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Two new Runge-Kutta-Nyström (RKN) methods are constructed for solving second-order differential equations with oscillatory
solutions.These two newmethods are constructed based on two existing RKNmethods. Firstly, a three-stage fourth-order Garcia’s
RKN method. Another method is Hairer’s RKN method of four-stage fifth-order. Both new derived methods have two variable
coefficients with phase-lag of order infinity and zero amplification error (zero dissipative). Numerical tests are performed and the
results show that the new methods are more accurate than the other methods in the literature.

1. Introduction

Throughout this paper, we are dealing with the initial value
problems (IVP) related to second-order ODEs in the form:

𝑦
󸀠󸀠
= 𝑓 (𝑡, 𝑦) , 𝑦 (𝑡

0
) = 𝑦
0
, 𝑦

󸀠
(𝑡
0
) = 𝑦
󸀠

0
, (1)

where 𝑓 is independent of 𝑦󸀠(𝑡) explicitly and it is known
that their solutions are periodic. This kind of problems often
arise in many fields of applied sciences such as astronomy,
quantum mechanics, physical chemistry, structural mechan-
ics, and electronics.

Over the last three decades, there are a number of
numerical methods that have been derived by several authors
based on different approaches such as minimal phase-lag,
phase-fitted, and exponential-fitted for solving second-order
oscillatory IVPs. See van der Houwen and Sommeijer [1],
Senu et al. [2], van de Vyver [3], Vigo-Aguiar and Ramos [4],
Ramos and Vigo-Aguiar [5], and Ismail [6]. The term phase-
lag was first introduced by Brusa and Nigro [7] in 1980. In
1993, Simos derived a Runge-Kutta-Fehlberg method based
on the idea of phase-lag of order infinity [8]. Recently, the
idea of phase-lag of order infinity has been used to developed
new numerical methods. Simos and Vigo-Aguiar presented

in [9] a modified Runge-Kutta-Nyström method with phase-
lag of order infinity for solving the Schrödinger equation and
related problems. Papadopoulos et al. [10] presented a new
phase-fitted RKN method for solving IVP with oscillating
solutions.

In this paper, we will combine the idea of phase-lag of
order infinity and zero amplification error together. First, we
will construct a three-stage phase-fitted and amplification-
fitted RKN method which is based on Garcia’s method of
algebraic order four [11]. Then, we will construct a four-stage
phase-fitted and amplification-fitted RKN method based on
the coefficients of Hairer’s method of algebraic order five [12].

2. Analysis Phase-Lag of the Methods

The general𝑚-stage RKN method for (1) is of the form

𝑦
𝑛
= 𝑦
𝑛−1

+ ℎ𝑦
󸀠

𝑛−1
+ ℎ
2

𝑚

∑

𝑖=1

𝑏
𝑖
𝑓 (𝑡
𝑛−1

+ 𝑐
𝑖
ℎ, 𝑌
𝑖
) ,

𝑦
󸀠

𝑛
= 𝑦
󸀠

𝑛−1
+ ℎ

𝑚

∑

𝑖=1

𝑏
󸀠

𝑖
𝑓 (𝑡
𝑛−1

+ 𝑐
𝑖
ℎ, 𝑌
𝑖
) ,

(2)
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where

𝑌
𝑖
= 𝑦
𝑛−1

+ ℎ𝑐
𝑖
𝑦
󸀠

𝑛−1
+ ℎ
2

𝑖−1

∑

𝑗=1

𝑎
𝑖𝑗
𝑓 (𝑡
𝑛−1

+ 𝑐
𝑗
ℎ, 𝑌
𝑗
) ,

𝑖 = 1, . . . , 𝑚.

