
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 959403, 6 pages
http://dx.doi.org/10.1155/2013/959403

Research Article
Restricted Isometry Property of Principal Component Pursuit
with Reduced Linear Measurements

Qingshan You,1,2 Qun Wan,2 and Haiwen Xu1

1 School of Computer Science, Civil Aviation Flight University of China, GuangHan, Sichuan 618307, China
2 School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China

Correspondence should be addressed to QunWan; wanqun@uestc.edu.cn

Received 25 September 2012; Revised 2 April 2013; Accepted 30 April 2013

Academic Editor: Xiaojun Wang

Copyright © 2013 Qingshan You et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The principal component prsuit with reduced linear measurements (PCP RLM) has gained great attention in applications, such as
machine learning, video, and aligningmultiple images.The recent research shows that strongly convex optimization for compressive
principal component pursuit can guarantee the exact low-rank matrix recovery and sparse matrix recovery as well. In this paper,
we prove that the operator of PCP RLM satisfies restricted isometry property (RIP) with high probability. In addition, we derive
the bound of parameters depending only on observed quantities based on RIP property, which will guide us how to choose suitable
parameters in strongly convex programming.

1. Introduction

Matrix completion is a signal processing technique, which
recovers an unknown low-rank or approximately low-rank
matrix from a sampling of its entries. Recently, this tech-
nique has been applied in many fields, such as medical [1],
imaging [2], seismology [3], and computer vision [4–6]. The
dimension of data produced in practice is always vastly high,
therefore, there exists a pressing challenge to develop efficient
and effective tools to process, analyze, and extract useful
information from a small set of linear measurements of the
high-dimensional data. Many scholars had studied in detail
in the recent papers [7–13]. Candès et al. address the problem
of recovery of the unknown low-rank matrix and sparse
matrix from the sampling of its complete entries [7–9] for
large scale. As the extensions of previous works, Ganesh et
al. address the problem of decomposing a superposition of
a low-rank matrix and a sparse matrix when a relatively few
linear measurements are available [10, 11].

These fundamental results have a great impact in engi-
neering and applied mathematics. However, these results
are limited into convex optimization; that is, nuclear norm
based convex optimization leads to the exact low-rankmatrix
recovery under suitable conditions. It is well known that
strongly convex optimization has many intrinsic advantages,

such as the uniqueness of optimal solution. Especially, the
strongly convex optimization was widely used in designing
efficient and effective algorithm in the literature of com-
pressive sensing and low-rank matrix recovery. Zhang et al.
extend them; they proved that strongly convex optimizations
can guarantee the exact low-rank matrix recovery as well
in the paper [12]. The right bound of 𝜏 of strongly convex
programming for robust principal component analysis was
provided in paper [14].

Pertaining to the strongly convex optimization for com-
pressive principal component pursuit, we had studied it in
detail in our former work in [15], in which we prove that
under suitable conditions, the corresponding strongly convex
optimization also recovers the low-rank matrix and sparse
matrix exactly. However, the bound of parameter strongly
depends on the Frobenius norm of the data, which is not
known in practice, because the data we can use isP𝑄𝑀 only.
In this paper, we will give an easy band of 𝜏 depending on
P𝑄𝑀 only.

1.1. Contents and Notations. For convenience, we will give
here a brief summary of the notations that will be used
throughout the paper. We denoted the operator norm of
matrix by ‖𝑋‖, the Frobenius norm by ‖𝑋‖𝐹, the nuclear
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norm by ‖𝑋‖∗ and the 𝑙∞ norm by ‖𝑋‖∞ := max𝑖𝑗|𝑥𝑖𝑗|. We
will bound the Euclidean inner product between twomatrices
which is defined by the formula ⟨𝑋, 𝑌⟩ = trace(𝑋∗𝑌).
The Cauchy-Schwarz inequality gives ⟨𝑋, 𝑌⟩ ≤ ‖𝑋‖𝐹‖𝑌‖𝐹,
especially ‖𝑋‖∗ ≤ √𝑟‖𝑋‖𝐹 and ∑𝑖𝑗 |𝑥𝑖𝑗| ≤ √|𝑋|0‖𝑋‖𝐹. We
will also bound linear transformations which act on the space
of matrices, and we denote these operators by P𝑇𝑋. The
norm of the operator is denoted by ‖P‖; that is, ‖P‖ =

