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This paper deals with the construction of divergence-free and curl-free wavelets on the unit cube, which satisfies the free-slip
boundary conditions. First, interval wavelets adapted to our construction are introduced. Then, we provide the biorthogonal
divergence-free and curl-free wavelets with free-slip boundary and simple structure, based on the characterization of corresponding
spaces. Moreover, the bases are also stable.

1. Introduction

In recent years, divergence-free and curl-free wavelets are
generally studied, due to their potential use in many physical
problems [1–5]. Anisotropic divergence-free and curl-free
wavelets on the hypercube are firstly constructed in [6, 7],
but all these functions only satisfy slip boundary conditions.
However, the free-slip boundary is important in many cases,
such as the solution of partial differential equations in
incompressible fluids and electromagnetism. Inspired by this
fact, [8, 9] give the construction of anisotropic divergence-
free and curl-free wavelets with free-slip boundary, but the
structure is very complicated and the basis functions are
not explicit. Recently, based on a simple characterization of
2D divergence-free space, Harouna and Perrier proposed an
alternative construction to [8] for divergence-free wavelets
in two-dimensional case [10]. Following the similar but non-
trivial line, we mainly study the anisotropic 3D divergence-
free and curl-free wavelet bases with free-slip boundary in
this paper. The traditional understanding that 3D curl-free
wavelets are more difficult to construct than divergence-free
wavelets is not always right, due to our procedure.

In Section 2, interval wavelets that we will use are intro-
duced. Based on the spaces characterization, 3D biorthogonal
divergence-free and curl-free wavelet bases are given in
Sections 3 and 4, respectively.

2. Interval Wavelets on [0, 1]

In this part, we will introduce the interval wavelets used in
the subsequent construction.

The existence of divergence-free and curl-free wavelets on
𝑅
𝑑 follows from the following fundamental proposition [11].

Proposition 1. Let (𝑉1
𝑗
(𝑅), �̃�

1

𝑗
(𝑅)) be a biorthogonal MRA of

𝐿
2
(𝑅), with compactly supported scaling functions (𝜑1, 𝜑1) and

wavelets (𝜓1, �̃�1), such that 𝜑1, 𝜓1 ∈ 𝐶
1+𝜀 for 𝜀 > 0. Then there

exists a biorthogonal MRA (𝑉
0

𝑗
(𝑅), �̃�

0

𝑗
(𝑅)), with associated

scaling functions (𝜑0, 𝜑0) and wavelets (𝜓0, �̃�0), such that

(𝜑
1
)


(𝑥) = 𝜑
0
(𝑥) − 𝜑

0
(𝑥 − 1) , (𝜓

1
)


= 4𝜓
0
. (1)

The dual functions verify ∫
𝑥+1

𝑥
𝜑
1
(𝑡)𝑑𝑡 = 𝜑

0
(𝑥) and (�̃�

0
)


=

−4�̃�
1.

Based on the above proposition, Jouini and Lemarié-
Rieusset [12] proved the existence of two one dimensional
MRAs of 𝐿2(0, 1) linked by

𝑑

𝑑𝑥
𝑉
1

𝑗
= 𝑉
0

𝑗
,

�̃�
0

𝑗
= 𝐻
1

0
(0, 1)⋂∫

𝑥

0

�̃�
1

𝑗
= {𝑓 : 𝑓


∈ �̃�
1

𝑗
, 𝑓 (0) = 𝑓 (1) = 0} .

(2)



2 Journal of Applied Mathematics

In the following, we simply introduce the construction of
these spaces. Suppose that𝜑1 in Proposition 1 is supported on
[𝑛min, 𝑛max](𝑛min, 𝑛max integers) and reproduces polynomials
up to degree 𝑟 − 1:

0 ≤ ℓ ≤ 𝑟 − 1,
𝑥
ℓ

ℓ!
=

+∞

∑
𝑘=−∞

𝑝
1

ℓ
(𝑘) 𝜑
1
(𝑥 − 𝑘) , 𝑥 ∈ 𝑅, (3)

with 𝑝
1

ℓ
(𝑘) = ⟨𝑥

ℓ
/ℓ!, 𝜑
1
(𝑥 − 𝑘)⟩. Similarly, 𝜑1 is supported on

[𝑛min, 𝑛max] and reproduces polynomials up to degree 𝑟 − 1.
For 𝑗 being sufficiently large, the spaces 𝑉

1

𝑗
have the

structure

𝑉
1

𝑗
= span {Φ

1,♭

𝑗,ℓ
= 2
𝑗/2

Φ
1,♭

ℓ
(2
𝑗
𝑥)}
ℓ=0,...,𝑟−1

⊕ 𝑉
1,int
𝑗

⊕ span {Φ
1,♯

𝑗,ℓ
= 2
𝑗/2

Φ
1,♯

ℓ
(2
𝑗
𝑥)}
ℓ=0,...,𝑟−1

,

(4)

where 𝑉
1,int
𝑗

= span{𝜑1
𝑗,𝑘

= 2
𝑗/2

𝜑
1
(2
𝑗
𝑥 − 𝑘) : 𝑘 = 𝑘♭, . . . , 2

𝑗
−

𝑘♯} is the space whose supports are included into [𝛿♭/2
𝑗
, 1 −

𝛿♯/2
𝑗
] ⊂ [0, 1] (𝛿♭, 𝛿♯ ∈ 𝑁 be two fixed parameters), and

𝑘♭ = 𝛿♭ − 𝑛min, 𝑘♯ = 𝛿♯ + 𝑛max. Moreover, Φ1,♭
ℓ

are the edge
scaling functions at the edge 0 being defined by

Φ
1,♭

ℓ
(𝑥) =

𝑘♭−1

∑
𝑘=1−𝑛max

𝑝
1

ℓ
(𝑘) 𝜑
1
(𝑥 − 𝑘) 𝜒[0,+∞). (5)

At the edge 1, Φ1,♭
ℓ

are defined by symmetry using 𝑇𝑓(𝑥) =

𝑓(1 − 𝑥).
Similarly, the biorthogonal spaces �̃�1

𝑗
are defined with the

same structure as

�̃�
1

𝑗
= span {Φ̃

1,♭

𝑗,ℓ
}
ℓ=0,...,𝑟−1

⊕ �̃�
1,int
𝑗

⊕ span {Φ̃
1,♯

𝑗,ℓ
}
ℓ=0,...,𝑟−1

.

(6)

Adjusting the parameters such that

Δ 𝑗 = dim (𝑉
1

𝑗
) = dim (�̃�

1

𝑗
)

= 2
𝑗
− (𝛿♭+𝛿♯) − (𝑛max − 𝑛min) + 2𝑟 + 1.

(7)

The last step of the construction is the biorthogonalization
process, since the edge scaling functions of 𝑉

1

𝑗
and �̃�

1

𝑗
are

no more biorthogonal. Finally, (𝑉1
𝑗
, �̃�
1

𝑗
) form a biorthogonal

MRA of 𝐿2(0, 1).
As described in [13], removing the edge scaling functions

Φ
1,♭

0
and Φ

1,♯

0
leads to

𝑉
𝐷

𝑗
= span {Φ

1,♭

𝑗,ℓ
}
ℓ=1,...,𝑟−1

⊕ 𝑉
1,int
𝑗

⊕ span {Φ
1,♯

𝑗,ℓ
}
ℓ=1,...,𝑟−1

=: span {𝜑
𝐷

𝑗,𝑘
: 𝑘 = 1, . . . , Δ 𝑗 − 2} .

(8)

Similarly, define �̃�
𝐷

𝑗
= span {Φ̃

1,♭

𝑗,ℓ
}
ℓ=1,...,𝑟−1

⊕ �̃�
1,int
𝑗

⊕

span {Φ̃
1,♯

𝑗,ℓ
}
ℓ=1,...,𝑟−1

. After a biorthogonalization process, we
finally note that

�̃�
𝐷

𝑗
= span {𝜑

𝐷

𝑗,𝑘
: 𝑘 = 1, . . . , Δ 𝑗 − 2} , (9)

and the spaces (𝑉𝐷
𝑗
, �̃�
𝐷

𝑗
) form a biorthogonal MRA of 𝐻1

0
(0,

1).
The construction of (𝑉0

𝑗
, �̃�
0

𝑗
) follows the same structure.

Since (𝜑
1
)


(𝑥) = 𝜑
0
(𝑥) − 𝜑

0
(𝑥 − 1), 𝜑0 has compact support

[𝑛min, 𝑛max−1] and reproduces polynomials up to degree 𝑟−2:

0 ≤ ℓ ≤ 𝑟 − 2,
𝑥
ℓ

ℓ!
=

+∞

∑
𝑘=−∞

𝑝
0

ℓ
(𝑘) 𝜑
0
(𝑥 − 𝑘) , (10)

with 𝑝
0

ℓ
(𝑘) = ⟨𝑥

ℓ
/ℓ!, 𝜑
0
(𝑥 − 𝑘)⟩. The scaling function 𝜑

0
(𝑥) =

∫
𝑥+1

𝑥
𝜑
1
(𝑡)𝑑𝑡 has support [𝑛min − 1, 𝑛max] and reproduces

polynomials up to degree 𝑟. Consider

𝑉
0

𝑗
= span {Φ

0,♭

𝑗,ℓ
= 2
𝑗/2

Φ
0,♭

ℓ
(2
𝑗
𝑥)}
ℓ=0,...,𝑟−2

⊕ 𝑉
0,int
𝑗

⊕ span {Φ
0,♯

𝑗,ℓ
= 2
𝑗/2

Φ
0,♯

ℓ
(2
𝑗
𝑥)}
ℓ=0,...,𝑟−2

,

(11)

where 𝑉
0,int
𝑗

= span{𝜑0
𝑗,𝑘

= 2
𝑗/2

𝜑
0
(2
𝑗
𝑥 − 𝑘) : 𝑘 = 𝑘♭, . . . , 2

𝑗
−

𝑘♯ + 1} and supports are included into [𝛿♭/2
𝑗
, 1 − 𝛿♯/2

𝑗
] ⊂

[0, 1]. The left edge scaling functions are

Φ
0,♭

ℓ
(𝑥) =

𝑘♭−1

∑
𝑘=2−𝑛max

𝑝
0

ℓ
(𝑘) 𝜑
0
(𝑥 − 𝑘) 𝜒[0,+∞). (12)

Biorthogonal spaces �̃�0
𝑗
are similarly defined, but by satisfying

vanishing boundary conditions at 0 and 1, then

�̃�
0

𝑗
= span {Φ̃

0,♭

𝑗,ℓ
}
ℓ=1,...,𝑟

⊕ �̃�
0,int
𝑗

⊕ span {Φ̃
0,♯

𝑗,ℓ
}
ℓ=1,...,𝑟

, (13)

with �̃�
0,int
𝑗

= span{𝜑0
𝑗,𝑘

: 𝑘 = �̃�♭ + 1, . . . , 2
𝑗
− �̃�♯} and Φ̃

0,♭

ℓ
=

∑
�̃�♭

𝑘=1−𝑛max
𝑝
0

ℓ
(𝑘)𝜑
0
(𝑥 − 𝑘)𝜒[0,+∞) for ℓ = 1, . . . , 𝑟. It is easy to

know dim(𝑉
0

𝑗
) = dim(�̃�

0

𝑗
) = Δ 𝑗 − 1.

