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This paper deals with the construction of divergence-free and curl-free wavelets on the unit cube, which satisfies the free-slip
boundary conditions. First, interval wavelets adapted to our construction are introduced. Then, we provide the biorthogonal
divergence-free and curl-free wavelets with free-slip boundary and simple structure, based on the characterization of corresponding

spaces. Moreover, the bases are also stable.

1. Introduction

In recent years, divergence-free and curl-free wavelets are
generally studied, due to their potential use in many physical
problems [1-5]. Anisotropic divergence-free and curl-free
wavelets on the hypercube are firstly constructed in [6, 7],
but all these functions only satisfy slip boundary conditions.
However, the free-slip boundary is important in many cases,
such as the solution of partial differential equations in
incompressible fluids and electromagnetism. Inspired by this
fact, [8, 9] give the construction of anisotropic divergence-
free and curl-free wavelets with free-slip boundary, but the
structure is very complicated and the basis functions are
not explicit. Recently, based on a simple characterization of
2D divergence-free space, Harouna and Perrier proposed an
alternative construction to [8] for divergence-free wavelets
in two-dimensional case [10]. Following the similar but non-
trivial line, we mainly study the anisotropic 3D divergence-
free and curl-free wavelet bases with free-slip boundary in
this paper. The traditional understanding that 3D curl-free
wavelets are more difficult to construct than divergence-free
wavelets is not always right, due to our procedure.

In Section 2, interval wavelets that we will use are intro-
duced. Based on the spaces characterization, 3D biorthogonal
divergence-free and curl-free wavelet bases are given in
Sections 3 and 4, respectively.

2. Interval Wavelets on [0, 1]

In this part, we will introduce the interval wavelets used in
the subsequent construction.
The existence of divergence-free and curl-free wavelets on

R? follows from the following fundamental proposition [11].

Proposition 1. Let (le (R), \7].1 (R)) be a biorthogonal MRA of

L*(R), with compactly supported scaling functions (¢, &") and
wavelets (y', "), such that ¢*, w' € C'** for e > 0. Then there
exists a biorthogonal MRA (V]Q(R), VJQ(R)), with associated

scaling functions (¢°, §°) and wavelets (y°,§°), such that
(P) @ =¢"@-¢"x-1, (¥ =4 O
The dual functions verify J:H ¢ (t)dt = §°(x) and (ﬁo)l =
-4y
Based on the above proposition, Jouini and Lemarié-

Rieusset [12] proved the existence of two one dimensional
MRAs of L*(0, 1) linked by

d

EV} =V,

v =H5(o,1)ﬂj0 Vi={f:f' eV, fo=rm=0}.
)



In the following, we simply introduce the construction of
these spaces. Suppose that ¢' in Proposition 1is supported on
[(Mmin> Pmax) (Pimin> Pmax i0tegers) and reproduces polynomials
up to degree r — 1:

£ +00
X ~1 1
0<e<r-1, o :k;wpe(k)go (x-k), x€R, (3)
with ;5; (k) = (x¢/e, (])’l(x —k)). Similarly, (}51 is supported on
[Min> imay) @and reproduces polynomials up to degree 7 — 1.
For j being sufficiently large, the spaces le have the
structure
1_ Lb _ 5il2gLb (4] Lint
V; = span {d)j,e =270, (2 x)}e:o,..,,r—l eV, w
4
Lt _ 5jl2qgpbt (5]
® span qu)j,e =2 (De (2 x)}ezo,,..,r—l’
where le’im = span{go})k = 2P 2Ix-k): k = kb,...,‘2j -
k;} is the space whose supports are included into [8,/2/,1 -
su/zf] c [0,1] (8,,8; € N be two fixed parameters), and

k, = 8, = fiyyin> ky = Oy + 1y, Moreover, d)é’b are the edge
scaling functions at the edge 0 being defined by

k,-1
O ()= Y e (x—k) Kpie)y ()

k=1-n

‘max

At the edge 1, CD;"’ are defined by symmetry using Tf(x) =
f(1-x).

Similarly, the biorthogonal spaces \7].1 are defined with the
same structure as

=1 _ FLb TFLint =Lt
Vj = Span {q)j,f}teo ,,,,, F-1 ® Vj ® span {(D]Ef}e:o ..... 71"
(6)
Adjusting the parameters such that
. 1 (771
Aj=dlm(Vj) =d1m(Vj) -

= 2J - (6b+5n) - (nmax - nmin) +2r+ 1L

The last step of the construction is the biorthogonalization
process, since the edge scaling functions of le and ‘7; are
no more biorthogonal. Finally, (le, \7jl) form a biorthogonal
MRA of L*(0, 1).

As described in [13], removing the edge scaling functions
q)(l)’b and <I>(1)’ﬁ leads to

D _ Lb 1int L
Vj = Span {®j>£}€:l,...,r—1 ® VJ ® span {q)jf }3:1 ,,,,, r—1
(8)
= span{¢fk:k= 1,...,Aj—2}.
Similarly, define V].D = span {5}:;}{11 o, @ \71.1’"“ )

—14
span {(DJ.)(Z}@:1

v After a biorthogonalization process, we
finally note that

7-

szspan{ﬁjD’k:k=l,...,Aj—Z}, 9)

J
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and the spaces (V].D , VJD ) form a biorthogonal MRA of HS (0,
1).

