0
)]

× exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] , 𝐴 =
1

2
, 𝐵 = −

1

2
,

(58)

respectively, which are in full agreement with the solutions
𝜓
1,1
, 𝜓
1,4
, and 𝜓

1,3
obtained above.

In addition, 𝜓
3,3

and 𝜓
3,9

degenerate into the known
solutions (32) and (33) in [23], respectively.
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Remark 3. When 𝑚 → 0, 𝑠𝑛(𝜉, 𝑚) → sin(𝜉), 𝑐𝑛(𝜉,𝑚) →

cos(𝜉), and 𝑑𝑛(𝜉) → 1. In this case, we mention 𝜓
3,7
, 𝜓
3,9
,

𝜓
3,12

, and 𝜓
3,13

which degenerate into

𝜓
3,7,0

= exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] tan (𝑡 − 𝜆𝑥 + 𝜉
0
) ,

𝐴 = −2, 𝐵 = −2,

𝜓
3,9,0

= exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] cot (𝑡 − 𝜆𝑥 + 𝜉
0
) ,

𝐴 = −2, 𝐵 = −2,

𝜓
3,12,0

= [csc (𝑡 − 𝜆𝑥 + 𝜉
0
) + cot (𝑡 − 𝜆𝑥 + 𝜉

0
)]

× exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] , 𝐴 = −
1

2
, 𝐵 = −

1

2
,

𝜓
3,13,0

= [sec (𝑡 − 𝜆𝑥 + 𝜉
0
) − tan (𝑡 − 𝜆𝑥 + 𝜉

0
)]

× exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] , 𝐴 = −
1

2
, 𝐵 = −

1

2
,

(59)

respectively, which are in agreement with the solutions 𝜓
1,6
,

𝜓
1,7
, 𝜓
1,9
, and 𝜓

1,8
. It is worth mentioning that 𝜓

3,4
and

𝜓
3,5

degenerate into the known solutions obtained by Liu
(formulae (37) and (36) in [23]).

Remark 4. With the aid ofMathematica, we have checked the
solutions 𝜓

𝑖,𝑗
(𝑖 = 1, 2, 3, 𝑗 = 1, 2, . . .) by putting them back

into (1).

Remark 5. Compared with the work in [4, 23], we obtained
more soliton solutions, triangle periodic solutions, and Jacobi
elliptic solutions including some known solutions in [4, 23].

4. Discussion and Conclusion

In summary, we investigate the travelling wave solutions
to nonlinear Schrödinger equation with a higher-order dis-
persive term by using three methods, namely, the auxiliary
equation method, the first integral method, and the direct
integral method. As a result, exact solutions including Jacobi
elliptic function solution, the kink type envelope wave solu-
tion, and the bell type envelopewave solution are obtained. In
particular, Jacobi elliptic function solutions degenerate into
the hyperbolic function solutions and the triangular function
solutions obtained via the auxiliary equation method and
the first integral method. Because the nonlinear Schrödinger
equation with a higher-order dispersive term is an important
model in physics science, these results are expected to
help understand wave dynamics in the study of ultrashort
femtosecond pulses in optical fibres.
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