sup{‖𝑋‖𝐹=1}‖P𝑋‖𝐹. We denote by Ω the support of 𝑆0. By a
slight abuse of notation, we also represent by Ω the subspace
of matrices whose support is contained in the support of 𝑆0.
Supp(𝑆0) ∼ Ber(𝜌) means each entry of the matrix belongs
to the support of the sparse matrix 𝑆0 independently with
probability 𝜌.

1.2. Basic Problem and Main Result. In this paper, we only
address the strongly convex programming of principal com-
ponent pursuit with reduced linear measurements, which is
considered in paper [10]. This problem has the following
formula:

minimize ‖𝐿‖∗ + 𝜆‖𝑆‖1 +
1

2𝜏

‖𝐿‖
2

𝐹 +
1

2𝜏

‖𝑆‖
2

𝐹

subject to P𝑄𝑀 = P𝑄 (𝐿 + 𝑆) ,

(1)

where 𝜏 > 0 is some positive penalty parameter and 𝑃𝑄

is the orthogonal projection onto the linear subspace 𝑄,
and 𝑄 is distributed according to the Haar measure on the
Grassmannian G(𝑅𝑚×𝑛; 𝑞). Suppose that 𝐺1, 𝐺2, . . . , 𝐺𝑝 are
standard orthogonal basis of 𝑄⊥; that is, 𝐺1, 𝐺2, . . . , 𝐺𝑝 are
identical in distribution to 𝐺, where 𝐺 = 𝐻/‖𝐻‖𝐹 and 𝐻 =

𝑀/√𝑚𝑛, whose entries are i.i.d, according to the standard
normal distribution. More detail was interpreted in the paper
[10].

When 𝜏 = ∞ in the problem (1), we have existence and
uniqueness theorems as follows.

Theorem 1 (see [10]). Fix any 𝐶𝑝 > 0, and let 𝑄⊥ be a 𝑝-
dimensional random subspace of R𝑚×𝑛; 𝐿0 obeys incoherence
condition with parameter 𝜇, and supp(𝑆0) ∼ Ber(𝜌). Then,
with high probability, the solution of problem (1)with𝜆 = 1/√𝑛
is exact; that is, �̂� = 𝐿0 and 𝑆 = 𝑆0, provided that

Rank (𝐿0) < 𝐶𝑟𝑛𝜇
−1
(log𝑚)−2, 𝑝 < 𝐶𝑝𝑛, 𝜌 < 𝜌0,

(2)

where, 𝐶𝑟, 𝐶𝑝 and 𝜌0 ∈ (0, 1) are positive numerical constants.

Remark 2. The value of 𝜌0 is a fixed positive numerical
constant and should obey some suitable conditions; one of
those is less than 1/5. the detail derivation has been well-
studied (see, e.g., [8, 10] and the many references therein).
With high probability means with probability at least 1−𝑚−𝑐,
with 𝑐 > 0 numerical constant.

When 𝜏 ̸=∞ in the problem (1), we have existence and
uniqueness theorems as follow.

Lemma 3 (see [14, 15]). Assuming

𝜏 ≥

8√15‖𝑀‖𝐹

3𝜆

(3)

under the other assumptions ofTheorem 1, (𝐿0, 𝑆0) is the unique
solution to the strongly convex programming (1) with high
probability.

Pertaining to the projection operator P𝑄, we obtain the
following restricted isometry property of operator P𝑄 re-
stricted in a superposition of low-rank matrices and sparse
matrices.