(3)

In the investigation of phase-lag error of the method, we
will use the test equation in the following:

𝑦
󸀠󸀠

(𝑡) = −V2𝑦 (𝑡) , V ∈ 𝑅. (4)

By applying method (2) to test equation (4), it yields

[

[

𝑦
𝑛

ℎ𝑦
󸀠

𝑛

]

]

= 𝐷
𝑛 [

[

𝑦
0

ℎ𝑦
󸀠

0

]

]

,

𝐷 = [

[

𝐴(𝑧
2
) 𝐵 (𝑧

2
)

𝐴
󸀠
(𝑧
2
) 𝐵
󸀠
(𝑧
2
)

]

]

, 𝑧 = Vℎ,

(5)

where𝐴, 𝐵, 𝐴󸀠, and 𝐵
󸀠 are polynomial in term of 𝑧2 and are

totally determined by the parameters ofmethod (2). It is given
that the exact solution of (4) is

𝑦 (𝑡
𝑛
) = 𝜎
1
[exp (𝑖𝑧)]𝑛 + 𝜎

2
[exp (−𝑖𝑧)]𝑛, (6)

where

𝜎
1,2

=
1

2
[𝑦
0
±
(𝑖𝑦
󸀠

0
)

V
] or 𝜎

1,2
= |𝜎| exp (±𝑖𝜒) . (7)

By substituting (7) into (6), it yields

𝑦 (𝑡
𝑛
) = 2 |𝜎| cos (𝜒 + 𝑛𝑧) . (8)

Then, we assume that the eigenvalues of𝐷 are 𝜌
1
, 𝜌
2
, and they

will be called as the amplification factors of the RKNmethod.
The consequent eigenvectors are [1, 𝛾

1
]
𝑇, [1, 𝛾

2
]
𝑇, where 𝛾

𝑖
=

𝐴
󸀠
/(𝜌
𝑖
− 𝐵
󸀠
), 𝑖 = 1, 2. The numerical solution of (4) is

𝑦
𝑛
= 𝑐
1
𝜌
𝑛

1
+ 𝑐
2
𝜌
𝑛

2
, (9)

where

𝑐
1
= −

𝛾
2
𝑦
0
− ℎ𝑦
󸀠

0

𝛾
1
− 𝛾
2

, 𝑐
2
=
𝛾
1
𝑦
0
− ℎ𝑦
󸀠

0

𝛾
1
− 𝛾
2

. (10)

If 𝜌
1
and 𝜌

2
are complex conjugate, then 𝑐

1,2
= |𝑐| exp(±𝑖𝑤)

and 𝜌
1,2

= |𝜌| exp(±𝑖𝑝). By substituting both into (9), we have

𝑦
𝑛
= 2 |𝑐|

󵄨󵄨󵄨󵄨𝜌
󵄨󵄨󵄨󵄨 cos (𝑤 + 𝑛𝑝) . (11)

From the exact solution (8) and the numerical solution (11),
we can forward to the following definition.

Definition 1 (phase-lag, see [1]). Apply RKN method (2) to
test equation (4).Thenwe define the phase-lagΦ(𝑧) = 𝑧−𝑝. If
Φ(𝑧) = 𝑂(𝑧

𝑞+1
), then the RKNmethod is said to have phase-

lag order 𝑞.

Definition 2 (amplification error, see [1]). Apply RKN
method (2) to test equation (4). Then we define the quantity
𝛼(𝑧) = 1 − |𝜌| is the amplification error. If 𝛼(𝑧) = 𝑂(𝑧

𝑟+1
),

then the RKN method is said to have dissipation order 𝑟.

Let us denote that

𝑅 (𝑧
2
) = trace (𝐷) = 𝐴 (𝑧2) + 𝐵󸀠 (𝑧2) ,

𝑄 (𝑧
2
) = det (𝐷) = 𝐴 (𝑧2) 𝐵󸀠 (𝑧2) − 𝐴󸀠 (𝑧2) 𝐵 (𝑧2) .

(12)

From Definition 1 it follows that

Φ (𝑧) = 𝑧 − cos−1(
𝑅(𝑧
2
)

2√𝑄 (𝑧2)

) ,
󵄨󵄨󵄨󵄨𝜌
󵄨󵄨󵄨󵄨 =

√𝑄 (𝑧2). (13)

From (13), we have the following definition for the case of
phase-lag of order infinity.

Definition 3 (phase-lag of order infinity, see [10]). To obtain
phase-lag of order infinity the relation Φ(𝑧) = 𝑧 −

cos−1(𝑅(𝑧2)/2√𝑄(𝑧2)) = 0must hold.