In practice, we choose 𝑗 ≥ 𝑗min with

𝑗min > max {log
2
[𝑛max − 𝑛min + 𝛿♯ + 𝛿♭ + 1] ,

log
2
[𝑛max − 𝑛min + 𝛿♯ + 𝛿♭ + 1]}

(14)

to ensure that the supports of edge scaling functions at 0 do
not intersect the supports of edge scaling functions at 1.

The construction of wavelet spaces (𝑊1
𝑗
, �̃�
1

𝑗
) can be seen

from [13]. Moreover, they satisfy the following result.

Proposition 2 (see [12]). Let (𝑉1
𝑗
, �̃�
1

𝑗
) and (𝑉

0

𝑗
, �̃�
0

𝑗
) be MRAs

satisfying (𝑑/𝑑𝑥)𝑉
1

𝑗
= 𝑉
0

𝑗
and �̃�

0

𝑗
= 𝐻
1

0
⋂∫
𝑥

0
�̃�
1

𝑗
; then the

wavelet spaces 𝑊
0

𝑗
and �̃�

0

𝑗
are linked to the biorthogonal

wavelet spaces associated to (𝑉
1

𝑗
, �̃�
1

𝑗
) by

𝑊
0

𝑗
=

𝑑

𝑑𝑥
𝑊
1

𝑗
, �̃�

0

𝑗
= ∫
𝑥

0

�̃�
1

𝑗
. (15)

Moreover, let {𝜓1
𝑗,𝑘

}
𝑘=1,...,2𝑗

and {�̃�
1

𝑗,𝑘
}
𝑘=1,...,2𝑗

be two biorthogo-
nal wavelet bases of 𝑊1

𝑗
and �̃�

1

𝑗
. Biorthogonal wavelet bases

of 𝑊0
𝑗
and �̃�

0

𝑗
are directly defined by

𝜓
0

𝑗,𝑘
= 2
−𝑗
(𝜓
1

𝑗,𝑘
)


, �̃�
0

𝑗,𝑘
= −2
𝑗
∫
𝑥

0

�̃�
1

𝑗,𝑘
. (16)
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3. Divergence-Free Wavelets on [0, 1]
3

Let Ω = [0, 1]
3 and let ⃗𝑛 be the normal vector; the boundary

condition considered in [6] is �⃗� ⋅ ⃗𝑛 = 0 on Γ = ⋃
3

𝑘=1
Γ𝑘 with

Γ𝑘 = [0, 1]
𝑘−1

× {0} × [0, 1]
3−𝑘

, 1 ≤ 𝑘 ≤ 3. (17)

It holds that �⃗� ⋅ ⃗𝑛 = 0 on Γ if and only if 𝑢𝑘 = 0 on Γ𝑘 (1 ≤ 𝑘 ≤

3). We call it a slip boundary, which is shown in Figure 1.
In this section, we mainly consider the following space

with free-slip boundary as Figure 2

Hdiv (Ω) = {�⃗� ∈ (𝐿
2
(Ω))
3

: div �⃗� = 0, �⃗� ⋅ ⃗𝑛 = 0 𝑜𝑛 𝜕Ω} .

(18)

For �⃗�(𝑥, 𝑦, 𝑧) = (𝑢1, 𝑢2, 𝑢3)
𝑇, the 3D curl-operator is

defined as

curl �⃗� = (𝜕2𝑢3 − 𝜕3𝑢2, 𝜕3𝑢1 − 𝜕1𝑢3, 𝜕1𝑢2 − 𝜕2𝑢1)
𝑇
. (19)

Remark 3. Taking Fourier transform on the both sides of
div �⃗� = 0 leads to the equation

𝜉1�̂�1 (𝜉) + 𝜉2�̂�2 (𝜉) + 𝜉3�̂�3 (𝜉) = 0, 𝜉 = (𝜉1, 𝜉2, 𝜉3) . (20)

In 𝐿
2
(𝑅
3
), define the following functions

𝜑1 (𝜉) =
𝜉3�̂�2 − 𝜉2�̂�3

𝑖 (𝜉2
1
+ 𝜉2
2
+ 𝜉2
3
)
, 𝜑2 (𝜉) =

𝜉1�̂�3 − 𝜉3�̂�1

𝑖 (𝜉2
1
+ 𝜉2
2
+ 𝜉2
3
)
,

𝜑3 (𝜉) =
𝜉2�̂�1 − 𝜉1�̂�2

𝑖 (𝜉2
1
+ 𝜉2
2
+ 𝜉2
3
)
.

(21)

Then, according to (20), it is easy to verify that

�̂�1 (𝜉) = 𝑖 (𝜉2𝜑3 (𝜉) − 𝜉3𝜑2 (𝜉)) ,

�̂�2 (𝜉) = 𝑖 (𝜉3𝜑1 (𝜉) − 𝜉1𝜑3 (𝜉)) ,

�̂�3 (𝜉) = 𝑖 (𝜉1𝜑2 (𝜉) − 𝜉2𝜑1 (𝜉)) ,

(22)

which is equivalent to �⃗� = curl �⃗�. Therefore, any function
�⃗� ∈ (𝐿

2
(𝑅
3
))
3 which satisfies div �⃗� = 0 can be characterized

by curl operator as �⃗� = curl �⃗� with �⃗� ∈ (𝐻
1
(𝑅
3
))
3. In fact, a

similar result holds in 3D nonsmooth domains.

Proposition 4 (see [14]). There is a characterization

Hdiv (Ω)

= {�⃗� = curl �⃗� : �⃗� ∈ (𝐻
1
(Ω))
3

, �⃗� × ⃗𝑛 = 0⃗ 𝑜𝑛 𝜕Ω} .

(23)

Based on Proposition 4, we give the following definition
of divergence-free scaling function spaces.

Definition 5. For 𝑗 ≥ 𝑗min, the divergence-free scaling func-
tion spaces �⃗�div

𝑗
are defined by

�⃗�
div
𝑗

= curl {(𝑉0
𝑗
⊗ 𝑉
𝐷

𝑗
⊗ 𝑉
𝐷

𝑗
) × (𝑉

𝐷

𝑗
⊗ 𝑉
0

𝑗
⊗ 𝑉
𝐷

𝑗
)

× (𝑉
𝐷

𝑗
⊗ 𝑉
𝐷

𝑗
⊗ 𝑉
0

𝑗
)}

= span {Φ
div,1
𝑗,k , Φ

div,2
𝑗,k , Φ

div,3
𝑗,k } ,

(24)

where the divergence-free scaling functions are given by

Φ
div,1
𝑗,k =:

1

√2
curl [(𝜑0

𝑗,𝑘1
⋅ 𝜑
𝐷

𝑗,𝑘2
⋅ 𝜑
𝐷

𝑗,𝑘3
, 0, 0)
𝑇

]

=
1

√2
[𝜑
0

𝑗,𝑘1
⋅ 𝜑
𝐷

𝑗,𝑘2
⋅ (𝜑
𝐷

𝑗,𝑘3
)


𝛿2 − 𝜑
0

𝑗,𝑘1
⋅ (𝜑
𝐷

𝑗,𝑘2
)


⋅ 𝜑
𝐷

𝑗,𝑘3
𝛿3] ,

Φ
div,2
𝑗,k =:

1

√2
curl [(0, 𝜑𝐷

𝑗,𝑘1
⋅ 𝜑
0

𝑗,𝑘2
⋅ 𝜑
𝐷

𝑗,𝑘3
, 0)
𝑇

]

=
1

√2
[(𝜑
𝐷

𝑗,𝑘1
)


⋅ 𝜑
0

𝑗,𝑘2
⋅ 𝜑
𝐷

𝑗,𝑘3
𝛿3 − 𝜑

𝐷

𝑗,𝑘1
⋅ 𝜑
0

𝑗,𝑘2
⋅ (𝜑
𝐷

𝑗,𝑘3
)


𝛿1] ,

Φ
div,3
𝑗,k =:

1

√2
curl [(0, 0, 𝜑𝐷

𝑗,𝑘1
⋅ 𝜑
𝐷

𝑗,𝑘2
⋅ 𝜑
0

𝑗,𝑘3
)
𝑇

]

=
1

√2
[𝜑
𝐷

𝑗,𝑘1
⋅ (𝜑
𝐷

𝑗,𝑘2
)


⋅ 𝜑
0

𝑗,𝑘3
𝛿1 − (𝜑

𝐷

𝑗,𝑘1
)


⋅ 𝜑
𝐷

𝑗,𝑘2
⋅ 𝜑
0

𝑗,𝑘3
𝛿2] .

(25)

For proving the consequent main result, we also consider
the standard MRA �⃗�𝑗 of (𝐿

2
(Ω))
3:

�⃗�𝑗 = (𝑉
1

𝑗
⊗ 𝑉
0

𝑗
⊗ 𝑉
0

𝑗
) × (𝑉

0

𝑗
⊗ 𝑉
1

𝑗
⊗ 𝑉
0

𝑗
)

× (𝑉
0

𝑗
⊗ 𝑉
0

𝑗
⊗ 𝑉
1

𝑗
) .

(26)

The following conclusion shows that the space �⃗�𝑗 pre-
serves the divergence-free condition.

Proposition6. If �⃗� ∈ (𝐿
2
(Ω))
3 anddiv �⃗� = 0, thendiv[�⃗�𝑗�⃗�] =

0, where �⃗�𝑗 = (𝑝
1

𝑗
⊗ 𝑝
0

𝑗
⊗ 𝑝
0

𝑗
, 𝑝
0

𝑗
⊗ 𝑝
1

𝑗
⊗ 𝑝
0

𝑗
, 𝑝
0

𝑗
⊗ 𝑝
0

𝑗
⊗ 𝑝
1

𝑗
) is the

biorthogonal projector on �⃗�𝑗.

Proof. Let �⃗� = (𝑢1, 𝑢2, 𝑢3)
𝑇; then

�⃗�𝑗�⃗� = (𝑝
1

𝑗
⊗ 𝑝
0

𝑗
⊗ 𝑝
0

𝑗
𝑢1, 𝑝
0

𝑗
⊗ 𝑝
1

𝑗
⊗ 𝑝
0

𝑗
𝑢2, 𝑝
0

𝑗
⊗ 𝑝
0

𝑗
⊗ 𝑝
1

𝑗
𝑢3)
𝑇

.