Theorem 4. Suppose that 𝐿 is low-rank matrix with rank 𝑟,
𝑆 is sparse matrix with Supp(𝑆0) ∼ Ber(𝜌), 𝜌 ≤ 𝛿

2
/(64 ×

25𝑝 log(𝑚𝑛𝑝)), and 𝑟 ≤ (𝑚𝑛𝛿
2
/(12 × 25𝑝)) − (5/3) log(𝑛),

and assume that the conditions of Theorem 1 hold. Then, with
high probability, one has

(1 − 𝛿) ‖𝑀‖𝐹 ≤




P𝑄𝑀




𝐹
≤ (1 + 𝛿) ‖𝑀‖𝐹. (4)

According to Lemma3 andTheorem4,we can easy obtain
the following theorem.

Theorem 5. Supposing that 𝐿 is low-rank matrix with rank 𝑟,
𝑆 is sparse matrix with Supp(𝑆) ∼ Ber(𝜌). If

𝜏 ≥

8√15




P𝑄𝑀




𝐹

3 (1 − 𝛿) 𝜆

(5)

under the other assumptions of Theorem 4, (𝐿0, 𝑆0) is the
unique solution to the strongly convex programming (1) with
high probability.

It is obvious that the band of 𝜏 depends on P𝑄𝑀 only,
which is obtained very easily in practice.

1.3. Contributions and Organization. In this paper, we first
prove that although the operator P𝑄 does not satisfy the
restricted isometry property (RIP) in entire space, it obeys
restricted isometry property (RIP) with high probability if
the rank of low-rank matrix is not large and the sparse
matrix is enough sparse. Second, we will use the restricted
isometry property to improve the band of parameter which
just depends onP𝑄𝑀.

The main center of the paper provides the proof of
Theorem 4. The rest of paper is organized as follows. In
Section 2, we will provide some important lemmas which are
important composition of our main result and then will give
the proof of Theorem 4. Conclusion and further works are
discussed in Section 3.

2. The Proof of Theorem 4

In this section, we will provide the proof of Theorem 4. We
first bound the behaviors of the operatorP𝑄⊥ implying on the
space of low-rank matrices and the space of sparse matrices,
respectively. Then, the relation of ‖𝑀‖𝐹 and ‖𝐿‖𝐹 + ‖𝑆‖𝐹, we
can obtainTheorem 4.
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2.1. Bounding the Behavior of ‖P𝑄⊥(𝑆)‖𝐹. We will provide
some important lemmas, which are used in the main theo-
rem.

Lemma 6 (see [10, Lemma 6]). Let 𝑄⊥ be a linear subspace
distributed according to the random subspace model described
earlier. Then, for any (𝑖, 𝑗) ∈ [𝑚] × [𝑛], with high probability






P𝑄⊥𝑒𝑖𝑒

𝑇

𝑗





𝐹
≤ 4

√
𝑝 log (𝑚𝑛𝑝)

𝑚𝑛

.
(6)

Bernstein’s Inequality [16, 17]. Assume that𝑋1, 𝑋2, . . . , 𝑋𝑛 are
independent random variables with E[𝑋𝑖] = 0, for all 𝑖.
Furthermore, suppose that |𝑋𝑖| ≤ 𝑀. Then,

P{












∑

𝑖

𝑋𝑖












> 𝑡} ≤ 2 exp(− 𝑡
2

2∑𝑖 Var (𝑋𝑖) + 2𝑀𝑡/3

) . (7)

Lemma 7. If 𝜌 ≥ log 𝑛/𝑚𝑛, then with high probability

‖𝑆‖0 ≤ 2𝜌𝑚𝑛. (8)

Proof. Let𝜔𝑖𝑗 be the indicator variableswith𝜔𝑖𝑗 = 1 if (𝑖𝑗) ∈ Ω
and 𝜔𝑖𝑗 = 0 for otherwise. For 𝑆 ∈ Ω, we have

‖𝑆‖0 ≤ ∑

𝑖𝑗

𝜔𝑖𝑗. (9)