The construction of (V?, \7]9) follows the same structure.
Since ((pl)’(x) = (po(x) - goo(x -1), (po has compact support
[Mmin> Bmax — 1] and reproduces polynomials up to degree r—2:

4 +00
x _
0sesr-2, o =k§ Pe ()¢’ (x—k),  (10)
with jig(k) = (x‘/e!, (])'O(x —k)). The scaling function (ﬁo(x) =

I:H @' (t)dt has support [f1,;, — 1,7

max] and reproduces
polynomials up to degree 7. Consider

® VQ,int

VJQ = span {CD?:Z = zj/zq)g,b (zjx)}e:o ..... r—2 J

o a
@ span {d)?)’g = 2]/2(1)2,11 (zjx)}e:o """" Ly
where V;)’i"t = span{go?)k = 2]'/2<p°(2fx -k): kA = kb,...>2j -
ky + 1} and supports are included into [6,/27,1 - 611/2]] C
[0, 1]. The left edge scaling functions are
k-1
0’ )= Y PR (xR Kooy (12)

k=2-n,

‘max

Biorthogonal spaces V;) are similarly defined, but by satisfying
vanishing boundary conditions at 0 and 1, then
0 0
Vi = span {(D i

® V;)’im @ span {50,11

J')e}e:l,...,F’ (13)

}E:I,m?

with \7]9,int = span{g'ﬁ;))k k= ‘]%I; + 1,...,2j - En} and 52’b =
k,
k=171, o
know dim(VJQ) = dim(VJp) =A; -1
In practice, we choose j > j;, with

(k)@ (x - K)X(0,+00) for € = 1,...,7. It is easy to

Jmin > Max {log2 [nmax — pin + 0y + 6, + 1] ,
o (14)
log, [ﬁmax = Tlin + Oy + 0, + 1]}
to ensure that the supports of edge scaling functions at 0 do
not intersect the supports of edge scaling functions at 1.
The construction of wavelet spaces (le, le) can be seen
from [13]. Moreover, they satisty the following result.

Proposition 2 (see [12]). Let (V}, V) and (V},V}) be MRAs
. 1 0 0 1A (%71

satisfying (d/dx)V; = VLand Vi = H,[) Jo Vi then the

wavelet spaces WJQ and WJQ are linked to the biorthogonal

wavelet spaces associated to (le, le) by

d ~ x —

0 _ 9 ) = 1
Wi Lt W L W (15)
Moreover, let {V’},k} k=1,..2

nal wavelet bases of le and W].l. Biorthogonal wavelet bases
0 770 .

of W; and W; are directly defined by

!

W?,k = z_j(llfjl',k) W?,k = -2/ L 1l7]1k (16)
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3. Divergence-Free Wavelets on [0, 1]’

Let Q = [0, 1]° and let 7i be the normal vector; the boundary
condition considered in [6] is#i-#=0onT = UZ:I I with
L= [0, 11" x {0} x [0,1*%, 1<k<3. (17
Itholds thatii-# = OonTifand onlyifu, =0onT; (1 <k <
3). We call it a slip boundary, which is shown in Figure 1.
In this section, we mainly consider the following space
with free-slip boundary as Figure 2

T (@) = {i € (I (@) : divi = 0,271 = 0 on 90}

(18)

For ii(x, y,z) = (ul,uz,u3)T, the 3D curl-operator is
defined as

curlii = (0,us — 051y, O3u; — OjU5, 01ty — azul)T. (19)

Remark 3. Taking Fourier transform on the both sides of
div i = 0 leads to the equation
Elal (E) + £2a2 (6) + 53{’23 (E) = 0) E = (El) 52»63) . (20)

In L*(R%), define the following functions

MO RO
O~
(21)
Then, according to (20), it is easy to verify that
iy (§) =1 (5,95 6) - &6, (D),
i (§) =i (8¢, (§) - £,05 (), (22)
i3 (§) =i (8,0, §) - &1 (),

which is equivalent to ## = curl . Therefore, any function
il € (LZ(R3))3 which satisfies divii = 0 can be characterized
by curl operator as ii = curl $ with ¢ € (HI(R3))3. In fact, a
similar result holds in 3D nonsmooth domains.

Proposition 4 (see [14]). There is a characterization
X gy ()

= {ﬁ:curlgﬁ:@'e (H1 (Q))3,¢><ﬁ=

Based on Proposition 4, we give the following definition
of divergence-free scaling function spaces.