(27)

Therefore, by the fact 𝑑/𝑑𝑥 ∘ 𝑝
1

𝑗
𝑓 = 𝑝

0

𝑗
∘ (𝑑/𝑑𝑥)𝑓 in [10], we

obtain

div [�⃗�𝑗�⃗�] =
𝜕

𝜕𝑥
𝑝
1

𝑗
⊗ 𝑝
0

𝑗
⊗ 𝑝
0

𝑗
𝑢1 +

𝜕

𝜕𝑦
𝑝
0

𝑗
⊗ 𝑝
1

𝑗
⊗ 𝑝
0

𝑗
𝑢2

+
𝜕

𝜕𝑧
𝑝
0

𝑗
⊗ 𝑝
0

𝑗
⊗ 𝑝
1

𝑗
𝑢3

= 𝑝
0

𝑗
⊗ 𝑝
0

𝑗
⊗ 𝑝
0

𝑗
(
𝜕𝑢1

𝜕𝑥
+

𝜕𝑢2

𝜕𝑦
+

𝜕𝑢3

𝜕𝑧
)

= 𝑝
0

𝑗
⊗ 𝑝
0

𝑗
⊗ 𝑝
0

𝑗
(div �⃗�) = 0.

(28)
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Figure 1: Slip boundary condition (divergence).
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Figure 2: Free-slip boundary condition (divergence).

Theorem 7. The divergence-free scaling function spaces
{�⃗�

div
𝑗

}
𝑗≥𝑗min

is a multiresolution analysis ofHdiv(Ω).

Proof. Since Hdiv(Ω) ∩ �⃗�𝑗 are a multiresolution analysis of
Hdiv(Ω), it is reduced to prove

�⃗�
div
𝑗

= Hdiv (Ω) ∩ �⃗�𝑗. (29)

Noting that (𝑑/𝑑𝑥)𝑉
1

𝑗
= 𝑉
0

𝑗
and 𝑉

𝐷

𝑗
⊆ 𝑉
1

𝑗
from (2) and

(8), we know �⃗�
div
𝑗

⊂ �⃗�𝑗. Furthermore, �⃗�div
𝑗

⊂ Hdiv(Ω) by
construction. Therefore, �⃗�div

𝑗
⊂ Hdiv(Ω) ∩ �⃗�𝑗.

Conversely, letting �⃗� ∈ Hdiv(Ω)∩�⃗�𝑗, we are going to prove
�⃗� ∈ �⃗�

div
𝑗

. On the one hand, since �⃗� ∈ �⃗�𝑗, we have �⃗� = �⃗�𝑗�⃗�.
On the other hand, since �⃗� ∈ Hdiv(Ω), there exists a �⃗� =

(𝜑1, 𝜑2, 𝜑3)
𝑇

∈ (𝐻
1
(Ω))
3 such that �⃗� = curl(�⃗�). Moreover,

�⃗� × ⃗𝑛 = 0⃗. Thus, �⃗� = �⃗�𝑗[curl(�⃗�)]. Furthermore, we can
decompose �⃗� by isotropic vector wavelets as

�⃗� = �⃗�
𝐷

𝑗
(�⃗�) + ∑

𝑗≥𝑗

�⃗�
𝐷

𝑗
(�⃗�) , (30)

where �⃗�
𝐷

𝑗
(�⃗�) = ∑

𝑘
𝑐1,𝑘𝜑
0

𝑗,𝑘1
𝜑
𝐷

𝑗,𝑘2
𝜑
𝐷

𝑗,𝑘3
𝛿1 + ∑

𝑘
𝑐2,𝑘𝜑
𝐷

𝑗,𝑘1
𝜑
0

𝑗,𝑘2
𝜑
𝐷

𝑗,𝑘3

𝛿2 + ∑
𝑘
𝑐3,𝑘𝜑
𝐷

𝑗,𝑘1
𝜑
𝐷

𝑗,𝑘2
𝜑
0

𝑗,𝑘3
𝛿3

�⃗�
𝐷

𝑗
(�⃗�)

= ∑
𝑘

(𝑑
1,1

𝑗 ,𝑘
𝜑
0

𝑗 ,𝑘1
𝜑
𝐷

𝑗 ,𝑘2
𝜓
𝐷

𝑗 ,𝑘3
+ 𝑑
1,2

𝑗 ,𝑘
𝜑
0

𝑗 ,𝑘1
𝜓
𝐷

𝑗 ,𝑘2
𝜑
𝐷

𝑗 ,𝑘3

+ 𝑑
1,3

𝑗 ,𝑘
𝜓
0

𝑗 ,𝑘1
𝜑
𝐷

𝑗 ,𝑘2
𝜑
𝐷

𝑗 ,𝑘3
+ 𝑑
1,4

𝑗 ,𝑘
𝜑
0

𝑗 ,𝑘1
𝜓
𝐷

𝑗 ,𝑘2
𝜓
𝐷

𝑗 ,𝑘3

+ 𝑑
1,5

𝑗 ,𝑘
𝜓
0

𝑗 ,𝑘1
𝜑
𝐷

𝑗 ,𝑘2
𝜓
𝐷

𝑗 ,𝑘3
+ 𝑑
1,6

𝑗 ,𝑘
𝜓
0

𝑗 ,𝑘1
𝜓
𝐷

𝑗 ,𝑘2
𝜑
𝐷

𝑗 ,𝑘3

+ 𝑑
1,7

𝑗 ,𝑘
𝜓
0

𝑗 ,𝑘1
𝜓
𝐷

𝑗 ,𝑘2
𝜓
𝐷

𝑗 ,𝑘3
) 𝛿1

+ ∑
𝑘

(𝑑
2,1

𝑗 ,𝑘
𝜑
𝐷

𝑗 ,𝑘1
𝜑
0

𝑗 ,𝑘2
𝜓
𝐷

𝑗 ,𝑘3
+ 𝑑
2,2

𝑗 ,𝑘
𝜑
𝐷

𝑗 ,𝑘1
𝜓
0

𝑗 ,𝑘2
𝜑
𝐷

𝑗 ,𝑘3

+ 𝑑
2,3

𝑗 ,𝑘
𝜓
𝐷

𝑗 ,𝑘1
𝜑
0

𝑗 ,𝑘2
𝜑
𝐷

𝑗 ,𝑘3
+ 𝑑
2,4

𝑗 ,𝑘
𝜑
𝐷

𝑗 ,𝑘1
𝜓
0

𝑗 ,𝑘2
𝜓
𝐷

𝑗 ,𝑘3

+ 𝑑
2,5

𝑗 ,𝑘
𝜓
𝐷

𝑗 ,𝑘1
𝜑
0

𝑗 ,𝑘2
𝜓
𝐷

𝑗 ,𝑘3
+ 𝑑
2,6

𝑗 ,𝑘
𝜓
𝐷

𝑗 ,𝑘1
𝜓
0

𝑗 ,𝑘2
𝜑
𝐷

𝑗 ,𝑘3

+ 𝑑
2,7

𝑗 ,𝑘
𝜓
𝐷

𝑗 ,𝑘1
𝜓
0

𝑗 ,𝑘2
𝜓
𝐷

𝑗 ,𝑘3
) 𝛿2

+ ∑
𝑘

(𝑑
3,1

𝑗 ,𝑘
𝜑
𝐷

𝑗 ,𝑘1
𝜑
𝐷

𝑗 ,𝑘2
𝜓
0

𝑗 ,𝑘3
+ 𝑑
3,2

𝑗 ,𝑘
𝜑
𝐷

𝑗 ,𝑘1
𝜓
𝐷

𝑗 ,𝑘2
𝜑
0

𝑗 ,𝑘3

+ 𝑑
3,3

𝑗 ,𝑘
𝜓
𝐷

𝑗 ,𝑘1
𝜑
𝐷

𝑗 ,𝑘2
𝜑
0

𝑗 ,𝑘3
+ 𝑑
3,4

𝑗 ,𝑘
𝜑
𝐷

𝑗 ,𝑘1
𝜓
𝐷

𝑗 ,𝑘2
𝜓
0

𝑗 ,𝑘3

+ 𝑑
3,5

𝑗 ,𝑘
𝜓
𝐷

𝑗 ,𝑘1
𝜑
𝐷

𝑗 ,𝑘2
𝜓
0

𝑗 ,𝑘3
+ 𝑑
3,6

𝑗 ,𝑘
𝜓
𝐷

𝑗 ,𝑘1
𝜓
𝐷

𝑗 ,𝑘2
𝜑
0

𝑗 ,𝑘3

+ 𝑑
3,7

𝑗 ,𝑘
𝜓
𝐷

𝑗 ,𝑘1
𝜓
𝐷

𝑗 ,𝑘2
𝜓
0

𝑗 ,𝑘3
) 𝛿3.

(31)
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Since curl[𝜑0
𝑗 ,𝑘1

𝜑
𝐷

𝑗 ,𝑘2
𝜓
𝐷

𝑗 ,𝑘3
𝛿1] ∈ (𝑉

𝐷

𝑗
⊗𝑉
0

𝑗
⊗𝑊
0

𝑗
) × (𝑉

0

𝑗
⊗𝑉
𝐷

𝑗
⊗

𝑊
0

𝑗
) × (𝑉

0

𝑗
⊗ 𝑉
0

𝑗
⊗ 𝑊
𝐷

𝑗
), then

�⃗�𝑗 [curl (𝜑
0

𝑗 ,𝑘1
𝜑
𝐷

𝑗 ,𝑘2
𝜓
𝐷

𝑗 ,𝑘3
𝛿1)] = 0⃗. (32)

Similarly, every term in the right sides of (31) satisfies (32).
Finally,

�⃗�𝑗 [curl (�⃗�
𝐷

𝑗
(�⃗�))] = 0⃗. (33)

Furthermore, we can obtain

�⃗� = �⃗�𝑗 [curl (�⃗�)] = �⃗�𝑗 [curl (�⃗�
𝐷

𝑗
�⃗�)] = curl (�⃗�𝐷

𝑗
�⃗�) . (34)

Here, we have used the fact curl(�⃗�𝐷
𝑗
�⃗�) ∈ �⃗�𝑗 in the last step

of (34). By construction, we have curl(�⃗�𝐷
𝑗
�⃗�) ∈ �⃗�

div
𝑗

, which
means �⃗� ∈ �⃗�

div
𝑗

and the proof is completed.