Let 𝑌𝑖𝑗 := 𝜔𝑖𝑗 − 𝜌 and 𝑍 := ∑𝑖𝑗 𝑌𝑖𝑗. For E[𝑌𝑖𝑗] = E[𝜔𝑖𝑗] −

𝜌 = 0 and |𝑌𝑖𝑗| ≤ 1, it is obvious that 𝑌𝑖𝑗 satisfies Bernstein’s
inequality. Note that

∑

𝑖𝑗

Var (𝑌𝑖𝑗) = 𝜌 (1 − 𝜌)𝑚𝑛 ≤ 𝜌𝑚𝑛. (10)

According to Bernstein’s inequality, letting 𝑡 = 𝜌𝑚𝑛, we have

P
{

{

{













∑

𝑖𝑗

𝜔𝑖𝑗 − 𝜌𝑚𝑛













> 𝜌𝑚𝑛

}

}

}

≤ 2 exp (−
3𝜌𝑚𝑛

8

) . (11)

Combining with 𝜌 ≥ log 𝑛/𝑚𝑛, we have

P
{

{

{













∑

𝑖𝑗

𝜔𝑖𝑗 − 𝜌𝑚𝑛













> 𝜌𝑚𝑛

}

}

}

≤ 𝑛
−3/8

. (12)

In other words, ‖ 𝑆 ‖0 ≤ 2𝜌𝑚𝑛with high probability. Note
that lim𝑛→∞ log 𝑛/𝑚𝑛 = 0. That means 𝜌 can obtain very
small value when 𝑛 is very large.

Theorem 8(a). Suppose that 𝑆 is sparse matrix with
Supp(𝑆) ∼ Ber(𝜌)and𝑄⊥ is a𝑝-dimensional random subspace
of R𝑚×𝑛. If 𝜌 ≤ 𝛿

2
/64𝑝 log(𝑚𝑛𝑝), with high probability, one

has





P𝑄⊥𝑆




𝐹
≤ 𝛿‖𝑆‖𝐹. (13)

Proof. According to triangle inequality, we have





P𝑄⊥𝑆




𝐹
=













P𝑄⊥ (∑
𝑖𝑗

𝑆𝑖𝑗𝑒𝑖𝑒
𝑇

𝑗)











𝐹

≤ ∑

𝑖𝑗






𝑆𝑖𝑗












P𝑄⊥𝑒𝑖𝑒

𝑇

𝑗





𝐹

≤ 4
√
𝑝 log (𝑚𝑛𝑝)

𝑚𝑛

∑

𝑖𝑗






𝑆𝑖𝑗







≤ 2√𝜌𝑚𝑛‖𝑆‖𝐹 4
√
𝑝 log (𝑚𝑛𝑝)

𝑚𝑛

≤ √64𝑝𝜌 log (𝑚𝑛𝑝)‖𝑆‖𝐹.

(14)

In the third inequality, we have used Lemma 6. In the foarth
inequality, we have used Cauchy-Schwarz inequality and
Lemma 7. Combining with 𝜌 ≤ 𝛿

2
/64𝑝 log(𝑚𝑛𝑝), we can

obtain




P𝑄⊥𝑆




𝐹
≤ 𝛿‖𝑆‖𝐹. (15)

Theorem 8(b). Suppose that 𝑆 is sparse matrix with
Supp(𝑆) ∼ Ber(𝜌), and 𝑄

⊥ is a 𝑝-dimensional random
subspace of R𝑚×𝑛. If 𝜌 ≤ 𝛿

2
/64𝑝 log(𝑚𝑛𝑝), with high

probability, one has

(1 − 𝛿) ‖𝑆‖𝐹 ≤




P𝑄𝑆




𝐹
≤ (1 + 𝛿) ‖𝑆‖𝐹. (16)

Proof. For ‖P𝑄‖ ≤ 1, we have ‖P𝑄𝑆‖𝐹 ≤ ‖𝑆‖𝐹 ≤ (1+𝛿)‖𝑆‖𝐹.
On the other hand, we have




P𝑄𝑆




𝐹
=




𝑆 −P𝑄⊥𝑆




𝐹
≥ ‖𝑆‖𝐹 −





P𝑄⊥𝑆




𝐹
≥ (1 − 𝛿) ‖𝑆‖𝐹.

