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A Lotka-Volterra predator-prey model with time-varying delays is investigated. By using the differential inequality theory, some
sufficient conditions which ensure the permanence and global asymptotic stability of the system are established. The paper ends
with some interesting numerical simulations that illustrate our analytical predictions.

1. Introduction

In 1992, Berryman [1] pointed out that the dynamical rela-
tionship between predators and their prey has long been
and will continue to be one of the dominant themes in
both ecology and mathematical ecology due to its universal
existence and importance. Dynamical behavior of predator-
prey models has been studied by a lot of papers. It is well
known that the investigation on predator-prey models not
only focuses on the discussion of stability, periodic oscilla-
tory, bifurcation, and chaos [2–26], but also involves many
other dynamical behaviors such as permanence. In many
applications, the nature of permanence is of great interest.
Recently, Chen [27] investigated the permanence of a discrete
𝑛-species food-chain system with delays. Fan and Li [28]
gave a theoretical study on permanence of a delayed ratio-
dependent predator-prey model with Holling type functional
response. Chen [29] focused on the permanence and global
attractivity of Lotka-Volterra competition system with feed-
back control. Zhao and Jiang [30] analyzed the permanence
and extinction for nonautonomous Lotka-Volterra system.
Teng et al. [31] addressed the permanence criteria for delayed
discrete nonautonomous-species Kolmogorov systems. For
more research on the permanence behavior of predator-prey
models, one can see [32–40].

In 2010, Lv et al. [41] investigated the existence and
global attractivity of periodic solution to the following Lotka-
Volterra predator-prey system:
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where 𝑥
1
(𝑡) denotes the density of prey species at time 𝑡, 𝑥

2
(𝑡)

and 𝑥
3
(𝑡) stand for the density of predator species at time
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𝑡, 𝑟
𝑖
, 𝑎
𝑖𝑗

∈ 𝐶(R, [0,∞)) and 𝜏
𝑖𝑗

∈ 𝐶(R,R). Using Kras-
noselskii’s fixed point theorem and constructing Lyapunov
function, Lv et al. obtained a set of easily verifiable sufficient
conditions which guarantee the permanence and global
attractivity of system (1).

For the viewpoint of biology, we shall consider (1)
together with the initial conditions 𝑥

𝑖
(0) ≥ 0 (𝑖 = 1, 2, 3).

The principle object of this paper is to explore the dynamics of
system (1), applying the differential inequality theory to study
the permanence of system (1). Using themethod of Lyapunov
function, we investigated the globally asymptotically stability
of system (1).

The remainder of the paper is organized as follows:
in Section 2, basic definitions and Lemmas are given, and
some sufficient conditions for the permanence of the Lotka-
Volterra predator-prey model in consideration are estab-
lished. A series of sufficient conditions for the global stability
of the Lotka-Volterra predator-prey model in consideration
are included in Section 3. In Section 4, we give an example
which shows the feasibility of the main results. Conclusions
are presented in Section 5.

2. Permanence

For convenience in the following discussing, we always use
the notations:

𝑓
𝑙
= inf
𝑡∈R

𝑓 (𝑡) , 𝑓
𝑢
= sup
𝑡∈R

𝑓 (𝑡) , (2)

where 𝑓(𝑡) is a continuous function. In order to obtain the
main result of this paper, we shall first state the definition of
permanence and several lemmas which will be useful in the
proving the main result.

Definition 1 (see [41]). We say that system (1) is permanence
if there are positive constants 𝑀 and 𝑚 such that for each
positive solution (𝑥

1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡)) of system (1) satisfies

𝑚 ≤ lim
𝑡→+∞

inf 𝑥
𝑖
(𝑡) ≤ lim
𝑡→+∞

sup𝑥
𝑖
(𝑡) ≤ 𝑀 (𝑖 = 1, 2, 3) .

(3)

Lemma 2 (see [42]). If 𝑎 > 0, 𝑏 > 0, and 𝑥̇ ≥ 𝑥(𝑏−𝑎𝑥), when
𝑡 ≥ 0 and 𝑥(0) > 0, we have

lim
𝑡→+∞

inf 𝑥 (𝑡) ≥

𝑏

𝑎

. (4)

If 𝑎 > 0, 𝑏 > 0, and 𝑥̇ ≤ 𝑥(𝑏 − 𝑎𝑥), when 𝑡 ≥ 0 and 𝑥(0) > 0,
we have

lim
𝑡→+∞

sup𝑥 (𝑡) ≤

𝑏

𝑎

. (5)

Now we state our permanence result for system (1).

Theorem 3. Let 𝑀
1
, 𝑀
2
, 𝑀
3
, and 𝑚

1
be defined by (11),

(18), (24), and (30), respectively. Suppose that the following
conditions:
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hold, and then system (1) is permanent; that is, there exist
positive constants 𝑚

𝑖
,𝑀
𝑖
(𝑖 = 1, 2, 3) which are independent

of the solution of system (1), such that, for any positive solution
(𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡)) of system (1) with the initial condition

𝑥
𝑖
(0) ≥ 0 (𝑖 = 1, 2, 3), one has
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𝑡→+∞
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𝑡→+∞
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(𝑡) ≤ 𝑀

𝑖
. (6)

Proof. It is easy to see that system (1) with the initial
value condition (𝑥

1
(0), 𝑥
2
(0), 𝑥
3
(0)) has positive solution

(𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡)) passing through (𝑥

1
(0), 𝑥
2
(0), 𝑥
3
(0)). Let

(𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡)) be any positive solution of system (1) with

the initial condition (𝑥
1
(0), 𝑥
2
(0), 𝑥
3
(0)). It follows from the

first equation of system (1) that
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1
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(𝑡) . (7)