Based on the constructive method of vector wavelets and
the following decompositions:

𝑉
0

𝑗
⊗ 𝑉
𝐷

𝑗
⊗ 𝑉
𝐷

𝑗
= (𝑉
0

𝑗min
⊕
𝑗−1

𝑗1=𝑗min
𝑊
0

𝑗1
)

⊗ (𝑉
𝐷

𝑗min
⊕
𝑗−1

𝑗2=𝑗min
𝑊
𝐷

𝑗2
)

⊗ (𝑉
𝐷

𝑗min
⊕
𝑗−1

𝑗3=𝑗min
𝑊
𝐷

𝑗3
)

= (𝑉
0

𝑗min
⊗ 𝑉
𝐷

𝑗min
⊗ 𝑉
𝐷

𝑗min
)

⊕
𝑗−1

𝑗3=𝑗min
(𝑉
0

𝑗min
⊗ 𝑉
𝐷

𝑗min
⊗ 𝑊
𝐷

𝑗3
)

⊕
𝑗−1

𝑗2=𝑗min
(𝑉
0

𝑗min
⊗ 𝑊
𝐷

𝑗2
⊗ 𝑉
𝐷

𝑗min
)

⊕
𝑗−1

𝑗1=𝑗min
(𝑊
0

𝑗1
⊗ 𝑉
𝐷

𝑗min
⊗ 𝑉
𝐷

𝑗min
)

⊕
𝑗−1

𝑗2,𝑗3=𝑗min
(𝑉
0

𝑗min
⊗ 𝑊
𝐷

𝑗2
⊗ 𝑊
𝐷

𝑗3
)

⊕
𝑗−1

𝑗1,𝑗3=𝑗min
(𝑊
0

𝑗1
⊗ 𝑉
𝐷

𝑗min
⊗ 𝑊
𝐷

𝑗3
)

⊕
𝑗−1

𝑗1,𝑗2=𝑗min
(𝑊
0

𝑗1
⊗ 𝑊
𝐷

𝑗2
⊗ 𝑉
𝐷

𝑗min
)

⊕
𝑗−1

𝑗1,𝑗2 ,𝑗3=𝑗min
(𝑊
0

𝑗1
⊗ 𝑊
𝐷

𝑗2
⊗ 𝑊
𝐷

𝑗3
) ,

𝑉
𝐷

𝑗
⊗ 𝑉
0

𝑗
⊗ 𝑉
𝐷

𝑗
= (𝑉
𝐷

𝑗min
⊗ 𝑉
0

𝑗min
⊗ 𝑉
𝐷

𝑗min
)

⊕
𝑗−1

𝑗3=𝑗min
(𝑉
𝐷

𝑗min
⊗ 𝑉
0

𝑗min
⊗ 𝑊
𝐷

𝑗3
)

⊕
𝑗−1

𝑗2=𝑗min
(𝑉
𝐷

𝑗min
⊗ 𝑊
0

𝑗2
⊗ 𝑉
𝐷

𝑗min
)

⊕
𝑗−1

𝑗1=𝑗min
(𝑊
𝐷

𝑗1
⊗ 𝑉
0

𝑗min
⊗ 𝑉
𝐷

𝑗min
)

⊕
𝑗−1

𝑗2,𝑗3=𝑗min
(𝑉
𝐷

𝑗min
⊗ 𝑊
0

𝑗2
⊗ 𝑊
𝐷

𝑗3
)

⊕
𝑗−1

𝑗1,𝑗3=𝑗min
(𝑊
𝐷

𝑗1
⊗ 𝑉
0

𝑗min
⊗ 𝑊
𝐷

𝑗3
)

⊕
𝑗−1

𝑗1,𝑗2=𝑗min
(𝑊
𝐷

𝑗1
⊗ 𝑊
0

𝑗2
⊗ 𝑉
𝐷

𝑗min
)

⊕
𝑗−1

𝑗1,𝑗2 ,𝑗3=𝑗min
(𝑊
𝐷

𝑗1
⊗ 𝑊
0

𝑗2
⊗ 𝑊
𝐷

𝑗3
) ,

𝑉
𝐷

𝑗
⊗ 𝑉
𝐷

𝑗
⊗ 𝑉
0

𝑗
= (𝑉
𝐷

𝑗min
⊗ 𝑉
𝐷

𝑗min
⊗ 𝑉
0

𝑗min
)

⊕
𝑗−1

𝑗3=𝑗min
(𝑉
𝐷

𝑗min
⊗ 𝑉
𝐷

𝑗min
⊗ 𝑊
0

𝑗3
)

⊕
𝑗−1

𝑗2=𝑗min
(𝑉
𝐷

𝑗min
⊗ 𝑊
𝐷

𝑗2
⊗ 𝑉
0

𝑗min
)

⊕
𝑗−1

𝑗1=𝑗min
(𝑊
𝐷

𝑗1
⊗ 𝑉
𝐷

𝑗min
⊗ 𝑉
0

𝑗min
)

⊕
𝑗−1

𝑗2 ,𝑗3=𝑗min
(𝑉
𝐷

𝑗min
⊗ 𝑊
𝐷

𝑗2
⊗ 𝑊
0

𝑗3
)

⊕
𝑗−1

𝑗1 ,𝑗3=𝑗min
(𝑊
𝐷

𝑗1
⊗ 𝑉
𝐷

𝑗min
⊗ 𝑊
0

𝑗3
)

⊕
𝑗−1

𝑗1 ,𝑗2=𝑗min
(𝑊
𝐷

𝑗1
⊗ 𝑊
𝐷

𝑗2
⊗ 𝑉
0

𝑗min
)

⊕
𝑗−1

𝑗1 ,𝑗2,𝑗3=𝑗min
(𝑊
𝐷

𝑗1
⊗ 𝑊
𝐷

𝑗2
⊗ 𝑊
0

𝑗3
) ,

(35)

we can give the definition of anisotropic divergence-free
wavelets as follows.

Definition 8. For 𝑗1, 𝑗2, and 𝑗3 ≥ 𝑗min, the anisotropic diver-
gence-free wavelets are defined by

Ψ
div,(1,1)
j,k =

1

√4𝑗3 + 1
curl [𝜑0

𝑗min ,𝑘1
⋅ 𝜑
𝐷

𝑗min ,𝑘2
⋅ 𝜓
𝐷

𝑗3 ,𝑘3
𝛿1]

Ψ
div,(1,2)
j,k =

1

√4𝑗2 + 1
curl [𝜑0

𝑗min ,𝑘1
⋅ 𝜓
𝐷

𝑗2 ,𝑘2
⋅ 𝜑
𝐷

𝑗min ,𝑘3
𝛿1]

Ψ
div,(1,3)
j,k =

1

√2
curl [𝜓0

𝑗1 ,𝑘1
⋅ 𝜑
𝐷

𝑗min ,𝑘2
⋅ 𝜑
𝐷

𝑗min ,𝑘3
𝛿1]

Ψ
div,(1,4)
j,k =

1

√4𝑗2 + 4𝑗3
curl [𝜑0

𝑗min ,𝑘1
⋅ 𝜓
𝐷

𝑗2 ,𝑘2
⋅ 𝜓
𝐷

𝑗3 ,𝑘3
𝛿1]

Ψ
div,(1,5)
j,k =

1

√4𝑗3 + 1
curl [𝜓0

𝑗1 ,𝑘1
⋅ 𝜑
𝐷

𝑗min ,𝑘2
⋅ 𝜓
𝐷

𝑗3 ,𝑘3
𝛿1]

Ψ
div,(1,6)
j,k =

1

√4𝑗2 + 1
curl [𝜓0

𝑗1 ,𝑘1
⋅ 𝜓
𝐷

𝑗2 ,𝑘2
⋅ 𝜑
𝐷

𝑗min ,𝑘3
𝛿1]

Ψ
div,(1,7)
j,k =

1

√4𝑗2 + 4𝑗3
curl [𝜓0

𝑗1 ,𝑘1
⋅ 𝜓
𝐷

𝑗2 ,𝑘2
⋅ 𝜓
𝐷

𝑗3 ,𝑘3
𝛿1] ,

Ψ
div,(2,1)
j,k =

1

√4𝑗3 + 1
curl [𝜑𝐷

𝑗min ,𝑘1
⋅ 𝜑
0

𝑗min ,𝑘2
⋅ 𝜓
𝐷

𝑗3 ,𝑘3
𝛿2]

Ψ
div,(2,2)
j,k =

1

√2
curl [𝜑𝐷

𝑗min ,𝑘1
⋅ 𝜓
0

𝑗2 ,𝑘2
⋅ 𝜑
𝐷

𝑗min ,𝑘3
𝛿2]

Ψ
div,(2,3)
j,k =

1

√4𝑗1 + 1
curl [𝜓𝐷

𝑗1 ,𝑘1
⋅ 𝜑
0

𝑗min ,𝑘2
⋅ 𝜑
𝐷

𝑗min ,𝑘3
𝛿2]

Ψ
div,(2,4)
j,k =

1

√4𝑗3 + 1
curl [𝜑𝐷

𝑗min ,𝑘1
⋅ 𝜓
0

𝑗2 ,𝑘2
⋅ 𝜓
𝐷

𝑗3 ,𝑘3
𝛿2]

Ψ
div,(2,5)
j,k =

1

√4𝑗1 + 4𝑗3
curl [𝜓𝐷

𝑗1 ,𝑘1
⋅ 𝜑
0

𝑗min ,𝑘2
⋅ 𝜓
𝐷

𝑗3 ,𝑘3
𝛿2]

Ψ
div,(2,6)
j,k =

1

√4𝑗1 + 1
curl [𝜓𝐷

𝑗1 ,𝑘1
⋅ 𝜓
0

𝑗2 ,𝑘2
⋅ 𝜑
𝐷

𝑗min ,𝑘3
𝛿2]
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Ψ
div,(2,7)
j,k =

1

√4𝑗1 + 4𝑗3
curl [𝜓𝐷

𝑗1 ,𝑘1
⋅ 𝜓
0

𝑗2,𝑘2
⋅ 𝜓
𝐷

𝑗3 ,𝑘3
𝛿2] ,

Ψ
div,(3,1)
j,k =

1

√2
curl [𝜑𝐷

𝑗min ,𝑘1
⋅ 𝜑
𝐷

𝑗min ,𝑘2
⋅ 𝜓
0

𝑗3 ,𝑘3
𝛿3]

Ψ
div,(3,2)
j,k =

1

√4𝑗2 + 1
curl [𝜑𝐷

𝑗min ,𝑘1
⋅ 𝜓
𝐷

𝑗2,𝑘2
⋅ 𝜑
0

𝑗min ,𝑘3
𝛿3]

Ψ
div,(3,3)
j,k =

1

√4𝑗1 + 1
curl [𝜓𝐷

𝑗1 ,𝑘1
⋅ 𝜑
𝐷

𝑗min,𝑘2
⋅ 𝜑
0

𝑗min ,𝑘3
𝛿3]

Ψ
div,(3,4)
j,k =

1

√4𝑗2 + 1
curl [𝜑𝐷

𝑗min ,𝑘1
⋅ 𝜓
𝐷

𝑗2,𝑘2
⋅ 𝜓
0

𝑗3 ,𝑘3
𝛿3]

Ψ
div,(3,5)
j,k =

1

√4𝑗1 + 1
curl [𝜓𝐷

𝑗1 ,𝑘1
⋅ 𝜑
𝐷

𝑗min,𝑘2
⋅ 𝜓
0

𝑗3 ,𝑘3
𝛿3]

Ψ
div,(3,6)
j,k =

1

√4𝑗1 + 4𝑗2
curl [𝜓𝐷

𝑗1 ,𝑘1
⋅ 𝜓
𝐷

𝑗2,𝑘2
⋅ 𝜑
0

𝑗min ,𝑘3
𝛿3]

Ψ
div,(3,7)
j,k =

1

√4𝑗1 + 4𝑗2
curl [𝜓𝐷

𝑗1 ,𝑘1
⋅ 𝜓
𝐷

𝑗2,𝑘2
⋅ 𝜓
0

𝑗3 ,𝑘3
𝛿3] .