(17)

2.2. Bounding the Behavior of ‖P𝑄⊥(𝐿)‖𝐹.

Lemma 9 (see [7, 18]). Suppose that 𝑌𝑑 is distributed as a chi-
squared random variable with 𝑑 degrees of freedom. Then, for
each 𝑡 > 0

P {𝑌𝑑 − 𝑑 ≥ 𝑡√2𝑑 + 𝑡
2
} ≤ 𝑒
−𝑡
2
/2
, (18)

P {𝑌𝑑 ≤ 𝑑 (1 − 𝜖)} ≤ 𝑒
−𝜖
2
𝑑/4
. (19)

Lemma 10. With high probability, one has

‖𝐻‖𝐹 ≥
1

2

. (20)

Proof. According to the definition of𝐻, we have

‖𝐻‖
2

𝐹 =
‖𝑀‖
2
𝐹

𝑚𝑛

, (21)
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where (𝑀)𝑖𝑗 ∼ N(0.1). It is necessary to bound ‖𝑀‖
2

𝐹. It is
easy to note that ‖𝑀‖

2

𝐹 is distributed as a chi-squared random
variable with𝑚𝑛 degrees of freedom. Letting 𝜖 = 3/4, we have

P {𝑌𝑑 ≤ 𝑚𝑛 (1 − 𝜖)} ≤ 𝑒
−𝜖
2
𝑚𝑛/4

, (22)

where we have used (19). Equation (22) tells us: ‖𝑀‖
2

𝐹 ≥ 𝑚𝑛/4

with high probability.Therefore, Lemma 9 is established.

Lemma 11 (see [8, 9]). Assume that Ω ∼ Ber(𝜌). If 1 − 𝜌 ≥

𝐶𝜖
−2
(𝜇𝑟 log 𝑛/𝑛), then with high probability





PΩP𝑇






2
≤ 𝜌 + 𝜖. (23)

According to Lemma 11, if 𝜖 and 𝜌 are small enough, we
have the below formula with high probability





PΩP𝑇





≤

1

2

. (24)

Lemma 12. Under the assumption of Theorem 1, with high
probability, one has

‖𝐿‖𝐹 + ‖𝑆‖𝐹 ≤ 5‖𝑀‖𝐹. (25)

Proof. Note that 𝐿 ∈ 𝑇, and we have





PΩ𝐿






2

𝐹
=




PΩP𝑇𝐿






2

𝐹

≤

1

4

‖𝐿‖
2

𝐹

=

1

4

(




PΩ𝐿






2

𝐹
+




PΩ⊥𝑀






2

𝐹
) .

(26)

In the first inequality, we have used Lemma 11. In the second
equality, we have used PΩ⊥𝐿 = PΩ⊥𝑀, because 𝑆 ∈ Ω. It is
obvious that





PΩ𝐿




𝐹
≤

√3

3





PΩ⊥𝑀




𝐹
. (27)

Therefore,

‖𝐿‖𝐹 ≤




PΩ𝐿




𝐹
+




PΩ⊥𝐿




𝐹

≤

√3

3





PΩ⊥𝑀




𝐹
+




PΩ⊥𝑀




𝐹

≤

5

3

‖𝑀‖𝐹.

(28)

And thus, we can obtain

‖𝐿‖𝐹 + ‖𝑆‖𝐹 = ‖𝐿‖𝐹 + ‖𝑀 − 𝐿‖𝐹

≤ 2‖𝐿‖𝐹 + ‖𝑀‖𝐹

≤ 5‖𝑀‖𝐹.

(29)

Lemma 12 is established.