Integrating both sides of (7) from 𝑡 − 𝜏
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(𝑡) to 𝑡, we get
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Substituting (9) into the first equation of system (1), it follows
that
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It follows from (10) and Lemma 2 that
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For any positive constant 𝜀 > 0, it follows from (11) that there
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1
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1
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which leads to
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Substituting (15) into the second equation of system (1), it
follows that
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Thus, as a direct corollary of Lemma 2, according to (16), one
has
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Setting 𝜀 → 0, it follows that
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, from (12) and the third equation of system

(1), we have
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Substituting (21) into the third equation of system (1), it
follows that

𝑑𝑥
3
(𝑡)

𝑑𝑡

≤ 𝑥
3
(𝑡) {−𝑟

𝑙

3
+ 𝑎
𝑢

31
(𝑀
1
+ 𝜀)

−𝑎
𝑙

33
exp {[𝑟

𝑙

3
− 𝑎
𝑢

31
(𝑀
1
+ 𝜀)] 𝜏

𝑢

33
} 𝑥
3
(𝑡)} .

(22)

Thus, as a direct corollary of Lemma 2, according to (22), one
has

lim
𝑡→+∞

sup𝑥
3
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+ 𝑎
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Setting 𝜀 → 0, it follows that

lim
𝑡→+∞
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3
(𝑡) ≤
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𝑎
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𝑀
1
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𝑢
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}

:= 𝑀
3
. (24)

For 𝑡 ≥ 𝑇
1
+max{𝜏𝑢

21
, 𝜏
𝑢

31
, 𝜏
𝑢

11
, 𝜏
𝑢

12
, 𝜏
𝑢

13
}, it follows from the first

equation of system (1) that

𝑑𝑥
1
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− 𝑎
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(𝑀
3
+ 𝜀)] .

(25)

Integrating both sides of (25) from 𝑡 − 𝜏
11
(𝑡) to 𝑡, one has

ln[

𝑥
1
(𝑡)

𝑥
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(𝑡 − 𝜏
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(𝑡))

]

≥ ∫

𝑡

𝑡−𝜏
11(𝑡)
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𝑙
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− 𝑎
𝑢
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(𝑀
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+ 𝜀)− 𝑎

𝑢

12
(𝑀
2
+ 𝜀)− 𝑎

𝑢
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3
+ 𝜀)]𝑑𝑠

≥ [𝑟
𝑙

1
− 𝑎
𝑢

11
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1
+ 𝜀) − 𝑎

𝑢
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(𝑀
2
+ 𝜀) − 𝑎

𝑢

13
(𝑀
3
+ 𝜀)] 𝜏

𝑢
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,
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which leads to

𝑥
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(𝑡 − 𝜏
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≤ 𝑥
1
(𝑡) exp {− [𝑟
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− 𝑎
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1
+ 𝜀)

−𝑎
𝑢
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2
+ 𝜀) − 𝑎

𝑢
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(𝑀
3
+ 𝜀)] 𝜏

𝑢
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} .

(27)

Substituting (27) into the first equation of system (1), it follows
that
𝑑𝑥
1
(𝑡)

𝑑𝑡

≥ 𝑥
1
(𝑡) {𝑟
𝑙

1
− 𝑎
𝑢

12
(𝑀
2
+ 𝜀) − 𝑎

𝑢

13
(𝑀
3
+ 𝜀)

− 𝑎
𝑢

11
exp {− [𝑟

𝑙

1
− 𝑎
𝑢

11
(𝑀
1
+ 𝜀)

−𝑎
𝑢

12
(𝑀
2
+ 𝜀) − 𝑎

𝑢

13
(𝑀
3
+ 𝜀)]

× 𝜏
𝑢

22
} 𝑥
1
(𝑡) } .

(28)

According to Lemma 2, it follows from (28) that

lim
𝑡→+∞

inf 𝑥
1
(𝑡)

≥ (𝑟
𝑙

1
− 𝑎
𝑢

12
(𝑀
2
+ 𝜀) − 𝑎

𝑢

13
(𝑀
3
+ 𝜀))

× (𝑎
𝑢

11
exp { [−𝑟

𝑙

1
− 𝑎
𝑢

11
(𝑀
1
+ 𝜀)

−𝑎
𝑢

12
(𝑀
2
+ 𝜀) − 𝑎

𝑢

13
(𝑀
3
+ 𝜀)] 𝜏

𝑢

22
})

−1

.

(29)

Setting 𝜀 → 0 in (29), we can get

lim
𝑡→+∞

inf 𝑥
1
(𝑡)

≥

𝑟
𝑙

1
− 𝑎
𝑢

12
𝑀
2
− 𝑎
𝑢

13
𝑀
3

𝑎
𝑢

11
exp {− (𝑟

𝑙

1
− 𝑎
𝑢

11
𝑀
1
− 𝑎
𝑢

12
𝑀
2
− 𝑎
𝑢

13
𝑀
3
) 𝜏
𝑢

22
}

:= 𝑚
1
.

(30)
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For 𝑡 ≥ 𝑇
1

+ max{𝜏𝑢
21
, 𝜏
𝑢

22
, 𝜏
𝑢

23
, 𝜏
𝑢

31
, 𝜏
𝑢

11
, 𝜏
𝑢

12
, 𝜏
𝑢

13
}, from the

second equation of system (1), we have

𝑑𝑥
2
(𝑡)

𝑑𝑡

≥ 𝑥
2
(𝑡) [−𝑟

𝑢

2
+ 𝑎
𝑙

21
(𝑚
1
− 𝜀) − 𝑎

𝑢

22
(𝑀
2
+ 𝜀) − 𝑎

𝑢

23
(𝑀
3
+ 𝜀)] .