Definition 5. For j > j.. . the divergence-free scaling func-
tion spaces \7}” are defined by

V}iiv - curl {(VJO ® V]D ® VjD) X (VJD ® VJO ® V]D)
« (VP orP o V)] 1)
= span {®i¥’1> <Dj-1,¥’2, q);l,ilzﬁ} >

where the divergence-free scaling functions are given by

q)_cfl’il‘(]’l = 7 Curl [((P] ky (PJ k, g0] ks> 0 O) ]
1
T [(P; k, S"] k, (‘Pka) 5, - ‘P?,k1 ) (‘Psz), : (Pfk383] >
@i‘l‘(’z = % curl [(O’ go.lj?kl ’ (P?’kz ' (PjD>k3’ O)T]
1
7 [(q’]k ) ’ (P(]?»kz ’ (ij>k383 - 90ka ’ (P(J?»kz ’ (¢fk3)/81] ’
1v, 1
ol — el (0,097 -9, (p]k3)T]
1 1 p D\ o p\ D 0
= E [(Pj)kx ’ (goj’kz) ’ (Pj,k381 - ((ijﬁ) ’ ng,kz . (Pj,k382] .

(25)

For proving the consequent main result, we also consider
the standard MRA \7'J of (LZ(Q))3:

V,=(vevieV)x(VieV eVy)
(26)

(Vi evjev;).

The following conclusion shows that the space \71 pre-
serves the divergence-free condition.

Proposition 6. Ifii € (LZ(Q))3 anddivii = 0, then div[f’jﬁ] =
0, where P; = (p; ® p} ®pg,p? ® p; ® pj, p; ® p; ® p;) is the
biorthogonal projector on V.

Proof. Let il = (u;, 5, u;)"; then

3 . 1_.0_ .0 0 1 0 0_ .0 1. \T
Bt = (p; ® pj ® pjuy, pj ® p; ® pju,, pi ® pj ® pius) .
(27)

Therefore, by the fact d/dx o pjlf = pj-) o (d/dx) f in [10], we
obtain

13 0 0
div [B;ii] = ap} ® ) ® pju; + ap?@p} ® pju

)
+ 5 P3®p;® pjih

(28)
00’ % (E)ul au2+%)
= p}®p)ep| 5 5
= pj ® pj ® p; (divii) = 0.
O
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(uy = 0) (u3 = 0)
1 1 1
0.8 0.8 0.8
0.6 0.6 0.6
Z 04 zZ 04 z 04
0.2 0.2 0.2
0 0 0
1 1 1
1 1
0.5 05 0.5 0.5
y 0 0 X y 0 0 X

0.8 0.8
0.6 0.6
z 04 Z 04
0.2 0.2
0 0
1 1
FIGURE 2: Free-slip boundary condition (divergence).
. . . 2D
Tll:i:,)rem 7 The c'izvergerfce—free sc'almg function spaces Q; (@)
{V; }jzjmin is a multiresolution analysis of F 4, ().

L1 0 D D 1,2 0 D D
=2 (d a8k Pkt APy VT kP

. 5 . . . k
Proof. Since # 4, (2) N V; are a multiresolution analysis of
. . 1
I 4, (Q), it is reduced to prove + d kw] k 9"]’ kz‘P] ot d] k(p}, K, 1//] kﬂ’; .
5.0 D D 6.0 D D
Vi = # 4 Q) NV, (29) TV kST AV Y Pk,
v

R IR AR )
Noting that (d/dx)le = V;) and V]P C le from (2) and . b o D
(8), we know V}ﬁv C VJ Furthermore, \7}11" C H4,(Q) by * Z (d k(PJ ki <P] kzw] ks T k(pf"klwf"kzq)f"ks
construction. Therefore, \7jdi" C 3, (Q)N \7]

- + d2 + d2
Conversely, letting ii € # 4;,(Q)NV, we are going to prove kw} ki <P] szDJ ks k(pf ki ‘/’] kzw] ks

= div s T S _ B 25 D 0 D 26 D 0 D
€ V;". On the one hand, since &i € V), we have ii = P;ii. + dj’,k‘//j K P7 g Vi, Wi Vi kP,
On the other hand, since &I € #4,(Q), there exists a ¢ =
3 . - 27 D 0 D
(<p1,<p2,¢3)T € (HY(Q)) such that & = curl(¢). Moreover, + dj')kll/j’,kle",kzl//j’,k3)62
¢ x# = 0. Thus, & = Pj[curl(gb')]. Furthermore, we can
decompose ¢ by isotropic vector wavelets as Zk:(d] k‘P; Ky ‘P] kZ‘//] s d] k‘P; Ky ‘//] kZ(P] ks
. 33. D D 0 3,4
¢ =P’ (¢)+ ) Q7 (%), (30) VP Pk P, + P ik Vi,
i'zj

35 D D 0 3,6 ., D D 0
dj’,ij’,kl (le’kz ij’,k3 + dj’)k‘l//j/’kl I//]‘I’kz (Pf,»k3

BD/ o\ 0 D D D 0 D 3,7 ., D D 0
where P; (‘P)D— %k P Pk, P 01+ Lk 2k Pk, P, Pk * dj',k‘/’j’,kl\”j’,kz‘/’jtka) 0
0
8y + 2k kP, Pk, Pk, O3 (31
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. 0 D D D 170 0 0 _1/D
Since Curl[?"j',kl‘Pj’,kZ‘Vj’,k361] € (Vj, ®Vj, ®Wj,) ><(Vj, ®Vj, ®
W) x (V) ® V) @ W), then