When at a point 𝑧, where 𝛼(𝑧) = 0, the method is said to
have zero amplification error (zero-dissipative), and we have

𝛼 (𝑧) = 1 − √𝑄 (𝑧2) = 0 󳨀→ 𝑄(𝑧
2
) = 1. (14)

From the condition above, we have the following remark.

Remark 4 (see [13]). To achieve phase-lag of order infinity
and zero amplification error, the relations below must hold

𝑅 (𝑧
2
) − 2 cos (𝑧) = 0,

𝑄 (𝑧
2
) − 1 = 0.

(15)

3. Construction of the New Methods

In this section, we will present the construction of two new
RKN methods. The first method is based on a three-stage
RKNmethod with algebraic order four (see [11]). The second
method is based on a four-stage RKN method with algebraic
order five (see [12]).

3.1. New Fourth Order RKNMethod. In this section, we want
to derive an RKN method with phase-lag of order infinity
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and zero amplification error which is based on Garcia’s RKN
method of three-stage and algebraic order four as follows

0

1

4

1

32

4

5
−

4

125

44

125

1

24

4

11

25

264

1

24

16

33

125

264

(16)

First of all, we have to compute the polynomials 𝐴, 𝐵, 𝐴󸀠,
and 𝐵󸀠 and substitute all of them into (12). Hence, we have 𝑅
and 𝑄 in terms of parameters of RKN method. In order to
construct the new method with phase-lag of order infinity
and zero amplification error, we set 𝑎

31
and 𝑎

32
as free

parameters but leave the rest of the coefficients. Then we
substitute the value of the coefficients above into 𝑅 and 𝑄

yielding

𝑅 (𝑧
2
) = −

25𝑎
32

8448
𝑧
6
+ (

25𝑎
31

264
+
75𝑎
32

352
+

1

88
) 𝑧
4
− 𝑧
2
+ 2,

𝑄 (𝑧
2
) = (

25𝑎
32

3168
−

5

1584
+
25𝑎
31

792
) 𝑧
6

+ (−
25𝑎
32

96
+

7

88
−
25𝑎
31

66
) 𝑧
4
+ 1.

(17)

As mentioned in Remark 4, in order to achieve phase-lag of
order infinity and zero amplification error, conditions (15)
must be satisfied. Therefore, we substitute 𝑅 and Q from (17)
into (15) and solve the equations yielding

𝑎
31
= (−278784 cos (𝑧) + 278784 + 14880𝑧4 − 147840𝑧2

+8448𝑧
2 cos (𝑧) − 534𝑧6 + 5𝑧8)

× (50𝑧
4
(600 − 76𝑧

2
+ 𝑧
4
))
−1

,

𝑎
32
= (176 (𝑧

6
− 66𝑧

4
− 96𝑧

2 cos (𝑧)

+672𝑧
2
+ 1152 cos (𝑧) − 1152) )

× (25𝑧
4
(600 − 76𝑧

2
+ 𝑧
4
))
−1

.

(18)

For small value of 𝑧, we use the Taylor series expansion as
follows:

𝑎
31
= −

4

125
+

209

75000
𝑧
2

−
319

6562500
𝑧
4
−

29689

23625000000
𝑧
6

−
620741

3543750000000
𝑧
8
−

625569151

32248125000000000
𝑧
10
+ ⋅ ⋅ ⋅ ,

𝑎
32
=

44

125
−

88

9375
𝑧
2

+
407

3281250
𝑧
4
−

451

1476562500
𝑧
6

+
41287

442968750000
𝑧
8
+

823709

83979492187500
𝑧
10
+ ⋅ ⋅ ⋅ .

(19)

Hence, a new method is derived and we denote it by
PFAFRKN4. This method has two variable coefficients 𝑎

31

and 𝑎
32
that depend on the product of the step-length ℎ and

the frequency of the method V.