(36)

Remark 9. Thecoefficients before the operator “curl” are used
to guarantee the biorthogonality in the following construc-
tion of dual wavelets.

Proposition 10. Defining the wavelet spaces

�⃗�
div,(𝜀,𝑛)
j = span {Ψ

div,(𝜀,𝑛)
j,k } , 𝜀 = 1, 2, 3, 𝑛 = 1, 2, . . . , 7;

(37)

then �⃗�
div
𝑗

= �⃗�
div
𝑗min

⊕𝑗min≤𝑗1 ,𝑗2,𝑗3≤𝑗−1
(⊕𝜀=1,2,3,𝑛=1,2,...,7�⃗�

div,(𝜀,𝑛)
j ).

Proof. It can be easily obtained from (35) and Definition 8.

Definition 11. Biorthogonal divergence-free scaling functions
and wavelets are defined by

Φ̃
div,1
𝑗,k =

1

√2
[𝜑
0

𝑗,𝑘1
⋅ 𝜑
𝐷

𝑗,𝑘2
⋅ 𝛾𝑗,𝑘3𝛿2 − 𝜑

0

𝑗,𝑘1
⋅ 𝛾𝑗,𝑘2 ⋅ 𝜑

𝐷

𝑗,𝑘3
𝛿3]

Φ̃
div,2
𝑗,k =

1

√2
[𝛾𝑗,𝑘1 ⋅ 𝜑

0

𝑗,𝑘2
⋅ 𝜑
𝐷

𝑗,𝑘3
𝛿3 − 𝜑

𝐷

𝑗,𝑘1
⋅ 𝜑
0

𝑗,𝑘2
⋅ 𝛾𝑗,𝑘3𝛿1]

Φ̃
div,3
𝑗,k =

1

√2
[𝜑
𝐷

𝑗,𝑘1
⋅ 𝛾𝑗,𝑘2 ⋅ 𝜑

0

𝑗,𝑘3
𝛿1 − 𝛾𝑗,𝑘1 ⋅ 𝜑

𝐷

𝑗,𝑘2
⋅ 𝜑
0

𝑗,𝑘3
𝛿2] ,

Ψ̃
div,(1,1)
j,k =

1

√4𝑗3 + 1
[2
𝑗3𝜑
0

𝑗min ,𝑘1
⋅ 𝜑
𝐷

𝑗min ,𝑘2
⋅ �̃�
0

𝑗3 ,𝑘3
𝛿2

− 𝜑
0

𝑗min ,𝑘1
⋅ 𝛾𝑗min,𝑘2

⋅ �̃�
𝐷

𝑗3,𝑘3
𝛿3]

Ψ̃
div,(1,2)
j,k =

1

√4𝑗2 + 1
[𝜑
0

𝑗min ,𝑘1
⋅ �̃�
𝐷

𝑗2 ,𝑘2
⋅ 𝛾𝑗min,𝑘3

𝛿2

− 2
𝑗2𝜑
0

𝑗min ,𝑘1
⋅ �̃�
0

𝑗2 ,𝑘2
⋅ 𝜑
𝐷

𝑗min ,𝑘3
𝛿3]

Ψ̃
div,(1,3)
j,k =

1

√2
[�̃�
0

𝑗1 ,𝑘1
⋅ 𝜑
𝐷

𝑗min ,𝑘2
⋅ 𝛾𝑗min,𝑘3

𝛿2

− �̃�
0

𝑗1 ,𝑘1
⋅ 𝛾𝑗min,𝑘2

⋅ 𝜑
𝐷

𝑗min ,𝑘3
𝛿3]

Ψ̃
div,(1,4)
j,k =

1

√4𝑗2 + 4𝑗3
[2
𝑗3𝜑
0

𝑗min ,𝑘1
⋅ �̃�
𝐷

𝑗2,𝑘2
⋅ �̃�
0

𝑗3 ,𝑘3
𝛿2

− 2
𝑗2𝜑
0

𝑗min ,𝑘1
⋅ �̃�
0

𝑗2,𝑘2
⋅ �̃�
𝐷

𝑗3 ,𝑘3
𝛿3]

Ψ̃
div,(1,5)
j,k =

1

√4𝑗3 + 1
[2
𝑗3 �̃�
0

𝑗1 ,𝑘1
⋅ 𝜑
𝐷

𝑗min,𝑘2
⋅ �̃�
0

𝑗3 ,𝑘3
𝛿2

− �̃�
0

𝑗1 ,𝑘1
⋅ 𝛾𝑗min,𝑘2

⋅ �̃�
𝐷

𝑗3 ,𝑘3
𝛿3]

Ψ̃
div,(1,6)
j,k =

1

√4𝑗2 + 1
[�̃�
0

𝑗1 ,𝑘1
⋅ �̃�
𝐷

𝑗2 ,𝑘2
⋅ 𝛾𝑗min,𝑘3

𝛿2

− 2
𝑗2 �̃�
0

𝑗1 ,𝑘1
⋅ �̃�
0

𝑗2,𝑘2
⋅ 𝜑
𝐷

𝑗min ,𝑘3
𝛿3]

Ψ̃
div,(1,7)
j,k =

1

√4𝑗2 + 4𝑗3
[2
𝑗3 �̃�
0

𝑗1 ,𝑘1
⋅ �̃�
𝐷

𝑗2,𝑘2
⋅ �̃�
0

𝑗3 ,𝑘3
𝛿2

− 2
𝑗2 �̃�
0

𝑗1 ,𝑘1
⋅ �̃�
0

𝑗2 ,𝑘2
⋅ �̃�
𝐷

𝑗3,𝑘3
𝛿3] ,

Ψ̃
div,(2,1)
j,k =

1

√4𝑗3 + 1
[𝛾𝑗min,𝑘1

⋅ 𝜑
0

𝑗min ,𝑘2
⋅ �̃�
𝐷

𝑗3 ,𝑘3
𝛿3

− 2
𝑗3𝜑
𝐷

𝑗min ,𝑘1
⋅ 𝜑
0

𝑗min ,𝑘2
⋅ �̃�
0

𝑗3 ,𝑘3
𝛿1]

Ψ̃
div,(2,2)
j,k =

1

√2
[𝛾𝑗min,𝑘1

⋅ �̃�
0

𝑗2 ,𝑘2
⋅ 𝜑
𝐷

𝑗min ,𝑘3
𝛿3

− 𝜑
𝐷

𝑗min ,𝑘1
⋅ �̃�
0

𝑗2,𝑘2
⋅ 𝛾𝑗min,𝑘3

𝛿1]

Ψ̃
div,(2,3)
j,k =

1

√4𝑗1 + 1
[2
𝑗1 �̃�
0

𝑗1 ,𝑘1
⋅ 𝜑
0

𝑗min,𝑘2
⋅ 𝜑
𝐷

𝑗min ,𝑘3
𝛿3

− �̃�
𝐷

𝑗1 ,𝑘1
⋅ 𝜑
0

𝑗min ,𝑘2
⋅ 𝛾𝑗min,𝑘3

𝛿1]

Ψ̃
div,(2,4)
j,k =

1

√4𝑗3 + 1
[𝛾𝑗min,𝑘1

⋅ �̃�
0

𝑗2 ,𝑘2
⋅ �̃�
𝐷

𝑗3 ,𝑘3
𝛿3

− 2
𝑗3𝜑
𝐷

𝑗min ,𝑘1
⋅ �̃�
0

𝑗2,𝑘2
⋅ �̃�
0

𝑗3 ,𝑘3
𝛿1]

Ψ̃
div,(2,5)
j,k =

1

√4𝑗1 + 4𝑗3
[2
𝑗1 �̃�
0

𝑗1 ,𝑘1
⋅ 𝜑
0

𝑗𝑚𝑖𝑛,𝑘2
⋅ �̃�
𝐷

𝑗3 ,𝑘3
𝛿3

− 2
𝑗3 �̃�
𝐷

𝑗1 ,𝑘1
⋅ 𝜑
0

𝑗min,𝑘2
⋅ �̃�
0

𝑗3 ,𝑘3
𝛿1]

Ψ̃
div,(2,6)
j,k =

1

√4𝑗1 + 1
[2
𝑗1 �̃�
0

𝑗1 ,𝑘1
⋅ �̃�
0

𝑗2,𝑘2
⋅ 𝜑
𝐷

𝑗min ,𝑘3
𝛿3

− �̃�
𝐷

𝑗1,𝑘1
⋅ �̃�
0

𝑗2 ,𝑘2
⋅ 𝛾𝑗min,𝑘3

𝛿1]

Ψ̃
div,(2,7)
j,k =

1

√4𝑗1 + 4𝑗3
[2
𝑗1 �̃�
0

𝑗1 ,𝑘1
⋅ �̃�
0

𝑗2,𝑘2
⋅ �̃�
𝐷

𝑗3 ,𝑘3
𝛿3

− 2
𝑗3 �̃�
𝐷

𝑗1 ,𝑘1
⋅ �̃�
0

𝑗2,𝑘2
⋅ �̃�
0

𝑗3 ,𝑘3
𝛿1] ,

Ψ̃
div,(3,1)
j,k =

1

√2
[𝜑
𝐷

𝑗min ,𝑘1
⋅ 𝛾𝑗min,𝑘2

⋅ �̃�
0

𝑗3 ,𝑘3
𝛿1

− 𝛾𝑗min,𝑘1
⋅ 𝜑
𝐷

𝑗min ,𝑘2
⋅ �̃�
0

𝑗3 ,𝑘3
𝛿2]
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Ψ̃
div,(3,2)
j,k =