P j [curl ((f)?’,kl(PjD’,kzl//jD’,k361)] = 0. (32)

Similarly, every term in the right sides of (31) satisfies (32).
Finally,

B; [curl (Q7 (¢))] = 0. (33)
Furthermore, we can obtain

[curl (@] = [curl (f’JD(ﬁ)] = curl (13]D¢) (34)

Here, we have used the fact curl(f’jD Q) € ﬁj in the last step
of (34). By construction, we have curl(ﬁjD P) € deiv, which

means i € \7Jfﬁv and the proof is completed. O

Based on the constructive method of vector wavelets and
the following decompositions:

(0 -l 0 )
- (ijin e)jl =Jmin ijl

® (V)05

® (Vi@ Vi)

et en)

Jmin Jmin

0 D D
vieviev]

e (Vi w;))
e (Vi W2V
(W Viea)

W}f ® Wﬁ’ )

=Jmin

JZ’J3 ]mm (

11 »J3= Jmin (W ®VJmm ® W )

Jl>Jz Jmin (W ®W ®V]mm)

-1 ( 0 D D)
®j1’j2’j3:jmin ijl ® ‘/ij ® ija >

D 0 D _ (y,D 0 D
VieVievy=(vp eV; eV )

i Viow ©Vins ©W5)
i (Vi @ W, ®mem)
% e (W3 © Vi ® Vi)
eajzjs Jmm( > e W) @W)
& i Wi, 8V, 8 W)

e)jl,lfz Jmm(W ®W ®V )

Jmin

;1’;2’j3:jmm ( ®W ® W )

5
vieviev; (V]i’.,@vﬁmw,&m)
o)L (Vo ev) eW))
o . (Vi ew) ®V(; )
eBJ ljmm (WwPevy eV )
O o (Vi @ WS W)
@) i, (W 8 Vi, W)
&) i (Wi @W] 0V )
e (W5, © W W),
(35)

we can give the definition of anisotropic divergence-free
wavelets as follows.

Definition 8. For j,, j,, and j; > j...., the anisotropic diver-
gence-free wavelets are defined by

\Pdlv ,(1, 1)

1 D
jk m curl [(P (ijm : 1l/j3,k361]

div,(1, 2)

1 0 D D
jk m curl [(pjmin’kl ' l//J'z’kz ’ ngmin)kSSl]

div(13) _ 1 0 D D
\PJ k ﬁ curl [wfl Ky (ijin’kZ ’ ¢jmin)k381:|
div,(1,4) _ 1 0 D D
jk m curl [(ijimkl ll/]‘z»kz 1//]'3,k381]
div,(1, 5) 0 . D P
\PJ k m curl [wjl Ky (ijm’kz sz’ks(sl]

div,(1, 6)

1 0 D D
jk m curl [wjl’kl ' l//jpkz ’ gDjmin’ks(sl]

e \/ﬁ curl [0, vP v,
,dliv @ = \/ﬁ curl [‘Pzin,kl 'G";')mm,kz : 1/’2,1%82]
¥ = % curl [ s Wik, P82
,dll(v @ = T Va1l curl [V’ﬁ,kl : (Pj')min,kz : ?’Zm,k3 82]
,dll(v @ = T Va1l curl [‘Pzin,k1 : ‘/’;')Z,k2 : ‘/’;?,k3 52]
,dll(v 23 - ﬁ curl [‘//f,kl : 90;')min,k2 : V’EJ% 82]
i es) ﬁ curl [y, v, P 8]
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1