(31)

Integrating both sides of (31) from 𝑡 − 𝜏
22
(𝑡) to 𝑡 leads to

ln[

𝑥
2
(𝑡)

𝑥
2
(𝑡 − 𝜏
22

(𝑡))

]

≥ ∫

𝑡

𝑡−𝜏
22(𝑡)

[−𝑟
𝑢

2
+ 𝑎
𝑙

21
(𝑚
1
− 𝜀)

−𝑎
𝑢

22
(𝑀
2
+ 𝜀) − 𝑎

𝑢

23
(𝑀
3
+ 𝜀) ] 𝑑𝑠

≥ [−𝑟
𝑢

2
+ 𝑎
𝑙

21
(𝑚
1
− 𝜀) − 𝑎

𝑢

22
(𝑀
2
+ 𝜀) − 𝑎

𝑢

23
(𝑀
3
+ 𝜀)] 𝜏

𝑢

22
,

(32)

which leads to

𝑥
2
(𝑡 − 𝜏
22

(𝑡))

≤ 𝑥
2
(𝑡) exp {[𝑟

𝑢

2
− 𝑎
𝑙

21
(𝑚
1
− 𝜀) + 𝑎

𝑢

22
(𝑀
2
+ 𝜀)

+ 𝑎
𝑢

23
(𝑀
3
+ 𝜀) ] 𝜏

𝑢

22
} .

(33)

Substituting (33) into the second equation of system (1), it
follows that

𝑑𝑥
2
(𝑡)

𝑑𝑡

≥ 𝑥
2
(𝑡) {𝑟
𝑢

2
− 𝑎
𝑢

22

× exp {[𝑟
𝑢

2
− 𝑎
𝑙

21
(𝑚
1
− 𝜀) + 𝑎

𝑢

22
(𝑀
2
+ 𝜀)

+𝑎
𝑢

23
(𝑀
3
+ 𝜀) ] 𝜏

𝑢

22
} 𝑥
2
(𝑡)− 𝑎

𝑢

23
(𝑀
3
+ 𝜀)} .

(34)

By Lemma 2 and (34), we can get

lim
𝑡→+∞

inf 𝑥
2
(𝑡)

≥ (𝑟
𝑢

2
− 𝑎
𝑢

23
(𝑀
3
+ 𝜀))

× (𝑎
𝑢

22
exp {[𝑟

𝑢

2
− 𝑎
𝑙

21
(𝑚
1
− 𝜀)

+𝑎
𝑢

22
(𝑀
2
+ 𝜀) + 𝑎

𝑢

23
(𝑀
3
+ 𝜀)] 𝜏

𝑢

22
})

−1

.

(35)

Setting 𝜀 → 0 in the above inequality, it follows that

lim
𝑡→+∞

inf 𝑥
2
(𝑡)

≥

𝑟
𝑢

2
− 𝑎
𝑢

23
𝑀
3

𝑎
𝑢

22
exp {(𝑟

𝑢

2
− 𝑎
𝑙

21
𝑚
1
+ 𝑎
𝑢

22
𝑀
2
+ 𝑎
𝑢

23
𝑀
3
) 𝜏
𝑢

22
}

:= 𝑚
2
.

(36)

For 𝑡 ≥ 𝑇
1
+ max{𝜏𝑢

31
, 𝜏
𝑢

32
, 𝜏
𝑢

33
, 𝜏
𝑢

21
, 𝜏
𝑢

22
, 𝜏
𝑢

23
, 𝜏
𝑢

31
, 𝜏
𝑢

11
, 𝜏
𝑢

12
, 𝜏
𝑢

13
}, it

follows from the third equation of system (1) that

𝑑𝑥
3
(𝑡)

𝑑𝑡

= 𝑥
3
(𝑡) [−𝑟

3
(𝑡) + 𝑎

31
(𝑡) 𝑥
1
(𝑡 − 𝜏
31

(𝑡))

−𝑎
32

(𝑡) 𝑥
2
(𝑡 − 𝜏
32

(𝑡)) − 𝑎
33

(𝑡) 𝑥
3
(𝑡 − 𝜏
33

(𝑡))] ,

≥ 𝑥
3
(𝑡) [−𝑟

𝑢

3
+ 𝑎
𝑙

31
(𝑚
1
− 𝜀)

−𝑎
𝑢

32
(𝑀
2
+ 𝜀) − 𝑎

𝑢

33
(𝑀
3
+ 𝜀)] .

(37)

Integrating both sides of (37) from 𝑡 − 𝜏
33
(𝑡) to 𝑡, we get

ln[

𝑥
3
(𝑡)

𝑥
3
(𝑡 − 𝜏
33

(𝑡))

]

≥ ∫

𝑡

𝑡−𝜏
33
(𝑡)

[−𝑟
𝑢

3
+ 𝑎
𝑙

31
(𝑚
1
− 𝜀)

−𝑎
𝑢

32
(𝑀
2
+ 𝜀) − 𝑎

𝑢

33
(𝑀
3
+ 𝜀)] 𝑑𝑠

≥ [−𝑟
𝑢

3
+ 𝑎
𝑙

31
(𝑚
1
− 𝜀) − 𝑎

𝑢

32
(𝑀
2
+ 𝜀) − 𝑎

𝑢

33
(𝑀
3
+ 𝜀)] 𝜏

𝑢

33
.

(38)

Hence

𝑥
3
(𝑡 − 𝜏
33

(𝑡))

≤ 𝑥
3
(𝑡) exp {[𝑟

𝑢

3
− 𝑎
𝑙

31
(𝑚
1
− 𝜀)

+ 𝑎
𝑢

32
(𝑀
2
+ 𝜀) + 𝑎

𝑢

33
(𝑀
3
+ 𝜀)] 𝜏

𝑢

33
} .