3.2. New Fifth Order RKN Method. In this section, we want
to derive a new RKNmethod which is based onHairer’s RKN
method of four-stage and algebraic order five as follows:

0

1

5

1

50

2

3
−
1

27

7

27

1
3

10
−
2

35

9

35

14

336

100

336

54

336
0

14

336

125

336

162

336

35

336

(20)

By using the same strategy, we can obtain a new fifth-
order RKN method with phase-lag of order infinity and zero
amplification error. In this case, we set 𝑎

21
and 𝑎

31
as free

parameters and we found that 𝑅 and 𝑄 are

𝑅 (𝑧
2
)

= (−
1

720
−
𝑎
21

24
) 𝑧
6
+ (

1

12
+
9𝑎
31

56
+
25𝑎
21

84
) 𝑧
4
− 𝑧
2
+ 2,
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𝑄(𝑧
2
)

= (−
7

34560
+
3𝑎
21

896
−
𝑎
31

560
) 𝑧
8
+ (−

19𝑎
21

2016
+
3𝑎
31

112
+

1

576
) 𝑧
6

+ (−
1

96
−
9𝑎
31

28
−
25𝑎
21

336
) 𝑧
4
+ 1.

(21)

Then we substitute (21) into (15) and solve the equations
yielding

𝑎
21
= (495𝑧

8
− 2073600 cos (𝑧) + 178920𝑧4

− 11520𝑧
4 cos (𝑧) − 13500𝑧6 + 2073600

−1209600𝑧
2
− 8𝑧
10
+ 172800𝑧

2 cos (𝑧))

× (50𝑧
4
(−235𝑧

4
+ 2460𝑧

2
− 9000 + 8𝑧

6
))
−1

,

𝑎
31
= (−432000 + 1233𝑧

8
− 14460𝑧

6

+ 37800𝑧
4
+ 161280𝑧

2
+ 432000 cos (𝑧)

−19440𝑧
4 cos (𝑧) + 54720𝑧2 cos (𝑧) − 38𝑧10)

× (27𝑧
4
(−235𝑧

4
+ 2460𝑧

2
− 9000 + 8𝑧

6
))
−1

.

(22)

For small value of 𝑧, we use the Taylor series expansion as
follows:

𝑎
21
=

1

50
−

2

625
𝑧
2
−

1469

3937500
𝑧
4

−
509

10546875
𝑧
6
−

3276761

649687500000
𝑧
8

−
6162305399

13302351562500000
𝑧
10
+ ⋅ ⋅ ⋅ ,

𝑎
31
= −

1

27
+

1

405
𝑧
2
+

289

1701000
𝑧
4

−
131

12150000
𝑧
6
−

2648977

841995000000
𝑧
8

−
5170488637

11493231750000000
𝑧
10
+ ⋅ ⋅ ⋅ .

(23)

Thus, we have obtained a new method which has two
variable coefficients, 𝑎

21
and 𝑎
31
, that depend on the product

of the step-size ℎ and the frequency of the method V.
We denote this method as PFAFRKN5. For linear problems,
the frequency of the method is the same as the frequency
of the exact solution. For nonlinear problems, however,
the frequency of the method is usually different from the
frequency of the exact solution but depends on the method
itself (see [14]). For each specific product of Vℎ, it helps to
nullify the phase-lag error and the amplification error. For
solving oscillatory problems, reducing the phase-lag error
of the method is far more important than decreasing its
algebraic error.

4. Algebraic Order and Error Analysis

In this section, we will compute the local truncation error
(LTE) of the new methods and verify the algebraic order of
the methods.

Firstly, we compute the Taylor expansions of the exact
solution 𝑦(𝑥

𝑛
+ ℎ), the first derivative of the exact solution

𝑦
󸀠
(𝑥
𝑛
+ℎ), the numerical solution𝑦

𝑛+1
, and the first derivative

of the numerical solution 𝑦󸀠
𝑛+1

. Then, we compute the LTE of
𝑦 and its first derivative 𝑦󸀠 as follows:

LTE = 𝑦
𝑛+1

− 𝑦 (𝑥
𝑛
+ ℎ) ,

LTEder = 𝑦
󸀠

𝑛+1
− 𝑦
󸀠
(𝑥
𝑛
+ ℎ) .