dw(27) D 0 P div,(1,3) _ 1 [~0 . =D =
Y A 1 4 curl [u/jl’kl Vink,  Visks 62] ’ Yk 2 [u/jl,kl Prnks " Viminoks 02
div3) _ 1 D D 0 S AP NN, R
= g e (O * Pl Vit %] Tt Dty B2
Grdiv,(1, 4)
g0 L _[ig gp, 0
div2) _ 1 D D 0 jk Tiir s 17 Pk Vinko " Vi, ;02
i Wrrare b (9t Vinks ™ 9, 02] A ak
Ja ~ . ~0 . ~D
1 -2 (P]mm wjz’kz 1//13:1(363]
\Pdw @3 _ - curl [V/D . (PD . S00 5 ]
jk \/m Jiki Vjminka T jminsks 3 \I’dlv (L5) _ 1 [2j3¢0 ) @D ) @0 s
div,(3,4) _ 1 [ D D 0 ] H Vais +1 ok Vi 7 ks 72
VoY s ——curl g vl w6
k — mink K 5,93 —0 =
j» 4+ 1 J 1 J2:K2 J3:K3 — wjpk1 . yjmm 1/113 k38 ]
div3s) _ 1 D D 0 - 1 _ _
v =———curl|y;, -9 , v, 8 dve _ - g0 gP. .7,
JA'S /4]-1 i1 [u/h)]ﬁ (P]min,kz l//]3,k3 3] \Iljk ,—4]2 1 [wh)kl vsz)kz y]min>k362
div,(3,6) _ D D 0 — kb G0 LGP
\PJ k \/ﬁ curl [lllfl)kl ' 1l’fz’kz ’ ¢jmin)k363] 2 v/h’kl wjz’kz ¢]mi“’k363]
Fdiv.(1,7) _ 1 js~=0  ~D 0
. —[231//. Y W . 6
div,(3,7) _ D D 0 ik T Joky - Tinky  Fjsks ™2
\PJ k m curl [llljl)kl wjz’kz v/js:ka 63] : 42 + 4%
b0 =0 =D
(36) =2k, Wi, VoS
v _ 1 [~ 0 P s
Remark 9. The coeflicients before the operator “curl” are used jok ik + 1 Vinwks " Pingurks " Visik; 03
to guarantee the biorthogonality in the following construc-
tion of dual wavelets -20gP .3 SR ]
: (PJmin’kl (PJmin’kZ Wj}’k3 1
Proposition 10. Defining the wavelet spaces Fdiv.(2.2) _ =0 =D
e ! KL 7 i Py PO
2rdiv,(e;n) _ div,(e,n) _ _ . ~D ~0 ~
Wj = span {‘I’]k }, e=1,23 n= 1,2,...,(7, | - Gp Vi, 'ijin,k38l]
37
Gdiv.(2.3) 1 =0 =0 _D
T = —— 29 @) Prkd
jk /47 Jiky Jminoka Jminoks 3
then Vchv _ de (€B de,(s n)) 4+l
Jmin ]mm<]1 2J2jaSj—13Ve=1,2,3,n=1,2,...,7 ~D ~0 _
= Vit Pt Tk O1]
Proof. It can be easily obtained from (35) and Definition 8. ]
Gdiv, (2, 4) ~ ~0 ~D
- Yt Vi 11 [ijm,kl Wik Vioks O
Definition 11. Biorthogonal divergence-free scaling functions Y R AN I ]
and wavelets are defined by Pk " Visks " Ve, 01
Fdiv(25) _ 1 =0 -0
. —_— [2]11//. -, G 8
—_— 1 jk Ny ; Joky T jmink Jaks ™3
q)@v,l = [(p (PD 7 S —@0 ’)7 @D o 4h + 45
ik \/— ki ks " FiksT2 T ks T Fiky T ¥ jikes T3 b 0 ]
_ 2J31/7, P, {/; )
Jok Fiminks ¥ jsks 71
6div,2_i[~ P N I P S R 8] o R
ko \/5 yj’kl (Pj:kz (Pj’ks 3 (Pj’kl (Pj)kz Yj,k3 1 \I,dlv ,(2, 6) 1 [2]1 WO . 1/70 . <5D S
jk m Jiky Joka YV juminoks T3
div,3 ~0 ~ D 0
A — Vi @0 Oy =Vir @:r @0 O, —D ~0  ~
jk \/— [(P] K, YJ,kz (P],k3 1 Y],kl (P],k2 (Pj,k3 2] — wjpk] . wjz)kz . yjmin’k361]
Gdiv,(L1) _ 1 s <0 D =0 Gdiv.(2.7) _ 1 h0 =0 =D
\IIJ:k - 4]‘3 1 [2 Jminok (ijimkz Wj3,k362 ‘{llk \/m [2 l//jl’kl 1pjz:"z Wj3,k383
_~0 Y .~D - j3~D '~0 '~0
(ijin)kl yjmin’kz ll/j3>k383:| 2 l//jl’kl ll/jpkz l//,7‘3’k361:| ’
div,(1,2) _ 1 & _ vy _ L . 0
Fix = M[ iminok ‘/’12 Ky " Vimurk; 02 ik V2 [(ijm, Vs * Vi, 01

VT LAY e T 8]
2205 g Vi, Pk, 03 Vi * Py Visks 02
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B - L 0 T s
= Vinks 'leDz,kz '¢2min,k362]
Bt = \/ﬁ [Tk, * Trus ™ P&
- 2h ‘T’;')l,kl '@Zin,kz '¢?min,k382]
T - L[ Bt
= Vs "/7]-?,1(2 ‘1/7;')3,k382]
‘Tlic,lli{V)(&S) - \/ﬁ [Ipﬁ’kl Vjinrks '{/;?3”‘361
- 2% 1/7;')1,k1 '@im,kz '1/7?3,k382]
TN = e [0, W, B
—oh 1/7?1,,{1 -%’ikz '(ﬁ?mm,k362]
TD = [0, T, Wi
=2 Tk, T 0]
(38)
Here, ;. = - fox @fk(t)df-
Proposition 12. The families {GD%‘{”E, ‘Ifj‘)ili{v’(s’") O P P N

je=123n=12,...,7}and {5?’?5,\?’;11?’(8’”) O T O A
j»€=1,2,3,n=1,2,...,7} are biorthogonal in (LAH(Q))°.

Proof. It is easily proved by the fact that gﬁ?k =
~2 [F De(®)dt, which is shown in (16). O

Theorem 13. The set {@?;‘;‘fk,‘l’j‘iv’(s’") S b J J3 2 Jmins € =
1,2,3, n=1,2,...,7} is a Riesz basis of I 4, (Q2).