(39)

Substituting (39) into the third equation of system (1), we
derive

𝑑𝑥
3
(𝑡)

𝑑𝑡

≥ 𝑥
3
(𝑡) {−𝑟

𝑢

3
+ 𝑎
𝑙

31
(𝑚
1
− 𝜀) − 𝑎

32
(𝑀
2
+ 𝜀)

− 𝑎
33
exp {[𝑟

𝑢

3
− 𝑎
𝑙

31
(𝑚
1
− 𝜀) + 𝑎

𝑢

32
(𝑀
2
+ 𝜀)

+ 𝑎
𝑢

33
(𝑀
3
+ 𝜀)] 𝜏

𝑢

33
} 𝑥
3
(𝑡)} .

(40)

In view of Lemma 2 and (40), one has

lim
𝑡→+∞

inf 𝑥
3
(𝑡)

≥ (−𝑟
𝑢

3
+ 𝑎
𝑙

31
(𝑚
1
− 𝜀) − 𝑎

𝑢

32
(𝑀
2
+ 𝜀))

× (𝑎
33
exp {[𝑟

𝑢

3
− 𝑎
𝑙

31
(𝑚
1
− 𝜀) + 𝑎

𝑢

32
(𝑀
2
+ 𝜀)

+ 𝑎
𝑢

33
(𝑀
3
+ 𝜀)] 𝜏

𝑢

33
})

−1

.

(41)
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Setting 𝜀 → 0 in (41) leads to

lim
𝑡→+∞

inf 𝑥
3
(𝑡)

≥

−𝑟
𝑢

3
+ 𝑎
𝑙

31
𝑚
1
− 𝑎
𝑢

32
𝑀
2

𝑎
𝑢

33
exp {(𝑟

𝑢

3
− 𝑎
𝑙

31
𝑚
1
+ 𝑎
𝑢

32
𝑀
2
+ 𝑎
𝑢

33
𝑀
3
) 𝜏
𝑢

33
}

:= 𝑚
3
.

(42)

Equations (11), (18), (24), (30), (36), and (42) show that system
(1) is permanent. The proof of Theorem 3 is complete.

3. Global Asymptotically Stability of
Positive Solutions

In this section, we formulate the global asymptotically stabil-
ity of positive solutions of system (1).

Definition 4. A bounded positive solution (𝑥
∗

1
(𝑡), 𝑥
∗

2
(𝑡),

𝑥
∗

3
(𝑡))
𝑇 of system (1) is said to be globally asymptotically

stable if, for any other positive bounded solution (𝑥
1
(𝑡),

𝑥
2
(𝑡), 𝑥
3
(𝑡))
𝑇 of system (1), the following equality holds:

lim
𝑡→+∞

[

3

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡) − 𝑥

∗

𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
] = 0. (43)

Definition 5 (see [24]). Let ̃
ℎ be a real number and 𝑓 be

a nonnegative function defined on [
̃
ℎ, +∞) such that 𝑓

is integrable on [
̃
ℎ, +∞) and is uniformly continuous on

[
̃
ℎ, +∞), then lim

𝑡→+∞
𝑓(𝑡) = 0.

Theorem 6. In addition to (H1)-(H2), assume further that

(H3) lim
𝑡→∞

inf 𝐴
𝑖
(𝑡) > 0,

where 𝐴
𝑖
(𝑖 = 1, 2, 3) are defined by (48), (49), and (50),

respectively. Then system (1) has a unique positive solution
(𝑥
∗

1
(𝑡), 𝑥
∗

2
(𝑡), 𝑥
∗

3
(𝑡))
𝑇 which is global attractivity.

Proof. According to the conclusion ofTheorem 3, there exists
𝑇 > 0 and positive constants𝑚

𝑖
,𝑀
𝑖
(𝑖 = 1, 2, 3) such that

𝑚
𝑖
< 𝑥
∗

𝑖
(𝑡) ≤ 𝑀

𝑖
𝑖 = 1, 2, 3, 𝑡 > 𝑇. (44)

Define

𝑉 (𝑡) =

3

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
ln𝑥
∗

𝑖
(𝑡) − ln𝑥

𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
. (45)

Calculating the upper-right derivative of 𝑉(𝑡) along the
solution of (1), it follows for 𝑡 ≥ 𝑇 that

𝐷
+
𝑉 (𝑡) =

3

∑

𝑖=1

(

𝑥
∗󸀠

𝑖
(𝑡)

𝑥
∗

𝑖
(𝑡)

−

𝑥
󸀠

𝑖
(𝑡)

𝑥
𝑖
(𝑡)

) sgn (𝑥
∗

𝑖
(𝑡) − 𝑥

𝑖
(𝑡))

= sgn (𝑥
∗

1
(𝑡) − 𝑥

1
(𝑡))

×

3

∑

𝑖=1

− 𝑎
1𝑖
(𝑡) [𝑥
∗

𝑖
(𝑡 − 𝜏
1𝑖
(𝑡)) − 𝑥

𝑖
(𝑡 − 𝜏
1𝑖
(𝑡))]

+ sgn (𝑥
∗

2
(𝑡) − 𝑥

2
(𝑡))

×

3

∑

𝑖=1

− 𝑎
2𝑖
(𝑡) [𝑥
∗

𝑖
(𝑡 − 𝜏
2𝑖
(𝑡)) − 𝑥

𝑖
(𝑡 − 𝜏
2𝑖
(𝑡))]

+ sgn (𝑥
∗

3
(𝑡) − 𝑥

3
(𝑡))

×

3

∑

𝑖=1

− 𝑎
3𝑖
(𝑡) [𝑥
∗

𝑖
(𝑡 − 𝜏
3𝑖
(𝑡)) − 𝑥

𝑖
(𝑡 − 𝜏
3𝑖
(𝑡))]