1

√4𝑗2 + 1
[2
𝑗2𝜑
𝐷

𝑗min ,𝑘1
⋅ �̃�
0

𝑗2 ,𝑘2
⋅ 𝜑
0

𝑗min ,𝑘3
𝛿1

− 𝛾𝑗min,𝑘1
⋅ �̃�
𝐷

𝑗2 ,𝑘2
⋅ 𝜑
0

𝑗min,𝑘3
𝛿2]

Ψ̃
div,(3,3)
j,k =

1

√4𝑗1 + 1
[�̃�
𝐷

𝑗1,𝑘1
⋅ 𝛾𝑗min,𝑘2

⋅ 𝜑
0

𝑗min,𝑘3
𝛿1

− 2
𝑗1 �̃�
0

𝑗1 ,𝑘1
⋅ 𝜑
𝐷

𝑗min ,𝑘2
⋅ 𝜑
0

𝑗min ,𝑘3
𝛿2]

Ψ̃
div,(3,4)
j,k =

1

√4𝑗2 + 1
[2
𝑗2𝜑
𝐷

𝑗min ,𝑘1
⋅ �̃�
0

𝑗2 ,𝑘2
⋅ �̃�
0

𝑗3 ,𝑘3
𝛿1

− 𝛾𝑗min,𝑘1
⋅ �̃�
𝐷

𝑗2 ,𝑘2
⋅ �̃�
0

𝑗3,𝑘3
𝛿2]

Ψ̃
div,(3,5)
j,k =

1

√4𝑗1 + 1
[�̃�
𝐷

𝑗1,𝑘1
⋅ 𝛾𝑗min,𝑘2

⋅ �̃�
0

𝑗3,𝑘3
𝛿1

− 2
𝑗1 �̃�
0

𝑗1 ,𝑘1
⋅ 𝜑
𝐷

𝑗min ,𝑘2
⋅ �̃�
0

𝑗3 ,𝑘3
𝛿2]

Ψ̃
div,(3,6)
j,k =

1

√4𝑗1 + 4𝑗2
[2
𝑗2 �̃�
𝐷

𝑗1 ,𝑘1
⋅ �̃�
0

𝑗2 ,𝑘2
⋅ 𝜑
0

𝑗min,𝑘3
𝛿1

− 2
𝑗1 �̃�
0

𝑗1 ,𝑘1
⋅ �̃�
𝐷

𝑗2 ,𝑘2
⋅ 𝜑
0

𝑗min ,𝑘3
𝛿2]

Ψ̃
div,(3,7)
j,k =

1

√4𝑗1 + 4𝑗2
[2
𝑗2 �̃�
𝐷

𝑗1 ,𝑘1
⋅ �̃�
0

𝑗2 ,𝑘2
⋅ �̃�
0

𝑗3,𝑘3
𝛿1

− 2
𝑗1 �̃�
0

𝑗1 ,𝑘1
⋅ �̃�
𝐷

𝑗2 ,𝑘2
⋅ �̃�
0

𝑗3,𝑘3
𝛿2] .

(38)

Here, 𝛾𝑗,𝑘 = −∫
𝑥

0
𝜑
𝐷

𝑗,𝑘
(𝑡)𝑑𝑡.

Proposition 12. The families {Φ
div,𝜀
𝑗,k , Ψ

div,(𝜀,𝑛)
j,k : 𝑗1, 𝑗2, 𝑗3 ≥

𝑗, 𝜀 = 1, 2, 3, 𝑛 = 1, 2, . . . , 7} and {Φ̃
div,𝜀
𝑗,k , Ψ̃

div,(𝜀,𝑛)
j,k : 𝑗1, 𝑗2, 𝑗3 ≥

𝑗, 𝜀 = 1, 2, 3, 𝑛 = 1, 2, . . . , 7} are biorthogonal in (𝐿
2
(Ω))
3.

Proof. It is easily proved by the fact that �̃�
0

𝑗,𝑘
=

−2
𝑗
∫
𝑥

0
�̃�
𝐷

𝑗,𝑘
(𝑡)𝑑𝑡, which is shown in (16).

Theorem 13. The set {Φdiv,𝜀
𝑗min,k

, Ψ
div,(𝜀,𝑛)
j,k : 𝑗1, 𝑗2, 𝑗3 ≥ 𝑗min, 𝜀 =

1, 2, 3, 𝑛 = 1, 2, . . . , 7} is a Riesz basis ofHdiv(Ω).

Proof. The completeness is ensured by Theorem 7 and
Proposition 10. Now, it remains to prove the𝐿2-stability of the
basis. By assumption of 1D scaling and wavelet functions, the
divergence-free wavelets Ψ

div,(𝜀,𝑛)
j,k are compactly supported,

have zero mean value, and belong to the spaces 𝐶
𝜀 for

some 𝜀 > 0; then they constitute a vaguelette-family ([12]).
Furthermore, the Riesz stability follows from the existence of
a biorthogonal wavelet family given by Proposition 12.

4. Curl-Free Wavelets on [0, 1]
3

The boundary condition considered in [7] is �⃗� × ⃗𝑛 = 0⃗ on
Γ = ⋃

3

𝑘=1
Γ𝑘 with

Γ𝑘 =

3

⋃
𝑚=1,𝑚 ̸= 𝑘

[0, 1]
𝑚−1

× {0} × [0, 1]
3−𝑚

, 1 ≤ 𝑘 ≤ 3. (39)

It holds that �⃗� × ⃗𝑛 = 0⃗ on Γ if and only if 𝑢𝑘 = 0 on
Γ𝑘 (1 ≤ 𝑘 ≤ 3), which is shown in Figure 3.

In this section, we mainly consider the following space:

Hcurl (Ω)

= {�⃗� ∈ (𝐿
2
(Ω))
3

=: curl �⃗� = 0⃗, �⃗� × ⃗𝑛 = 0⃗ on 𝜕Ω}

(40)

with free-slip boundary as Figure 4.
An equivalent characterization is firstly given for

Hcurl(Ω); and then we will give the MRA and wavelets for it.

Proposition 14. There is the characterization Hcurl(Ω) =

{�⃗� = grad𝜑 : 𝜑 ∈ 𝐻
1

0
(Ω)}.

Proof. Suppose 𝜑 ∈ 𝐻
1

0
(Ω); then �⃗� = grad𝜑 = (𝜕1𝜑, 𝜕2𝜑,

𝜕3𝜑)
𝑇
∈ (𝐿
2
(Ω))
3. Moreover,

curl �⃗� = curl ⋅grad𝜑

= (𝜕2𝜕3𝜑 − 𝜕3𝜕2𝜑, 𝜕3𝜕1𝜑 − 𝜕1𝜕3𝜑, 𝜕1𝜕2𝜑 − 𝜕2𝜕1𝜑)
𝑇

= ⃗0.

(41)

Note that

𝜕1𝜑 (𝑥, 𝑦, 0) = lim
Δ𝑥→0

𝜑 (𝑥 + Δ𝑥, 𝑦, 0) − 𝜑 (𝑥, 𝑦, 0)

Δ𝑥
= 0,

𝜕1𝜑 (𝑥, 𝑦, 1) = lim
Δ𝑥→0

𝜑 (𝑥 + Δ𝑥, 𝑦, 1) − 𝜑 (𝑥, 𝑦, 1)

Δ𝑦
= 0,

𝜕1𝜑 (𝑥, 0, 𝑧) = lim
Δ𝑥→0

𝜑 (𝑥 + Δ𝑥, 0, 𝑧) − 𝜑 (𝑥, 0, 𝑧)

Δ𝑥
= 0,

𝜕1𝜑 (𝑥, 1, 𝑧) = lim
Δ𝑥→0

𝜑 (𝑥 + Δ𝑥, 1, 𝑧) − 𝜑 (𝑥, 1, 𝑧)

Δ𝑦
= 0;

(42)

therefore,

𝑢1 (𝑥, 𝑦, 0) = 𝑢1 (𝑥, 𝑦, 1) = 0, ∀0 ≤ 𝑥, 𝑦 ≤ 1.

𝑢1 (𝑥, 0, 𝑧) = 𝑢1 (𝑥, 1, 𝑧) = 0, ∀0 ≤ 𝑥, 𝑧 ≤ 1.
(43)

In the same way, one can obtain

𝑢2 (𝑥, 𝑦, 0) = 𝑢2 (𝑥, 𝑦, 1) = 0, ∀0 ≤ 𝑥, 𝑦 ≤ 1,

𝑢2 (0, 𝑦, 𝑧) = 𝑢2 (1, 𝑦, 𝑧) = 0, ∀0 ≤ 𝑦, 𝑧 ≤ 1,

𝑢3 (0, 𝑦, 𝑧) = 𝑢3 (1, 𝑦, 𝑧) = 0, ∀0 ≤ 𝑦, 𝑧 ≤ 1,

𝑢3 (𝑥, 0, 𝑧) = 𝑢3 (𝑥, 1, 𝑧) = 0, ∀0 ≤ 𝑥, 𝑧 ≤ 1.

(44)

This is equivalent to �⃗� × ⃗𝑛 = 0⃗. Therefore, �⃗� = grad𝜑 ∈

Hcurl(Ω).
On the other hand, suppose �⃗� ∈ Hcurl(Ω); then we will

prove that there exists a function 𝜑 ∈ 𝐻
1

0
(Ω), such that �⃗� =

grad𝜑. Since curl �⃗� = 0⃗, then

𝜕2𝑢3 = 𝜕3𝑢2, 𝜕3𝑢1 = 𝜕1𝑢3, 𝜕1𝑢2 = 𝜕2𝑢1. (45)
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Figure 3: Slip boundary condition (curl).
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Figure 4: Free-slip boundary condition (curl).

By Stokes formula, there exists a primitive function 𝜑 ∈

𝐻
1
(Ω) such that

𝑑𝜑 (𝑥, 𝑦, 𝑧)

= 𝑢1 (𝑥, 𝑦, 𝑧) 𝑑𝑥 + 𝑢2 (𝑥, 𝑦, 𝑧) 𝑑𝑦 + 𝑢3 (𝑥, 𝑦, 𝑧) 𝑑𝑧.

(46)

Therefore, 𝜕𝜑/𝜕𝑥 = 𝑢1, 𝜕𝜑/𝜕𝑦 = 𝑢2, and 𝜕𝜑/𝜕𝑧 = 𝑢3; that is
�⃗� = grad𝜑. Furthermore, �⃗� × ⃗𝑛 = 0⃗means that

𝑢1 (𝑥, 𝑦, 0) = 𝑢1 (𝑥, 𝑦, 1) = 0, ∀0 ≤ 𝑥, 𝑦 ≤ 1,

𝑢2 (0, 𝑦, 𝑧) = 𝑢2 (1, 𝑦, 𝑧) = 0, ∀0 ≤ 𝑦, 𝑧 ≤ 1,

𝑢3 (𝑥, 0, 𝑧) = 𝑢3 (𝑥, 1, 𝑧) = 0, ∀0 ≤ 𝑥, 𝑧 ≤ 1.