(24)

The LTE and LTEder of method PFAFRKN4 are

LTE = − ℎ
5

1440
𝑦
(5)

𝑛
+ 𝑂 (ℎ

6
) ,

LTEder =
ℎ
5

5760
(𝑦
(6)

𝑛
+ 18V2𝑦(4)

𝑛
) + 𝑂 (ℎ

6
) .

(25)

From (25), we can verify that the algebraic order of
PFAFRKN4 is 4 since all of the coefficients up to ℎ4 vanished,
whereas the LTE and LTEder of method PFAFRKN5 are

LTE = ℎ
6

21600
(𝑦
(6)

𝑛
+ 12V2𝑦(4)

𝑛
) + 𝑂 (ℎ

7
) ,

LTEder = −
ℎ
6

108000
(𝑦
(7)

𝑛
+ 20V2𝑦(5)

𝑛
) + 𝑂 (ℎ

7
) .

(26)

From (26), method PFAFRKN5 is said to have algebraic order
5 since all of the coefficients up to ℎ5 vanished. Table 1 shows
a comparison of the properties of the methods derived.

5. Problems Tested and Numerical Results

In this section, we will apply the new methods to some
second-order differential equation problems. The following
explicit RKN methods are selected for the numerical com-
parisons.

Fourth-order:

(i) PFAFRKN4: the new derived fourth-order RKN
method;

(ii) RKN4G: the three-stage fourth-order RKN method
derived by Garćıa et al. [11];

(iii) SRKN3V: the third-order symplectic RKN method
with minimal phase-lag derived by van de Vyver [3];

(iv) PFERKN4P: the fourth-order RKN method with
phase-lag of order infinity derived by Papadopoulos
et al. [10];

(v) OPTRKN4P: the fourth-order optimized RKN
method derived by Papadopoulos and Simos [13].

Fifth-order:

(i) PFAFRKN5: the new derived fifth-order RKN
method;
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Table 1: Summary of the properties of the methods.

Method 𝑞 𝑟 ‖𝜏
(𝑝+1)

‖
2

‖𝜏
󸀠(𝑝+1)

‖
2

DPC DSC S.I/P.I
SRKN3V 6 ∞ 2.750(−3) 9.007(−4) 2.126(−4) — (0, 7.57)
PFERKN4P ∞ 5 — — — — —
OPTRKN4P ∞ ∞ 1/2160 — — — —
RKN4G 4 5 1/1440 3.130(−3) 1/640 1/1440 (0, 8.77)
PFAFRKN4 ∞ ∞ 1/1440 — — — (0, 8.94)
OPTRKN5K1 ∞ ∞ — 1.598(−4) — — —
OPTRKN5K2 ∞ ∞ — 1.598(−4) — — —
RKN5H 6 5 1/21600 1.449(−4) 1/6720 1/3600 —
PFAFRKN5 ∞ ∞ — — — — (0, 8.01)
Note: 2.750(−3) = 2.750 × 10−3.
‖𝜏
(𝑝+1)
‖
2
is principal local truncation error constant for 𝑦.

‖𝜏
󸀠(𝑝+1)
‖
2
is principal local truncation error constant for 𝑦󸀠.

DPC is dispersion constant.
DSC is dissipation constant.
P.I is periodicity interval.
S.I is stability interval.

(ii) RKN5H: the four-stage fifth-order RKN method
derived by Hairer et al. [12];

(iii) OPTRKN5K1: the fifth-order optimizedRKNmethod
with zero first derivative of phase-lag derived by Kosti
et al. [15];

(iv) OPTRKN5K2: the fifth-order optimized RKN meth-
od with zero first derivative of amplification factor
derived by Kosti et al. [16].

Those methods are categorized into two categories
according to algebraic order of each method for comparison
purposes. The accuracy criteria taken is calculating the log

10

of the maximum absolute error,

Accuracy = log
10
max 󵄩󵄩󵄩󵄩𝑦 (𝑡𝑛) − 𝑦𝑛

󵄩󵄩󵄩󵄩 , (27)

where 𝑡
𝑛
= 𝑡
0
+ 𝑛ℎ, 𝑛 = 1, 2, . . . , (𝑇 − 𝑡

0
)/ℎ. We test the

problems in the following for the interval of [0, 4000] with
the step-size ℎ = 1/2𝑁, 𝑁 ≥ 1.