Proof. The completeness is ensured by Theorem?7 and
Proposition 10. Now, it remains to prove the L*-stability of the
basis. By assumption of 1D scaling and wavelet functions, the
divergence-free wavelets ‘I’;lli(v’(s’") are compactly supported,
have zero mean value, and belong to the spaces C° for
some ¢ > 0; then they constitute a vaguelette-family ([12]).
Furthermore, the Riesz stability follows from the existence of
a biorthogonal wavelet family given by Proposition12. [

4. Curl-Free Wavelets on [0, 1]’

The boundary condition considered in [7] is &i X #i = 0 on
I = U;_, [ with
3
L= |J 01" x{0x[01™", 1<k<3 (39)

m=1,m+k

It holds that & x 7 = 0 on T if and only if 4, = 0 on
I} (1 < k < 3), which is shown in Figure 3.
In this section, we mainly consider the following space:

%curl (Q)

-

= {ﬁ € (L2 (Q))3 = curlii=0, ixi=0 on BQ}
(40)

with free-slip boundary as Figure 4.

An equivalent characterization is firstly given for
I 1 (Q); and then we will give the MRA and wavelets for it.
Proposition 14. There is the characterization H .,,(Q) =
{ii=gradg: ¢ € Hy(Q)}

curl

Proof. Suppose ¢ € H,(Q); then il = grade = (3,¢,0,9,
83(;))T € (LZ(Q))3. Moreover,

curl#i = curl-grad ¢

= (azas‘/’ — 0;0,9,050,¢ — 0,030, 0,0, — azal‘P)T

=0.
(41)
Note that
o 9(x+Ax,0) -9 (x,9,0)
%9 (x,5,0) = lim e =0,
A > )1 - > )1
09 (1) = fim LETARP V000D

x—0 A)}

@ (x+Ax,0,2) —¢(x,0,2) _0

A (x,0,2) = AlxiTo Ax

>

A ’1’ B al)
al¢(x’l’z):ALiT0¢(x+ x,1,2) — ¢ (x Z)=0;

Ay
(42)
therefore,
u; (x,9,0)=u, (x,y,1) =0, VO<x, y<l.
(43)
u; (x,0,2) =u; (x,1,2) =0, VO<x,z<I1.
In the same way, one can obtain
U, (%, 9,0) =u, (x,,1) =0, Y0O<x, y<]1,
u, (0,y,2) =u, (1,,2) =0, V0O<y, z<1,
(44)
u;(0,,2) =us (1, y,2) =0, V0O<y, z<1,

U (x,0,2) =u3(x,1,2) =0, VO<x,z<1.

This is equivalent to & x # = 0. Therefore, i = grad¢g €
%curl(Q)'

On the other hand, suppose il € #,;1(Q); then we will
prove that there exists a function ¢ € Hé (Q), such that ii =

grad ¢. Since curl it = 0, then

O,z = 05y, 03Uy = 0y3, 0yu, = Oyy. (45)
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FIGURE 4: Free-slip boundary condition (curl).

By Stokes formula, there exists a primitive function ¢ €
H'(Q) such that

do (x, y,z)

=u, (x, y,2)dx +uy (x, y,2)dy + u; (x, y,2) dz.
(46)

Therefore, 0¢/0x = uy, 09/0y = u,, and 0¢/0z = us; that is
ii = grad ¢. Furthermore, il x i = 0 means that

U (%,9,0)=u, (x,91)=0, VO<x, y<1,

u, (0,9,2) =u, (L, y,2) =0, YO<y, z<1,  (47)

Uz (x,0,2) =u3(x,1,2) =0, V0O<x,z<1

Noting that
x y
o(x,9,2) = J u, (r,y,2z)dr = J u, (x,8,2)ds
o Yo (48)
z
= j uy (x, y,t)dt,

we obtain @(x, ,0) = ¢(x, y,1) =0, 9(0, y,2) = (1, y,2) =
0,and ¢(x,0,z) = ¢(x,1,z) = 0. Therefore, ¢ € Hé Q). O

Noting that V].D ® V].D ® V].D is an MRA of (Hé(Q))3, we
give the following definition.

Definition 15. For j > j .., the curl-free scaling function
spaces \7;‘”1 are defined by

\7}.““1 = grad (VjD ® VjD ® VJ.D) = span {(Djli(rl} ) (49)
where the curl-free scaling functions are given by
curl 1 D D D
O’ =t —zerad (o)), - 9k, - 9k,)
1 DY\ D D D Dy
Y ((95) 0k, @1k 9k, (50) G0

D D D ( D )’ T
Piky»Pik, ” Pik,  \Pik, :

For convenience, we also consider the standard MRA \7]-
of (LA(Q))*:

Vi=(Vieviev)x(vievieV))x(viev eV;).
(51)

Theorem 16. The curl-free scaling function spaces {Vj.curl}j>j ’
are a multiresolution analysis of I ., (Q).