(47)

Noting that

𝜑 (𝑥, 𝑦, 𝑧) = ∫
𝑥

𝑥0

𝑢1 (𝑟, 𝑦, 𝑧) 𝑑𝑟 = ∫
𝑦

𝑦0

𝑢2 (𝑥, 𝑠, 𝑧) 𝑑𝑠

= ∫
𝑧

𝑧0

𝑢3 (𝑥, 𝑦, 𝑡) 𝑑𝑡,

(48)

we obtain 𝜑(𝑥, 𝑦, 0) = 𝜑(𝑥, 𝑦, 1) = 0, 𝜑(0, 𝑦, 𝑧) = 𝜑(1, 𝑦, 𝑧) =

0, and 𝜑(𝑥, 0, 𝑧) = 𝜑(𝑥, 1, 𝑧) = 0. Therefore, 𝜑 ∈ 𝐻
1

0
(Ω).

Noting that 𝑉𝐷
𝑗

⊗ 𝑉
𝐷

𝑗
⊗ 𝑉
𝐷

𝑗
is an MRA of (𝐻1

0
(Ω))
3, we

give the following definition.

Definition 15. For 𝑗 ≥ 𝑗min, the curl-free scaling function
spaces �⃗�curl

𝑗
are defined by

�⃗�
curl
𝑗

= grad (𝑉
𝐷

𝑗
⊗ 𝑉
𝐷

𝑗
⊗ 𝑉
𝐷

𝑗
) = span {Φ

curl
𝑗,k } , (49)

where the curl-free scaling functions are given by

Φ
curl
𝑗,k =:

1

√3
grad (𝜑

𝐷

𝑗,𝑘1
⋅ 𝜑
𝐷

𝑗,𝑘2
⋅ 𝜑
𝐷

𝑗,𝑘3
)

=
1

√3
((𝜑
𝐷

𝑗,𝑘1
)


⋅ 𝜑
𝐷

𝑗,𝑘2
⋅ 𝜑
𝐷

𝑗,𝑘3
, 𝜑
𝐷

𝑗,𝑘1
⋅ (𝜑
𝐷

𝑗,𝑘2
)


⋅𝜑
𝐷

𝑗,𝑘3
, 𝜑
𝐷

𝑗,𝑘1
⋅ 𝜑
𝐷

𝑗,𝑘2
⋅ (𝜑
𝐷

𝑗,𝑘3
)


)
𝑇

.

(50)

For convenience, we also consider the standard MRA �⃗�𝑗

of (𝐿2(Ω))
3:

�⃗�𝑗 = (𝑉
0

𝑗
⊗ 𝑉
1

𝑗
⊗ 𝑉
1

𝑗
) × (𝑉

1

𝑗
⊗ 𝑉
0

𝑗
⊗ 𝑉
1

1
) × (𝑉

1

𝑗
⊗ 𝑉
1

𝑗
⊗ 𝑉
0

𝑗
) .

(51)

Theorem 16. The curl-free scaling function spaces {�⃗�curl
𝑗

}
𝑗≥𝑗min

are a multiresolution analysis ofHcurl(Ω).

Proof. Since Hcurl(Ω) ∩ �⃗�𝑗 is a multiresolution analysis of
Hcurl(Ω), it is reduced to prove

�⃗�
curl
𝑗

= Hcurl (Ω) ∩ �⃗�𝑗. (52)
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Noting that (𝑑/𝑑𝑥)𝑉
1

𝑗
= 𝑉
0

𝑗
and 𝑉

𝐷

𝑗
⊆ 𝑉
1

𝑗
, we know

�⃗�
curl
𝑗

⊂ �⃗�𝑗. Furthermore, �⃗�curl
𝑗

⊂ Hcurl(Ω) by construction.
Therefore, �⃗�curl

𝑗
⊂ Hcurl(Ω) ∩ �⃗�𝑗.

Conversely, let �⃗� ∈ Hcurl(Ω) ∩ �⃗�𝑗, we are going to prove
�⃗� ∈ �⃗�

curl
𝑗

. Let �⃗�𝑗 be the biorthogonal projector on �⃗�𝑗. On the
one hand, since �⃗� ∈ �⃗�𝑗, we have �⃗� = �⃗�𝑗�⃗�. On the other hand,
since �⃗� ∈ Hcurl(Ω), there exists a 𝜑 ∈ 𝐻

1

0
(Ω) such that �⃗� =

grad𝜑. Thus,

�⃗� = �⃗�𝑗 [grad𝜑] . (53)

Since (𝑉𝐷
𝑗

⊗ 𝑉
𝐷

𝑗
⊗ 𝑉
𝐷

𝑗
)
𝑗≥𝑗min

forms anMRA of𝐻1
0
(Ω), we can

decompose 𝜑 as

𝜑 = 𝑃
𝐷

𝑗
(𝜑) + ∑

𝑗1,𝑗2 ,𝑗3≥𝑗

7

∑
𝑛=1

𝑄
𝐷

𝑛,𝐽
(𝜑) , 𝐽 = (𝑗1, 𝑗2, 𝑗3) , (54)

where
𝑃
𝐷

𝑗
(𝜑) = ∑

k
𝑐k𝜑
𝐷

𝑗,𝑘1
𝜑
𝐷

𝑗,𝑘2
𝜑
𝐷

𝑗,𝑘3
,

𝑄
𝐷

1,𝐽
(𝜑) = ∑

𝑗3≥𝑗

∑
k
𝑑
1

𝑗3 ,k𝜑
𝐷

𝑗,𝑘1
𝜑
𝐷

𝑗,𝑘2
𝜓
𝐷

𝑗3 ,𝑘3
,

𝑄
𝐷

2,𝐽
(𝜑) = ∑

𝑗2≥𝑗

∑
k
𝑑
2

𝑗2 ,k𝜑
𝐷

𝑗,𝑘1
𝜓
𝐷

𝑗2 ,𝑘2
𝜑
𝐷

𝑗,𝑘3
,

𝑄
𝐷

3,𝐽
(𝜑) = ∑

𝑗1≥𝑗

∑
k
𝑑
3

𝑗1 ,k𝜓
𝐷

𝑗1 ,𝑘1
𝜑
𝐷

𝑗,𝑘2
𝜑
𝐷

𝑗,𝑘3
,

𝑄
𝐷

4,𝐽
(𝜑) = ∑

𝑗2 ,𝑗3≥𝑗

∑
k
𝑑
4

𝑗2 ,𝑗3,k𝜑
𝐷

𝑗,𝑘1
𝜓
𝐷

𝑗2,𝑘2
𝜓
𝐷

𝑗3,𝑘3
,

𝑄
𝐷

5,𝐽
(𝜑) = ∑

𝑗1 ,𝑗3≥𝑗

∑
k
𝑑
5

𝑗1 ,𝑗3,k𝜓
𝐷

𝑗1,𝑘1
𝜑
𝐷

𝑗,𝑘2
𝜓
𝐷

𝑗3,𝑘3
,

𝑄
𝐷

6,𝐽
(𝜑) = ∑

𝑗1 ,𝑗2≥𝑗

∑
k
𝑑
6

𝑗1 ,𝑗2,k𝜓
𝐷

𝑗1,𝑘1
𝜓
𝐷

𝑗2,𝑘2
𝜑
𝐷

𝑗,𝑘3
,

𝑄
𝐷

7,𝐽
(𝜑) = ∑

𝑗1 ,𝑗2,𝑗3≥𝑗

∑
k
𝑑
7

𝑗1 ,𝑗2 ,𝑗3,k𝜓
𝐷

𝑗1 ,𝑘1
𝜓
𝐷

𝑗2 ,𝑘2
𝜓
𝐷

𝑗3 ,𝑘3

(55)

are the biorthogonal projectors on, respectively,𝑉𝐷
𝑗
⊗𝑉
𝐷

𝑗
⊗𝑉
𝐷

𝑗
,

𝑉
𝐷

𝑗
⊗𝑉
𝐷

𝑗
⊗𝑊
𝐷

𝑗3
,𝑉𝐷
𝑗
⊗𝑊
𝐷

𝑗2
⊗𝑉
𝐷

𝑗
,𝑊𝐷
𝑗1
⊗𝑉
𝐷

𝑗
⊗𝑉
𝐷

𝑗
,𝑉𝐷
𝑗
⊗𝑊
𝐷

𝑗2
⊗𝑊
𝐷

𝑗3
,

𝑊
𝐷

𝑗1
⊗ 𝑉
𝐷

𝑗
⊗ 𝑊
𝐷

𝑗3
,𝑊𝐷
𝑗1

⊗ 𝑊
𝐷

𝑗2
⊗ 𝑉
𝐷

𝑗
, and𝑊

𝐷

𝑗1
⊗ 𝑊
𝐷

𝑗2
⊗ 𝑊
𝐷

𝑗3
.

Noting that

grad (𝜑
𝐷

𝑗,𝑘1
𝜑
𝐷

𝑗,𝑘2
𝜓
𝐷

𝑗3 ,𝑘3
) ∈ (𝑉

0

𝑗
⊗ 𝑉
𝐷

𝑗
⊗ 𝑊
𝐷

𝑗3
)

× (𝑉
𝐷

𝑗
⊗ 𝑉
0

𝑗
⊗ 𝑊
𝐷

𝑗3
) × (𝑉

𝐷

𝑗
⊗ 𝑉
𝐷

𝑗
⊗ 𝑊
0

𝑗3
) ,

(56)

then �⃗�𝑗[grad𝑄
𝐷

1,𝐽
(𝜑)] = 0⃗. Similarly, �⃗�𝑗[grad𝑄

𝐷

𝑛,𝐽
(𝜑)] = 0⃗ for

2 ≤ 𝑛 ≤ 7. Therefore,
�⃗� = �⃗�𝑗 [grad𝜑] = �⃗�𝑗 [grad𝑃

𝐷

𝑗
(𝜑)] . (57)

Since grad𝑃
𝐷

𝑗
(𝜑) ∈ �⃗�

curl
𝑗

⊂ �⃗�𝑗, then we obtain

�⃗� = grad𝑃
𝐷

𝑗
(𝜑) ∈ �⃗�

curl
𝑗

. (58)

Definition 17. For 𝑗1, 𝑗2, and 𝑗3 ≥ 𝑗min, the anisotropic curl-
free wavelets and wavelet spaces are defined by

Ψ
curl,1
j,k =

1

√4𝑗3 + 2
grad [𝜑

𝐷

𝑗min ,𝑘1
⋅ 𝜑
𝐷

jmin ,𝑘2
⋅ 𝜓
𝐷

𝑗3 ,𝑘3
]