Problem 1 (non-linear, two body problem).

𝑦
󸀠󸀠

1
=
−𝑦
1

𝑟3
, 𝑦

1
(0) = 1 − 𝑒, 𝑦

󸀠

1
(0) = 0,

𝑦
󸀠󸀠

2
=
−𝑦
2

𝑟3
, 𝑦

2
(0) = 0, 𝑦

󸀠

2
(0) = √

1 + 𝑒

1 − 𝑒
,

(28)

where 𝑟 = √𝑦2
1
+ 𝑦2
2
and 𝑒 is the eccentricity.

Exact solution: 𝑦
1
(𝑡) = cos(𝑢) − 𝑒, 𝑦

2
(𝑡) = √1 − 𝑒2 sin(𝑢),

where 𝑢 can be found by solving the equation 𝑢−𝑒 sin(𝑢)−𝑡 =
0.

Estimated frequency: V = 𝑟−3/2.
Source: Kosti et al. [15].

Problem 2 (homogeneous).

𝑑
2
𝑦 (𝑡)

𝑑𝑡2
= −64𝑦 (𝑡) , 𝑦 (0) = 1, 𝑦

󸀠

(0) = −2. (29)

Exact solution: 𝑦(𝑡) = −(1/4) sin(8𝑡) + cos(8𝑡).
Estimated frequency: V = 8.

Problem 3 (inhomogeneous).

𝑑
2
𝑦 (𝑡)

𝑑𝑡2
= −𝑢
2
𝑦 (𝑡) + (𝑢

2
− 1) sin (𝑡) ,

𝑦 (0) = 1, 𝑦
󸀠

(0) = 𝑢 + 1.

(30)

This case is using 𝑢 = 10.
Exact solution: 𝑦(𝑡) = cos(𝑢𝑡) + sin(𝑢𝑡) + sin(𝑡).
Estimated frequency: V = 10.
Source: van der Houwen and Sommeijer [1].

Problem 4 (inhomogeneous).

𝑑
2
𝑦 (𝑡)

𝑑𝑡2
= −𝑦 (𝑡) + 𝑡, 𝑦 (0) = 1, 𝑦

󸀠

(0) = 2. (31)

Exact solution: 𝑦(𝑡) = sin(𝑡) + cos(𝑡) + 𝑡.
Estimated frequency: V = 1.
Source: Allen, Jr. and Wing [17].

Problem 5 (inhomogeneous system).

𝑑
2
𝑦
1
(𝑡)

𝑑𝑡2
= −𝑢
2
𝑦
1
(𝑡) + 𝑢

2
𝑓 (𝑡) + 𝑓

󸀠󸀠

(𝑡) ,

𝑦
1
(0) = 𝑎 + 𝑓 (0) , 𝑦

󸀠

1
(0) = 𝑓

󸀠

(0) ,

𝑑
2
𝑦
2
(𝑡)

𝑑𝑡2
= −𝑢
2
𝑦
2
(𝑡) + 𝑢

2
𝑓 (𝑡) + 𝑓

󸀠󸀠

(𝑡) ,

𝑦
2
(0) = 𝑓 (0) , 𝑦

󸀠

2
(0) = 𝑢𝑎 + 𝑓

󸀠

(0) .

(32)

Exact solution:𝑦
1
(𝑡) = 𝑎 cos(𝑢𝑡)+𝑓(𝑡),𝑦

2
(𝑡) = 𝑎 sin(𝑢𝑡)+

𝑓(𝑡), 𝑓(𝑡) = 𝑒
−10𝑡, and parameters 𝑢 and 𝑎 are 20 and 0.1,

respectively.
Estimated frequency: V = 20.
Source: Lambert and Watson [18].
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Figure 1: Efficiency curves for all methods for Problem 1 with 𝑒 = 0
and ℎ = 1/2𝑖, 𝑖 = 3, . . . , 7.
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Figure 2: Efficiency curves for all methods for Problem 1 with 𝑒 =
0.1 and ℎ = 1/2𝑖, 𝑖 = 3, . . . , 7.