≤ −𝑎
11

(𝑡)
󵄨
󵄨
󵄨
󵄨
𝑥
∗

1
(𝑡 − 𝜏
11

(𝑡)) − 𝑥
1
(𝑡 − 𝜏
11

(𝑡))
󵄨
󵄨
󵄨
󵄨

+ 𝑎
12

(𝑡)
󵄨
󵄨
󵄨
󵄨
𝑥
∗

2
(𝑡 − 𝜏
12

(𝑡)) − 𝑥
2
(𝑡 − 𝜏
12

(𝑡))
󵄨
󵄨
󵄨
󵄨

+ 𝑎
13

(𝑡)
󵄨
󵄨
󵄨
󵄨
𝑥
∗

3
(𝑡 − 𝜏
13

(𝑡)) − 𝑥
3
(𝑡 − 𝜏
13

(𝑡))
󵄨
󵄨
󵄨
󵄨

+ 𝑎
21

(𝑡)
󵄨
󵄨
󵄨
󵄨
𝑥
∗

1
(𝑡 − 𝜏
21

(𝑡)) − 𝑥
1
(𝑡 − 𝜏
21

(𝑡))
󵄨
󵄨
󵄨
󵄨

− 𝑎
22

(𝑡)
󵄨
󵄨
󵄨
󵄨
𝑥
∗

2
(𝑡 − 𝜏
22

(𝑡)) − 𝑥
2
(𝑡 − 𝜏
22

(𝑡))
󵄨
󵄨
󵄨
󵄨

+ 𝑎
23

(𝑡)
󵄨
󵄨
󵄨
󵄨
𝑥
∗

3
(𝑡 − 𝜏
23

(𝑡)) − 𝑥
3
(𝑡 − 𝜏
23

(𝑡))
󵄨
󵄨
󵄨
󵄨

+ 𝑎
31

(𝑡)
󵄨
󵄨
󵄨
󵄨
𝑥
∗

1
(𝑡 − 𝜏
31

(𝑡)) − 𝑥
1
(𝑡 − 𝜏
31

(𝑡))
󵄨
󵄨
󵄨
󵄨

+ 𝑎
32

(𝑡)
󵄨
󵄨
󵄨
󵄨
𝑥
∗

2
(𝑡 − 𝜏
32

(𝑡)) − 𝑥
2
(𝑡 − 𝜏
32

(𝑡))
󵄨
󵄨
󵄨
󵄨

− 𝑎
33

(𝑡)
󵄨
󵄨
󵄨
󵄨
𝑥
∗

3
(𝑡 − 𝜏
33

(𝑡)) − 𝑥
3
(𝑡 − 𝜏
33

(𝑡))
󵄨
󵄨
󵄨
󵄨
.

(46)

It follows that

𝐷
+
𝑉 (𝑡)

≤ −𝑎
11

(𝑡)
󵄨
󵄨
󵄨
󵄨
𝑥
∗

1
(𝑡 − 𝜏
11

(𝑡)) − 𝑥
1
(𝑡 − 𝜏
11

(𝑡))
󵄨
󵄨
󵄨
󵄨

+ 𝑎
12

(𝑡)
󵄨
󵄨
󵄨
󵄨
𝑥
∗

2
(𝑡 − 𝜏
12

(𝑡)) − 𝑥
2
(𝑡 − 𝜏
12

(𝑡))
󵄨
󵄨
󵄨
󵄨

+ 𝑎
13

(𝑡)
󵄨
󵄨
󵄨
󵄨
𝑥
∗

3
(𝑡 − 𝜏
13

(𝑡)) − 𝑥
3
(𝑡 − 𝜏
13

(𝑡))
󵄨
󵄨
󵄨
󵄨

+ 𝑎
21

(𝑡)
󵄨
󵄨
󵄨
󵄨
𝑥
∗

1
(𝑡 − 𝜏
21

(𝑡)) − 𝑥
1
(𝑡 − 𝜏
21

(𝑡))
󵄨
󵄨
󵄨
󵄨

− 𝑎
22

(𝑡)
󵄨
󵄨
󵄨
󵄨
𝑥
∗

2
(𝑡 − 𝜏
22

(𝑡)) − 𝑥
2
(𝑡 − 𝜏
22

(𝑡))
󵄨
󵄨
󵄨
󵄨

+ 𝑎
23

(𝑡)
󵄨
󵄨
󵄨
󵄨
𝑥
∗

3
(𝑡 − 𝜏
23

(𝑡)) − 𝑥
3
(𝑡 − 𝜏
23

(𝑡))
󵄨
󵄨
󵄨
󵄨

+ 𝑎
31

(𝑡)
󵄨
󵄨
󵄨
󵄨
𝑥
∗

1
(𝑡 − 𝜏
31

(𝑡)) − 𝑥
1
(𝑡 − 𝜏
31

(𝑡))
󵄨
󵄨
󵄨
󵄨

+ 𝑎
32

(𝑡)
󵄨
󵄨
󵄨
󵄨
𝑥
∗

2
(𝑡 − 𝜏
32

(𝑡)) − 𝑥
2
(𝑡 − 𝜏
32

(𝑡))
󵄨
󵄨
󵄨
󵄨

− 𝑎
33

(𝑡)
󵄨
󵄨
󵄨
󵄨
𝑥
∗

3
(𝑡 − 𝜏
33

(𝑡)) − 𝑥
3
(𝑡 − 𝜏
33

(𝑡))
󵄨
󵄨
󵄨
󵄨

≤ −𝑎
11

(𝑡) { exp {[𝑟
𝑙

1
− 𝑎
𝑢

11
(𝑀
1
+ 𝜀) − 𝑎

𝑢

12
(𝑀
2
+ 𝜀)

−𝑎
𝑢

13
(𝑀
3
+ 𝜀)] 𝜏

𝑢

22
} + exp {−𝑟

𝑢
𝜏
𝑢

11
} }

×
󵄨
󵄨
󵄨
󵄨
𝑥
∗

1
(𝑡) − 𝑥

1
(𝑡)