Ψ
curl,2
j,k =

1

√4𝑗2 + 2
grad [𝜑

𝐷

𝑗min ,𝑘1
⋅ 𝜓
𝐷

𝑗2,𝑘2
⋅ 𝜑
𝐷

𝑗min ,𝑘3
]

Ψ
curl,3
j,k =

1

√4𝑗1 + 2
grad [𝜓

𝐷

𝑗1 ,𝑘1
⋅ 𝜑
𝐷

𝑗min,𝑘2
⋅ 𝜑
𝐷

𝑗min ,𝑘3
]

Ψ
curl,4
j,k =

1

√4𝑗2 + 4𝑗3 + 1
grad [𝜑

𝐷

𝑗min ,𝑘1
⋅ 𝜓
𝐷

𝑗2 ,𝑘2
⋅ 𝜓
𝐷

𝑗3,𝑘3
]

Ψ
curl,5
j,k =

1

√4𝑗1 + 4𝑗3 + 1
grad [𝜓

𝐷

𝑗1 ,𝑘1
⋅ 𝜑
𝐷

𝑗min ,𝑘2
⋅ 𝜓
𝐷

𝑗3,𝑘3
]

Ψ
curl,6
j,k =

1

√4𝑗1 + 4𝑗2 + 1
grad [𝜓

𝐷

𝑗1 ,𝑘1
⋅ 𝜓
𝐷

𝑗2 ,𝑘2
⋅ 𝜑
𝐷

𝑗min,𝑘3
]

Ψ
curl,7
j,k =

1

√4𝑗1 + 4𝑗2 + 4𝑗3
grad [𝜓

𝐷

𝑗1 ,𝑘1
⋅ 𝜓
𝐷

𝑗2,𝑘2
⋅ 𝜓
𝐷

𝑗3 ,𝑘3
] .

(59)

Proposition 18. Defining the wavelet spaces �⃗�
curl,𝑛
j =

span{Ψcurl,𝑛
j,k } for 𝑛 = 1, 2, . . . , 7, then

�⃗�
curl
𝑗

= �⃗�
curl
𝑗min

⊕𝑗min≤𝑗1 ,𝑗2,𝑗3≤𝑗−1
(⊕𝜀=1,2,...,7�⃗�

curl,𝜀
j ) . (60)

Proof. The result follows from the following fact:

𝑉
𝐷

𝑗
⊗ 𝑉
𝐷

𝑗
⊗ 𝑉
𝐷

𝑗
= (𝑉
𝐷

𝑗min
⊕
𝑗−1

𝑗1=𝑗min
𝑊
𝐷

𝑗1
)

⊗ (𝑉
𝐷

𝑗min
⊕
𝑗−1

𝑗2=𝑗min
𝑊
𝐷

𝑗2
)

⊗ (𝑉
𝐷

𝑗min
⊕
𝑗−1

𝑗3=𝑗min
𝑊
𝐷

𝑗3
)

= (𝑉
𝐷

𝑗min
⊗ 𝑉
𝐷

𝑗min
⊗ 𝑉
𝐷

𝑗min
)

⊕
𝑗−1

𝑗3=𝑗min
(𝑉
𝐷

𝑗min
⊗ 𝑉
𝐷

𝑗min
⊗ 𝑊
𝐷

𝑗3
)

⊕
𝑗−1

𝑗2=𝑗min
(𝑉
𝐷

𝑗min
⊗ 𝑊
𝐷

𝑗2
⊗ 𝑉
𝐷

𝑗min
)

⊕
𝑗−1

𝑗1=𝑗min
(𝑊
𝐷

𝑗1
⊗ 𝑉
𝐷

𝑗min
⊗ 𝑉
𝐷

𝑗min
)

⊕
𝑗−1

𝑗2 ,𝑗3=𝑗min
(𝑉
𝐷

𝑗min
⊗ 𝑊
𝐷

𝑗2
⊗ 𝑊
𝐷

𝑗3
)

⊕
𝑗−1

𝑗1 ,𝑗3=𝑗min
(𝑊
𝐷

𝑗1
⊗ 𝑉
𝐷

𝑗min
⊗ 𝑊
𝐷

𝑗3
)

⊕
𝑗−1

𝑗1 ,𝑗2=𝑗min
(𝑊
𝐷

𝑗1
⊗ 𝑊
𝐷

𝑗2
⊗ 𝑉
𝐷

𝑗min
)

⊕
𝑗−1

𝑗1 ,𝑗2,𝑗3=𝑗min
(𝑊

D
𝑗1

⊗ 𝑊
𝐷

𝑗2
⊗ 𝑊
𝐷

𝑗3
) .

(61)

Definition 19. Biorthogonal curl-free scaling functions and
wavelets are defined by

Φ̃
curl
𝑗,k =

1

√3
[𝛾𝑗,𝑘1 ⋅ 𝜑

𝐷

𝑗,𝑘2
⋅ 𝜑
𝐷

𝑗,𝑘3
𝛿1 + 𝜑

𝐷

𝑗,𝑘1
⋅ 𝛾𝑗,𝑘2 ⋅ 𝜑

𝐷

𝑗,𝑘3
𝛿2

+ 𝜑
𝐷

𝑗,𝑘1
⋅ 𝜑
𝐷

𝑗,𝑘2
⋅ 𝛾𝑗,𝑘3𝛿3] ,
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Ψ̃
curl,1
j,k =

1

√4𝑗3 + 2
[𝛾𝑗min,𝑘1

𝜑
𝐷

𝑗min ,𝑘2
�̃�
𝐷

𝑗3 ,𝑘3
𝛿1

+ 𝜑
𝐷

𝑗min ,𝑘1
𝛾𝑗min,𝑘2

�̃�
𝐷

𝑗3 ,𝑘3
𝛿2

+ 2
𝑗3𝜑
𝐷

𝑗min ,𝑘1
𝜑
𝐷

𝑗min ,𝑘2
�̃�
0

𝑗3 ,𝑘3
𝛿3] ,

Ψ̃
curl,2
j,k =

1

√4𝑗2 + 2
[𝛾𝑗min,𝑘1

�̃�
𝐷

𝑗2 ,𝑘2
𝜑
𝐷

𝑗min ,𝑘3
𝛿1

+ 2
𝑗2𝜑
𝐷

𝑗min ,𝑘1
�̃�
0

𝑗2 ,𝑘2
𝜑
𝐷

𝑗min ,𝑘3
𝛿2

+ 𝜑
𝐷

𝑗min,𝑘1
�̃�
𝐷

𝑗2,𝑘2
𝛾𝑗min,𝑘3

𝛿3] ,

Ψ̃
curl,3
j,k =

1

√4𝑗1 + 2
[2
𝑗1 �̃�
0

𝑗1 ,𝑘1
𝜑
𝐷

𝑗min ,𝑘2
𝜑
𝐷

𝑗min ,𝑘3
𝛿1

+ �̃�
𝐷

𝑗1 ,𝑘1
𝛾𝑗min,𝑘2

𝜑
𝐷

𝑗min ,𝑘3
𝛿2

+ �̃�
𝐷

𝑗1,𝑘1
𝜑
𝐷

𝑗min,𝑘2
𝛾𝑗min,𝑘3

𝛿3] ,

Ψ̃
curl,4
j,k =

1

√4𝑗2 + 4𝑗3 + 1
[𝛾𝑗min,𝑘1

�̃�
𝐷

𝑗2 ,𝑘2
�̃�
𝐷

𝑗3 ,𝑘3
𝛿1

+ 2
𝑗2𝜑
𝐷

𝑗min ,𝑘1
�̃�
0

𝑗2 ,𝑘2
�̃�
𝐷

𝑗3 ,𝑘3
𝛿2

+ 2
𝑗3𝜑
𝐷

𝑗min ,𝑘1
�̃�
𝐷

𝑗2 ,𝑘2
�̃�
0

𝑗3 ,𝑘3
𝛿3] ,

Ψ̃
curl,5
j,k =

1

√4𝑗1 + 4𝑗3 + 1
[2
𝑗1 �̃�
0

𝑗1 ,𝑘1
𝜑
𝐷

𝑗min ,𝑘2
�̃�
𝐷

𝑗3 ,𝑘3
𝛿1

+ �̃�
𝐷

𝑗1 ,𝑘1
𝛾𝑗min,𝑘2

�̃�
𝐷

𝑗3,𝑘3
𝛿2

+ 2
𝑗3 �̃�
𝐷

𝑗1,𝑘1
𝜑
𝐷

𝑗min,𝑘2
�̃�
0

𝑗3,𝑘3
𝛿3] ,

Ψ̃
curl,6
j,k =

1

√4𝑗1 + 4𝑗2 + 1
[2
𝑗1 �̃�
0

𝑗1 ,𝑘1
�̃�
𝐷

𝑗2 ,𝑘2
𝜑
𝐷

𝑗min ,𝑘3
𝛿1

+ 2
𝑗2 �̃�
𝐷

𝑗1 ,𝑘1
�̃�
0

𝑗2 ,𝑘2
𝜑
𝐷

𝑗min ,𝑘3
𝛿2

+ �̃�
𝐷

𝑗1 ,𝑘1
�̃�
𝐷

𝑗2 ,𝑘2
𝛾𝑗min,𝑘3

𝛿3] ,

Ψ̃
curl,7
j,k =

1

√4𝑗1 + 4𝑗2 + 4𝑗3
[2
𝑗1 �̃�
0

𝑗1 ,𝑘1
�̃�
𝐷

𝑗2 ,𝑘2
�̃�
𝐷

𝑗3 ,𝑘3
𝛿1

+ 2
𝑗2 �̃�
𝐷

𝑗1 ,𝑘1
�̃�
0

𝑗2 ,𝑘2
�̃�
𝐷

𝑗3 ,𝑘3
𝛿2

+ 2
𝑗3 �̃�
𝐷

𝑗1 ,𝑘1
�̃�
𝐷

𝑗2 ,𝑘2
�̃�
0

𝑗3 ,𝑘3
𝛿3] .

(62)

Here, 𝛾𝑗,𝑘 is defined as in Definition 11.

Proposition 20. The families {Φcurl
𝑗,k , Ψ

curl,𝜀
j,k : 𝑗1, 𝑗2, 𝑗3 ≥ 𝑗, 𝜀 =

1, 2, . . . , 7} and {Φ̃
curl
𝑗,k , Ψ̃

curl,𝜀
j,k : 𝑗1, 𝑗2, 𝑗3 ≥ 𝑗, 𝜀 = 1, 2, . . . , 7}

are biorthogonal in (𝐿
2
(Ω))
3.

Theorem 21. The set {Φcurl
𝑗min,k, Ψ

curl,𝜀
j,k : 𝑗1, 𝑗2, 𝑗3 ≥ 𝑗min, 𝜀 =

1, 2, . . . , 7} is a Riesz basis ofHcurl(Ω).

Proof. It can be proved by the same method as Theorem 13.
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