Proof. Since # _,1(Q2) N \7j is a multiresolution analysis of
1 (Q), it is reduced to prove

\'/’f:url = %curl (Q) n ‘_/LJ

; (52)
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Noting that (d/dx)V].1 = VJQ and V].D C le, we know
\7].““1 C V)J Furthermore, \7]?‘“1 C H 1 (Q) by construction.
Therefore, V?“rl CH Q)N \7
Conversely, letii € #.,1(Q ) N \7]-, we are going to prove
e Vjc“rl. Let Pj be the biorthogonal projector on VJ On the
one hand, since i € Vj, we have il = f)jﬁ. On the other hand,
since il € Hy(Q), there exists a ¢ € Hy(Q) such that i =
gradg. Thus,
= 13]. [grade] . (53)

Since (VD ® VD ® VD)] i forms an MRA ofHé (Q), we can

decompose ¢ as

=P’ (p)+ iQn’j(w),

Jrojasjazj n=1

J= o Js)> (54)

where

P (@) = Y apin 9ok i
k

QU (9) = Y DA ik P Vi

j3zj k
D _ 2 D D D
Qy; (p) = Z Zdjz,k¢j,kly/j2,k2¢j,k3’
j2zj k
D _ 3 D D D
Qs () = Z,Zdjpk‘/’jl,kl Pk, Piks>
hzjk
(55)
Q4I q)) - Z Zdjz J3» kgDJk ll’]z kzwls ks>
Jasjszj k
QS] gD) - Z Zdh »J3> kv/h Ky (P] kzlllla ks>
juiszj k
D _ 6 D D D
Qor (@)= D, 25 sV i Wik Pk,
Jizj k
D _ 7 D D D
Q,(p) = Z Zdjl,jz,fs,k‘//jpkl‘/’jz,kz‘ijks
Jijasjazj k

are the biorthogonal projectors on, respectively, VjD ®V].D ®V].D ,
VPeVPeWP, vPewPeVPl wPeVPeVP, vPewPeWw?,
J J J3 J J2 J 1 J ] J J2 J3

WP eVPeW, W2 eW eV, andW e W, e W .
1 J J3 Ji J2 J N J2 J3
Noting that
D D . D 0 D D
grad (¢j,k1¢j,k2 I//j3,k3) < (Vj ® Vj ® ija ) (56)
x(VPeview?.)x (v eview)),

then P, [grad Q ](go)] = 0. Similarly, P [gradQ ]((p)] =0 for

2<n < 7. Therefore,

ii = P; [gradg] = [gradP (9)]- (57)

Since grad P]D (p) € VjCurl C Vj, then we obtain
i = grad P () € V7" (58)
O

Definition 17. For j,, j,, and j; > j..,, the anisotropic curl-
free wavelets and wavelet spaces are defined by

curll [ D D P ]
\I’j,k V4is +2 gra Pkt Piumokz Vik,

i = vﬁgrad (o7 ¥k 93]

= g [y, oD 9]
P = ﬁgrad (@, Vinks Vi)
Y = ﬁgrad [Viok " P Vi)
W = e [0 vD 9
¥ = mgrad Wik Vi Wi |-

(59)

Proposition 18. Defining the wavelet spaces ijcurl’” =
span{‘I’jcl‘irl’”}forn =1,2,...,7, then

chrl _ \‘/’curl

2 curl,e
=V, i ( W) (60)

De=1,2,..7Wj

Proof. The result follows from the following fact:

D _j-1 D)
(ijin GBJ‘FJIm‘m ijl

® (Vi @il V)

e (V.o Wy

= (V. eV evi.)

min Jmin

o i (V2 eV’ @ W]f )

D D D _
Vi ®Vi eV =

J3= Jmin Jmin
-1 ( D D _+,D )
irmimin Vimin @ Wi, @V (61)

ol (WeV] eV’ )

J1=Jmin ‘min Jmin

j-1 ( D D D)
®j2’j3:jmin ‘/jmin ® W]z . W]3

N (W e VP ®W)

J1>J3= Jmin Jmin

@jliz ]min(W ®W ®V )

Jmin

j-1 ( D D D)
®jl’j2’j3:jmin ijl ®sz ®Wj3 :

O

Definition 19. Biorthogonal curl-free scaling functions and
wavelets are defined by

~crl Ll -  _p _p D - D
i = NG [Vj,kl “Pik,  Pik, 01+ Pig, Vik, P, O

~D ~D ~
T Pik, " Pik, 'Yj,k363]’
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Geurl 1 1 [~ D =D
\Pj,k - W 12 yjmin’kl(ijin’kzl//jS’k361

D _ -D
+ (ijin Ky ijimkz 1//]'3,k3 82
jaz=D ~D ~0 ]
+ 270, Pk Yk, O3>

Greurl,2

1 [~ P L s
jk T 4 12 Yjminokr wjz)kz(ijimks 1
hW~D =0 D
* 2 (ijin’kl wjz’kz (ijimkS 62

~D ~D
+ (ijimkl I/Ifz’kz yjmin’kS 63] >

Geurl3 _ 1 [ =0 ~D D
\Pj)k - 4]1 +2 2 l//].l'kl(ijimkzgojmin’k381

~D  ~ ~D
V5 ke Vs P ks 2

~D D ~
+ 1!/]1 Ky (ijin’kz yjmin’kS 63 ] >

Geurl4 1 _ D -D
\P'cur, — [ . ! D s
kT U g Wk Visks Vinks 01

<D =0 =D

+ 2205 Vi Wik, 02
<D =D =0 ]