Next, we will bound the behavior of ‖P𝑄⊥(𝐿)‖𝐹, based on
Lemma 9 to Lemma 12.

Theorem 13(a). Suppose that 𝐿 be 𝑟-rank matrix and𝑄⊥ is a
𝑝-dimensional random subspace ofR𝑛×𝑛. If 𝑟 ≤ (𝑚𝑛𝛿2/12𝑝) −
(5/3) log(𝑛), with high probability, one has





P𝑄⊥𝐿




𝐹
≤ 𝛿‖𝐿‖𝐹. (30)

As pointed out by one reviewer, Lemma 15 in [10] is
similar to Theorem 13(a). Lemma 15 in [10] tells us (30) is
established if 𝑟 ≤ 𝑛𝛿

2
/𝑝𝜐; however it is obvious that 𝑟 is

strongly based on 𝜐 which is defined as if there exists an
orthonormal basis {𝐺𝑖} for 𝐿 satisfying max𝑖‖𝐺𝑖‖

2
≤ 𝜐/𝑛,

which is very difficult to compute. The condition of 𝑟 in
Theorem 13(a) is just based on 𝑚, 𝑛, 𝑝, and 𝛿, which is easy
to determine.

Proof. According to the definition of 𝑄⊥, we have





P𝑄⊥𝐿




𝐹
= √

𝑝

∑

𝑘=1





⟨𝐺𝑘, 𝐿⟩






2
≤ √𝑝max𝑘





⟨𝐺𝑘, 𝐿⟩





, (31)

where 𝐺1, 𝐺2, . . . , 𝐺𝑘 are independent and identically dis-
tributed to 𝐺 mentioned before. According to (31), it is
necessary to bound |⟨𝐺, 𝐿⟩|. Suppose that 𝑈Σ𝑉𝑇 is singular
value decomposition of matrix 𝐿; that is, 𝐿 = 𝑈Σ𝑉

𝑇
=

∑
𝑟

𝑙=1 𝜎𝑙𝑢𝑙V
𝑇
𝑙 . Therefore, according to triangle inequality, we

have

|⟨𝐺, 𝐿⟩| ≤

𝑟

∑

𝑙=1

𝜎𝑙






⟨𝐺, 𝑢𝑙V

𝑇

𝑙 ⟩






=

𝑟

∑

𝑙=1

𝜎𝑙






𝑢
𝑇

𝑙 𝐺V𝑙






≤ √

𝑟

∑

𝑙=1

𝜎
2
𝑙
√

𝑟

∑

𝑙=1

(𝑢
𝑇
𝑙
𝐺V𝑙)
2

=

‖𝐿‖𝐹

‖𝐻‖𝐹√𝑚𝑛

√

𝑟

∑

𝑙=1

(𝑢
𝑇
𝑙
𝑀V𝑙)
2

≤

2‖𝐿‖𝐹

√𝑚𝑛

√

𝑟

∑

𝑙=1

(𝑢
𝑇
𝑙
𝑀V𝑙)
2
,

(32)

where𝑢𝑙, V𝑙 are the 𝑙th rows of𝑈,𝑉, respectively. In the second
inequality, we have used Cauchy-Schwarz inequality. In the
last inequality, we have used Lemma 10. Let 𝑦𝑙 := 𝑢

𝑇
𝑙 𝑀V𝑙 =

∑𝑖𝑗 𝑢𝑙𝑖𝑚𝑖𝑗V𝑙𝑗; note that

E {𝑦𝑙} = ∑
𝑖𝑗

𝑢𝑙𝑖V𝑙𝑗E {𝑚𝑖𝑗} = 0,

Var {𝑦𝑙} = ∑
𝑖𝑗

Var {𝑢𝑙𝑖V𝑙𝑗𝑚𝑖𝑗}

= ∑

𝑖𝑗

𝑢
2

𝑙𝑖V
2

𝑙𝑗 Var {𝑚𝑖𝑗} = 1,

(33)
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where we have used the fact∑𝑖 𝑢
2
𝑙𝑖 = 1 and∑𝑗 V

2
𝑙𝑗 = 1. In other

word 𝑦𝑙 ∼ N(0, 1). Let 𝑧 := ∑
𝑟

𝑙=1(𝑢
𝑇
𝑙 𝑀V𝑙)

2
= ∑
𝑟

𝑙=1 𝑦
2
𝑙 . It is

obvious that 𝑧 is distributed as a chi-squared random variable
with 𝑟 degrees of freedom.