The numerical results are plotted in Figures 1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12, 13, 14, 15, and 16. Figures 1–4 and Figures
9–12 display the efficiency curves where the common loga-
rithm of the maximum global absolute error throughout the
integration versus computational cost measured by number
of function evaluations. Figures 5–8 and Figures 13–16 display
the efficiency curves where the common logarithm of the
maximum global absolute error throughout the integration
versus computational cost measured by time used by each
method in the same computation machine. Figures 1–8 show
the efficiency curves of the methods in the first category
that consist of PFAFRKN4, RKN4G, SRKN3V, PFERKN4P,
and OPTRKN4P, whereas Figures 9–16 show the efficiency
curves of the fifth-order methods consist of PFAFRKN5,
RKN5H, OPTRKN5K1, and OPTRKN5K2. These efficiency
curves display a clear comparison among those methods.

From Figures 1–8, we found that the new method
PFAFRKN4 is the most accurate and efficient for solv-
ing Problems 1–5, followed by OPTRKN4P, SRKN3V,
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Figure 3: Efficiency curves for all methods for Problem 1 with 𝑒 =
0.2 and ℎ = 1/2𝑖, 𝑖 = 3, . . . , 7.
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Figure 4: Efficiency curves for all methods for Problem 1 with 𝑒 =
0.3 and ℎ = 1/2𝑖, 𝑖 = 3, . . . , 7.
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Figure 5: Efficiency curves for all methods for Problem 2 with ℎ =
1/2
𝑖, 𝑖 = 4, . . . , 8.
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Figure 6: Efficiency curves for all methods for Problem 3 with ℎ =
1/2
𝑖, 𝑖 = 4, . . . , 8.
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Figure 7: Efficiency curves for all methods for Problem 4 with ℎ =
1/2
𝑖, 𝑖 = 1, . . . , 5.
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Figure 8: Efficiency curves for all methods for Problem 5with 𝑡end =
4000 and ℎ = 1/2𝑖, 𝑖 = 5, . . . , 9.
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Figure 9: Efficiency curves for all methods for Problem 1 with 𝑒 = 0
and ℎ = 1/2𝑖, 𝑖 = 3, . . . , 7.
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Figure 10: Efficiency curves for all methods for Problem 1 with 𝑒 =
0.1 and ℎ = 1/2𝑖, 𝑖 = 3, . . . , 7.
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Figure 11: Efficiency curves for all methods for Problem 1 with 𝑒 =
0.2 and ℎ = 1/2𝑖, 𝑖 = 3, . . . , 7.
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Figure 12: Efficiency curves for all methods for Problem 1 with 𝑒 =
0.3 and ℎ = 1/2𝑖, 𝑖 = 3, . . . , 7.
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Figure 13: Efficiency curves for allmethods of order five for Problem
2 with ℎ = 1/2𝑖, 𝑖 = 4, . . . , 8.
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Figure 14: Efficiency curves for allmethods of order five for Problem
3 with ℎ = 1/2𝑖, 𝑖 = 4, . . . , 8.
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Figure 15: Efficiency curves for allmethods of order five for Problem
4 with ℎ = 1/2𝑖, 𝑖 = 1, . . . , 5.
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Figure 16: Efficiency curves for all methods of order five for
Problem 5 with ℎ = 1/2𝑖, 𝑖 = 5, . . . , 9.

PFERKN4P, and the corresponding originalmethodRKN4G,
whereas for the fifth-order methods, from Figures 9–16,
we observed that the new method PFAFRKN5 is the most
efficient method, followed by optimized RKN methods
OPTRKN5K1 andOPTRKN5K2 and the corresponding orig-
inal method RKN5H. In addition, we can observe that the
new methods are having the same computational cost with
the corresponding original methods.

6. Conclusion

In this paper, we have derived two new phase-fitted and
amplification-fitted RKN methods for solving second-order
IVPs which are oscillatory in nature. First method is based on
Garcia’s fourth algebraic order RKN method and the second
method is based on Hairer’s four-stage fifth algebraic order
RKN method. Numerical results show that both methods
are more accurate and efficient for solving second-order
differential equations with oscillating solutions.
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