󵄨
󵄨
󵄨
󵄨

+ 2𝑎
12

(𝑡) exp {[−𝑟
𝑢

2
+ 𝑎
𝑙

21
(𝑚
1
− 𝜀) − 𝑎

𝑢

22
(𝑀
2
+ 𝜀)

− 𝑎
𝑢

23
(𝑀
3
+ 𝜀)] 𝜏

𝑢

22
}

×
󵄨
󵄨
󵄨
󵄨
𝑥
∗

2
(𝑡) − 𝑥

2
(𝑡)

󵄨
󵄨
󵄨
󵄨
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+ 2𝑎
13

(𝑡) exp {[−𝑟
𝑢

3
+ 𝑎
𝑙

31
(𝑚
1
− 𝜀) − 𝑎

𝑢

32
(𝑀
2
+ 𝜀)

− 𝑎
𝑢

33
(𝑀
3
+ 𝜀)] 𝜏

𝑢

33
}

×
󵄨
󵄨
󵄨
󵄨
𝑥
∗

3
(𝑡) − 𝑥

3
(𝑡)

󵄨
󵄨
󵄨
󵄨

+ 2𝑎
21

(𝑡) exp {− [𝑟
𝑙

1
− 𝑎
𝑢

11
(𝑀
1
+ 𝜀)

−𝑎
𝑢

12
(𝑀
2
+ 𝜀) − 𝑎

𝑢

13
(𝑀
3
+ 𝜀)] 𝜏

𝑢

22
}

×
󵄨
󵄨
󵄨
󵄨
𝑥
∗

1
(𝑡) − 𝑥

1
(𝑡)

󵄨
󵄨
󵄨
󵄨

− 𝑎
22

(𝑡) {exp {[− 𝑟
𝑢

2
+ 𝑎
𝑙

21
(𝑚
1
− 𝜀) − 𝑎

𝑢

22
(𝑀
2
+ 𝜀)

− 𝑎
𝑢

23
(𝑀
3
+ 𝜀)] 𝜏

𝑢

22
}

+ exp {[𝑟
𝑙

2
− 𝑎
𝑢

21
(𝑀
1
+ 𝜀)] 𝜏

𝑢

22
}}

×
󵄨
󵄨
󵄨
󵄨
𝑥
∗

2
(𝑡) − 𝑥

2
(𝑡)

󵄨
󵄨
󵄨
󵄨

+ 2𝑎
23

(𝑡) exp {[𝑟
𝑢

3
− 𝑎
𝑙

31
(𝑚
1
− 𝜀)

+ 𝑎
𝑢

32
(𝑀
2
+ 𝜀) + 𝑎

𝑢

33
(𝑀
3
+ 𝜀)] 𝜏

𝑢

33
}

×
󵄨
󵄨
󵄨
󵄨
𝑥
∗

3
(𝑡) − 𝑥

3
(𝑡)

󵄨
󵄨
󵄨
󵄨

+ 2𝑎
31

(𝑡) exp {− [𝑟
𝑙

1
− 𝑎
𝑢

11
(𝑀
1
+ 𝜀)

−𝑎
𝑢

12
(𝑀
2
+ 𝜀) − 𝑎

𝑢

13
(𝑀
3
+ 𝜀)] 𝜏

𝑢

22
}

×
󵄨
󵄨
󵄨
󵄨
𝑥
∗

1
(𝑡) − 𝑥

1
(𝑡)

󵄨
󵄨
󵄨
󵄨

+ 2𝑎
32

(𝑡) exp {[−𝑟
𝑢

2
+ 𝑎
𝑙

21
(𝑚
1
− 𝜀)

− 𝑎
𝑢

22
(𝑀
2
+ 𝜀) − 𝑎

𝑢

23
(𝑀
3
+ 𝜀)] 𝜏

𝑢

22
}

×
󵄨
󵄨
󵄨
󵄨
𝑥
∗

2
(𝑡) − 𝑥

2
(𝑡)

󵄨
󵄨
󵄨
󵄨

− 𝑎
33

(𝑡) {exp {[− 𝑟
𝑢

3
+ 𝑎
𝑙

31
(𝑚
1
− 𝜀)

− 𝑎
𝑢

32
(𝑀
2
+ 𝜀) − 𝑎

𝑢

33
(𝑀
3
+ 𝜀)] 𝜏

𝑢

33
}

+ exp {[𝑟
𝑙

3
− 𝑎
𝑢

31
(𝑀
1
+ 𝜀)] 𝜏

𝑢

33
}}

×
󵄨
󵄨
󵄨
󵄨
𝑥
∗

3
(𝑡) − 𝑥

3
(𝑡)

󵄨
󵄨
󵄨
󵄨

≤ [−𝐴
1
(𝑡)

󵄨
󵄨
󵄨
󵄨
𝑥
∗

1
(𝑡) − 𝑥

1
(𝑡)

󵄨
󵄨
󵄨
󵄨
+ 𝐴
2
(𝑡)

󵄨
󵄨
󵄨
󵄨
𝑥
∗

2
(𝑡) − 𝑥

2
(𝑡)

󵄨
󵄨
󵄨
󵄨

+𝐴
3

󵄨
󵄨
󵄨
󵄨
𝑥
∗

3
(𝑡) − 𝑥

3
(𝑡)

󵄨
󵄨
󵄨
󵄨
] ,

(47)

where 𝜀 is defined byTheorem 3 and

𝐴
1
(𝑡)

= 𝑎
11

(𝑡) { exp {[𝑟
𝑙

1
− 𝑎
𝑢

11
(𝑀
1
+ 𝜀) − 𝑎

𝑢

12
(𝑀
2
+ 𝜀)