According to Lemma 9, letting 𝑡 = 2√log 𝑛, we can obtain

P(𝑌𝑑 ≥ 𝑑 + 2√log 𝑛√2𝑑 + 4 log 𝑛) ≤ 𝑛−2. (34)

It implies that with high probability

𝑌𝑑 ≤ 𝑑 + 2
√log 𝑛√2𝑑 + 4 log 𝑛. (35)

That is, with high probability

𝑧 ≤ 𝑟 + 2√log 𝑛√2𝑟 + 4 log 𝑛. (36)

Combining with (31), (32), and (36), with high probability, we
can obtain





P𝑄⊥𝐿




𝐹
≤

2√𝑝‖𝐿‖𝐹

√𝑚𝑛

√𝑟 + 2√log 𝑛√2𝑟 + 4 log 𝑛

≤

2√𝑝‖𝐿‖𝐹

√𝑚𝑛

√3𝑟 + 5 log 𝑛,

(37)

where we have used the fact: if 𝑎, 𝑏 ≥ 0, 2√𝑎𝑏 ≤ 𝑎 + 𝑏. Let

2√𝑝

√𝑚𝑛

√3𝑟 + 5 log 𝑛 ≤ 𝛿. (38)

That is,

𝑟 ≤

𝑚𝑛𝛿
2

12𝑝

−

5

3

log (𝑛) . (39)

Theorem 13(a) is established.

Theorem 13(b). Suppose that 𝐿 is 𝜇-incoherent matrix and
𝑄
⊥ is a 𝑝-dimensional random subspace of R𝑛×𝑛. If 𝑟 ≤

(𝑚𝑛𝛿
2
/12𝑝) − (5/3) log(𝑛), with high probability, one has

(1 − 𝛿) ‖𝐿‖𝐹 ≤




P𝑄𝐿




𝐹
≤ (1 + 𝛿) ‖𝐿‖𝐹. (40)

Proof. The main idea of the proof follows the arguments of
Theorem 8(b).

Proof of Theorem 4. According toTheorems 8 and 13 and the
assumption of Lemma 3, we have





P𝑄⊥𝐿




𝐹
≤ 𝛿‖𝐿‖𝐹,





P𝑄⊥𝑆




𝐹
≤ 𝛿‖𝑆‖𝐹.

(41)

Therefore,




P𝑄⊥ (𝐿 + 𝑆)




𝐹
≤




P𝑄⊥𝐿




𝐹
+




P𝑄⊥𝑆




𝐹

≤ 𝛿 (‖𝐿‖𝐹 + ‖𝑆‖𝐹)

≤ 5𝛿‖𝑀‖𝐹.

(42)

Then,




P𝑄𝑀




𝐹
=




𝑀 −P𝑄⊥𝑀




𝐹

≥ ‖𝑀‖𝐹 −




P𝑄⊥𝑀




𝐹

≥ (1 − 5𝛿) ‖𝑀‖𝐹.

(43)

Theorem 4 is established.

3. Conclusion

In this paper, we address the problem of principal component
pursuit with reduced linear measurements (PCP RLM). In
order to obtain an easy handed band of 𝜏, we prove that
operatorP𝑄 obeys RIP with high probability if the low-rank
matrix satisfies incoherent conditions and the sparse matrix
is enough sparse. And then, based on the RIP of operator
P𝑄, we provide the bound of parameters depending only
on observed quantities. In the future, we will try to analyze
the robustness of optimum solution of the strongly convex
programming (1) with RIP property.
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