+ 2205k Viko Vink, 03

Geurl,s 1 =0 ~D =D
gans . L gt P, g0,
jk 1/4]‘1 +4j3 +1 lll]l’kl(mein)kzl//]s’ks 1

~D ~ ~D
+ ll/jpkl yjmin’kz ll/j3’k3 62

j3=D =D ~0 ]
+2 l//jl:kl ¢jmin’k2wj3’k363 >

\‘I;curl,é

1 .
_ J170 ~D D
N TR (20, o, P &
jz ~D ~0 ~D
+ 275k Vb, Pk, 02
~D ~D ~
+ wjl’kl wjz’kzyjmin’k383] >

Geurl7 _ 1 [ 70 ~D =D
\Pj’k - 401 4 4)2 + 45 2 wjl’klez’kzq/ja’h(%

=D ~0 =D
20k Vi, Wik, 02
=D ~D =0
+2 3ll/jl’kl I’[/jzakzv/jaak353] :
(62)

Here, y; is defined as in Definition 11.

Proposition 20. The families {(D;}i(rl, ‘I’jfi("l’s O PN P N N

L2, 7} and (OGN gy 2 e = 1,2,...,7)

are biorthogonal in (LA(Q))°.

Theorem 21. The set {CD;‘::J(, \I’jfl‘irl’s S g J3 2 Jmin € =
1,2,...,7} is a Riesz basis of H ., (Q).

Proof. It can be proved by the same method as Theorem 13.
O

Journal of Applied Mathematics

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The project is supported by the National Natural Science
Foundation of China (nos. 11201094 and 11161014), Guangxi
Natural Science Foundation (no. 2013GXNSFAA019330)
and the fund of Education Department of Guangxi (nos.
201012MS094 and 201102ZD015).

References

[1] E.Deriazand V. Perrier, “Divergence-free and curl-free wavelets
in two dimensions and three dimensions: application to turbu-
lent flows,” Journal of Turbulence, vol. 7, no. 3, 37 pages, 2006.

[2] E. Deriaz and V. Perrier, “Orthogonal Helmholtz decomposi-
tion in arbitrary dimension using divergence-free and curl-free
wavelets,” Applied and Computational Harmonic Analysis, vol.
26, no. 2, pp. 249-269, 2009.

[3] Y. C. Jiang and Y. Liu, “Interpolatory curl-free wavelets and
applications,” International Journal of Wavelets, Multiresolution
and Information Processing, vol. 5, no. 5, pp. 843-858, 2007.

[4] K. Urban, “Wavelet bases in H(div) and H(curl);” Mathematics
of Computation, vol. 70, no. 234, pp. 739-766, 2001.

[5] Y. C. Jiang, “Interpolatory curl-free wavelete on bounded
domains and characterization of Besov spaces,” Journal of Ine-
qualities and Applications, vol. 68, pp. 1-13, 2012.

[6] R. Stevenson, “Divergence-free wavelet bases on the hyper-
cube,” Applied and Computational Harmonic Analysis, vol. 30,
no. 1, pp. 1-19, 2011.

[7] Y. C. Jiang, “Anisotropic curl-free wavelet bases on the unit
cube;” Acta Mathematica Sinica, vol. 29, no. 4, pp. 801-814, 2013.

[8] R.Stevenson, “Divergence-free wavelet bases on the hypercube:

free-slip boundary conditions, and applications for solving the

instationary Stokes equations,” Mathematics of Computation,

vol. 80, no. 275, pp. 1499-1523, 2011.

Y. C. Jiang, “Anisotropic curl-free wavelets with boundary con-

ditions,” Journal of Inequalities and Applications, vol. 205, pp. 1-

10, 2012.

[10] S. K. Harouna and V. Perrier, “Effective construction of diver-
gence-free wavelets on the square,” Journal of Computational
and Applied Mathematics, vol. 240, pp. 74-86, 2013.

[11] P. G. Lemarie-Rieusset, “Analyses multi-résolutions non
orthogonales, commutation entre projecteurs et dérivation et
ondelettes vecteurs a divergence nulle,” Revista Matematica
Iberoamericana, vol. 8, no. 2, pp. 221-237, 1992.

—
X0

[12] A.Jouiniand P. G. Lemarié-Rieusset, “Analyse multi-résolution
bi-orthogonale sur lintervalle et applications,” Annales de
I'Institut Henri Poincaré. Analyse Non Linéaire, vol. 10, no. 4, pp.
453-476,1993.

[13] P. Monasse and V. Perrier, “Orthonormal wavelet bases adapted
for partial differential equations with boundary conditions,”
SIAM Journal on Mathematical Analysis, vol. 29, no. 4, pp. 1040-
1065, 1998.

[14] C. Amrouche, C. Bernardi, M. Dauge, and V. Girault, “Vector
potentials in three-dimensional non-smooth domains,” Mathe-
matical Methods in the Applied Sciences, vol. 21, no. 9, pp. 823-
864, 1998.