−𝑎
𝑢

13
(𝑀
3
+ 𝜀)] 𝜏

𝑢

22
} + exp {−𝑟

𝑢
𝜏
𝑢

11
}}

− 2𝑎
21

(𝑡) exp { − [𝑟
𝑙

1
− 𝑎
𝑢

11
(𝑀
1
+ 𝜀) − 𝑎

𝑢

12
(𝑀
2
+ 𝜀)

−𝑎
𝑢

13
(𝑀
3
+ 𝜀)] 𝜏

𝑢

22
}

− 2𝑎
31

(𝑡) exp {𝜏
𝑢

22
− [𝑟
𝑙

1
− 𝑎
𝑢

11
(𝑀
1
+ 𝜀) − 𝑎

𝑢

12
(𝑀
2
+ 𝜀)

−𝑎
𝑢

13
(𝑀
3
+ 𝜀)] 𝜏

𝑢

22
} ,

(48)

𝐴
2
(𝑡)

= 𝑎
22

(𝑡) { exp {[−𝑟
𝑢

2
+ 𝑎
𝑙

21
(𝑚
1
− 𝜀) − 𝑎

𝑢

22
(𝑀
2
+ 𝜀)

− 𝑎
𝑢

23
(𝑀
3
+ 𝜀)] 𝜏

𝑢

22
}

+ exp {[𝑟
𝑙

2
− 𝑎
𝑢

21
(𝑀
1
+ 𝜀)] 𝜏

𝑢

22
}}

− 2𝑎
12

(𝑡) exp {[−𝑟
𝑢

2
+ 𝑎
𝑙

21
(𝑚
1
− 𝜀) − 𝑎

𝑢

22
(𝑀
2
+ 𝜀)

− 𝑎
𝑢

23
(𝑀
3
+ 𝜀)] 𝜏

𝑢

22
}

− 2𝑎
32

(𝑡) exp {[−𝑟
𝑢

2
+ 𝑎
𝑙

21
(𝑚
1
− 𝜀) − 𝑎

𝑢

22
(𝑀
2
+ 𝜀)

− 𝑎
𝑢

23
(𝑀
3
+ 𝜀)] 𝜏

𝑢

22
} ,

(49)

𝐴
3
(𝑡)

= 𝑎
33

(𝑡) {exp {[−𝑟
𝑢

3
+ 𝑎
𝑙

31
(𝑚
1
− 𝜀)

+ exp {[𝑟
𝑙

3
− 𝑎
𝑢

31
(𝑀
1
+ 𝜀)] 𝜏

𝑢

33
}

− 𝑎
𝑢

32
(𝑀
2
+ 𝜀) − 𝑎

𝑢

33
(𝑀
3
+ 𝜀)] 𝜏

𝑢

33
}

+ exp {[𝑟
𝑙

3
− 𝑎
𝑢

31
(𝑀
1
+ 𝜀)] 𝜏

𝑢

33
}

− 2𝑎
13

(𝑡) exp {[−𝑟
𝑢

3
+ 𝑎
𝑙

31
(𝑚
1
− 𝜀) − 𝑎

𝑢

32
(𝑀
2
+ 𝜀)

− 𝑎
𝑢

33
(𝑀
3
+ 𝜀)] 𝜏

𝑢

33
}

− 2𝑎
23

(𝑡) exp {[𝑟
𝑢

3
− 𝑎
𝑙

31
(𝑚
1
− 𝜀) + 𝑎

𝑢

32
(𝑀
2
+ 𝜀)

+ 𝑎
𝑢

33
(𝑀
3
+ 𝜀)] 𝜏

𝑢

33
} .

(50)

By hypothesis (H3), there exist constants 𝛼
𝑖
(𝑖 = 1, 2, 3) and

𝑇
∗
> 𝑇 such that

𝐴
𝑖
(𝑡) ≥ 𝛼

𝑖
> 0, (𝑖 = 1, 2, 3) for 𝑡 ≥ 𝑇

∗
. (51)

Integrating both sides of (51) on interval [𝑇∗, 𝑡] yields

𝑉 (𝑡) +

3

∑

𝑖=1

∫

𝑡

𝑇
∗

𝐴
𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
𝑥
∗

𝑖
(𝑡) − 𝑥

𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
𝑑𝑠 ≤ 𝑉 (𝑇

∗
) . (52)

It follows from (51) and (52) that

3

∑

𝑖=1

∫

𝑡

𝑇
∗

𝐴
𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
𝑥
∗

𝑖
(𝑡) − 𝑥

𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
𝑑𝑠 ≤ 𝑉 (𝑇

∗
) < ∞, for 𝑡 ≥ 𝑇

∗
.

(53)

Since 𝑥
∗

𝑖
(𝑡) (𝑖 = 1, 2, 3) are bounded for 𝑡 ≥ 𝑇

∗, so |𝑥
∗

𝑖
(𝑡) −

𝑥
𝑖
(𝑡)| (𝑖, 𝑗 = 1, 2, 3) are uniformly continuous on [𝑇

∗
,∞). By

Barbalat’s Lemma [24], we have

lim
𝑡→∞

󵄨
󵄨
󵄨
󵄨
𝑥
∗

𝑖
(𝑡) − 𝑥

𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
= 0, (𝑖 = 1, 2, 3) . (54)

By Theorems 7.4 and 8.2 in [43], we know that the positive
solution (𝑥

∗

1
(𝑡), 𝑥
∗

2
(𝑡), 𝑥
∗

3
(𝑡))
𝑇 of (1) is uniformly asymptoti-

cally stable. The proof of Theorem 6 is complete.
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4. Numerical Example

To illustrate the theoretical results, we present some numeri-
cal simulations. Let us consider the following discrete system:

𝑑𝑥
1
(𝑡)

𝑑𝑡

= 𝑥
1
(𝑡) [5 −

cos𝜋𝑡
2

− (4 +

cos𝜋𝑡
5

) 𝑥
1
(𝑡 − (1 −

sin𝜋𝑡

4

))

− (

1 + sin𝜋𝑡

4

) 𝑥
2
(𝑡 − (

0.5 − sin𝜋𝑡

4

))

−(

1 + cos𝜋𝑡
3

) 𝑥
3
(𝑡 − (

0.9 − cos𝜋𝑡
4

))] ,

𝑑𝑥
2
(𝑡)

𝑑𝑡

= 𝑥
2
(𝑡) [− (

48 − cos𝜋𝑡
12

)

+ (2 −

cos𝜋𝑡
4

) 𝑥
1
(𝑡 − (

0.7 − cos𝜋𝑡
5

))

− (4 −

cos𝜋𝑡
12

) 𝑥
2
(𝑡 − (

1 + sin𝜋𝑡

4

))

−(1 +

sin𝜋𝑡

4

) 𝑥
3
(𝑡 − (

0.2 − sin𝜋𝑡

12

))] ,

𝑑𝑥
3
(𝑡)

𝑑𝑡

= 𝑥
3
(𝑡) [− (

1 − cos𝜋𝑡
4

)

+ (8 +

sin𝜋𝑡

4

) 𝑥
1
(𝑡 − (

0.8 − sin𝜋𝑡

5

))

− (

0.6 − sin𝜋𝑡

8

) 𝑥
2
(𝑡 − (

0.6 − cos𝜋𝑡
12

))

−(20 +

sin𝜋𝑡

4

) 𝑥
3
(𝑡 − (0.5 +

sin𝜋𝑡

2

))] .

(55)

Here

𝑟
1
(𝑡) = 5 −

cos𝜋𝑡
2

, 𝑟
2
(𝑡) =

48 − cos𝜋𝑡
12

,

𝑟
3
(𝑡) =

2 − cos𝜋𝑡
4

, 𝑎
11

(𝑡) = 4 +

cos𝜋𝑡
5

,

𝑎
12

(𝑡) =

1 + sin𝜋𝑡

4

, 𝑎
13

(𝑡) =

1 + cos𝜋𝑡
3

,

𝑎
21

(𝑡) = 2 −

cos𝜋𝑡
4

, 𝑎
22

(𝑡) = 4 −

cos𝜋𝑡
12

,

𝑎
23

(𝑡) = 1 +

sin𝜋𝑡

4

, 𝑎
31

(𝑡) = 8 +

sin𝜋𝑡

4

,

𝑎
32

(𝑡) =

0.6 − sin𝜋𝑡

8

, 𝑎
33

(𝑡) = 20 +

sin𝜋𝑡

4

,

𝜏
11

(𝑡) = 1 −

sin𝜋𝑡

4

, 𝜏
12

(𝑡) =

0.5 − sin𝜋𝑡

4

,

𝜏
13

(𝑡) =

0.9 − cos𝜋𝑡
4

, 𝜏
21

(𝑡) =

0.7 − cos𝜋𝑡
5

,

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

x
1
(
t
)

Figure 1: The dynamical behavior of the first component of the
solution (𝑥

1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡)).

𝜏
22

(𝑡) =

1 + sin𝜋𝑡

4

, 𝜏
23

(𝑡) =

0.2 − sin𝜋𝑡

12

,

𝜏
31

(𝑡) =

0.8 − sin𝜋𝑡

5

, 𝜏
32

(𝑡) =

0.6 − cos𝜋𝑡
12

,

𝜏
33

(𝑡) = 0.5 +

sin𝜋𝑡

2

.

(56)

All the coefficients 𝑟
𝑖
(𝑡) (𝑖 = 1, 2, 3), 𝑎

𝑖𝑗
(𝑡) (𝑖, 𝑗 = 1, 2, 3),

𝜏
𝑖𝑗
(𝑡) (𝑖, 𝑗 = 1, 2, 3) are functions with respect to 𝑡, and it is

easy to see that

𝑎
𝑢

22
=

49

12

, 𝑎
𝑢

31
=

33

4

, 𝑟
𝑙

2
=

47

12

,

𝑟
𝑙

3
=

1

4

, 𝑎
𝑢

12
=

1

2

, 𝑎
𝑢

13
=

2

3

,

𝑟
𝑢

2
=

49

12

, 𝑎
𝑢

23
=

5

4

, 𝑎
𝑙

31
=

31

4

,

𝑟
𝑢

3
=

3

4

, 𝑎
𝑢

32
= 0.2, 𝑟

𝑢

1
= 5.5,

𝑎
𝑙

11
= 3.8, 𝜏

𝑢

11
= 1.25, 𝑎

𝑙

22
=

47

12

,

𝑎
𝑢

21
= 2.25, 𝜏

𝑢

22
= 0.5, 𝑎

𝑙

33
= 19.75.

(57)

Then 𝑀
1

= 1.2451, 𝑀
2

= 0.7395, 𝑀
3

= 2.1093, 𝑚
1

=

0.6422. Thus it is easy to see that all the conditions of
Theorem 6 are satisfied.Thus system (55) is permanent which
is shown in Figures 1, 2, and 3.

5. Conclusions

In this paper, we have investigated the dynamical behavior
of a Lotka-Volterra predator-prey model with time-varying
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Figure 2: The dynamical behavior of the second component of the
solution (𝑥

1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡)).
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Figure 3: The dynamical behavior of the third component of the
solution (𝑥

1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡)).

delays. Sufficient conditions which ensure the permanence of
the system are derived.Moreover, we also deal with the global
stability of the system. It is shown that delay has influence
on the permanence and the global stability of system. Thus
delay is an important factor to decide the permanence and
global stability of the system.Numerical simulations show the
feasibility of our main results.
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