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The study proposed the application of the fuzzy sliding mode for a gyroscope system status control. The state response analysis of
the gyroscope system revealed highly nonlinear and chaotic subharmonic motions of 2T during state formation.The current study
discussed the use of tracking control on the sliding mode control and fuzzy sliding mode control of a gyroscope control system.
Consequently, the gyroscope system drives from chaotic motion to periodic motion.The numerical simulation results confirm that
the proposed controller provides good system stability and convergence without chattering phenomena.

1. Introduction

Since most systems in the natural world are nonlinear, pre-
senting them in a linearmanner is challenging. Some systems
exhibit chaotic phenomena after a certain number of inter-
vals. The chaos phenomenon has been widely discussed and
researched after many areas, including mechanical engineer-
ing, electrical engineering, and communications. Its main
feature is that different initial conditions can produce large
differences in the system response. According to [1–3] certain
conditions generate chaotic behavior in a gyroscope system,
which results in system instability and design problems.
Wang and Yau used differential transformation (DT) method
and Runge-Kutta (RK) method to analyze the dynamic
behavior of the gyroscope system [1]. They also proposed the
use of a sliding mode controller to stabilize the system and
to change its state from chaotic-driven motion to periodic
motion. Ge and Lee used the Lyapunov stability theory and
adaptive control and random optimization method to syn-
chronize two identical gyroscope systems and to track system
parameters [2]. Fei et al. based the adaptive sliding mode

control on a radial basis function neural network for three-
axis gyroscope used in micro electromechanical systems
(MEMS) [4]. Chaos control has attracted the attention of
many scholars in recent years [5–13]. Yau et al. used particle
swam optimization (PSO) algorithm to find close optimal
parameters for PID control and used a PID controller for
chaos synchronization control [7]. Aghababa et al. proposed
the use of slidingmode control technology to solve finite-time
chaos synchronization problems by enabling synchronization
of two different chaotic systems with unknown parameters
[9]. Li and Kumar proposed the application of nonsingular
fast terminal sliding mode control technology in satellite
attitude synchronization [10].

This study proposes the use of fuzzy sliding mode
control technology for state control of a gyroscope sys-
tem. Formation of chaotic motion in a gyroscope during
subharmonic motions of 2𝑇 is discussed, and controller
designs that drive the gyroscope system state from chaotic
motion to periodic motion are proposed. The framework
of this paper is as follows: Section 2 briefly introduces the
gyroscope system and its issues; Section 3 introduces the



2 Abstract and Applied Analysis

sliding mode control in the gyroscope system design and
its applications; Section 4 proposes the fuzzy sliding mode
control for a gyroscope system and introduces the application
of the Lyapunov stability theory for designing a fuzzy sliding
mode controller; and Section 5 presents the results of the
numerical simulation approach used to verify the feasibility
of the proposed method and states the conclusions of the
study.

2. A Gyroscope System

Figure 1 shows the heavy symmetric gyroscope placed on the
structure of the vibration mechanism. The Euler angles 𝜃, 𝜓,
and 𝜑 refer to the three-dimensional motion of the system,
and multiple harmonic motion∑
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base of the vibrations. The status order is 𝑥 = 𝜃, 𝑦 = ̇𝜃, and
𝑧 = �̇�. The system dynamic equations are as follows [1]:
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where 𝐼
1
is the uniform gyroscope moment of inertia axis,

𝑀
𝑔
is the weight of gravity, and 𝑙 is the distance between the

center of the gyroscope and point𝑂. If only the system of the
subharmonic motions of 2𝑇 is considered, the system can be
rewritten as
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The system parameter settings are 𝛽
𝜓

= 2, 𝛽
𝜑

= 5, 𝐼
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= 1,
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𝑔

= 4, 𝑙 = 0.25, 𝐶 = 0.5, and 𝜔
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= 2. The analysis in [1]

showed that the chaos phenomenon in a gyroscope system
results from subharmonic motions of 2𝑇. Based on the
dynamic analysis of [1],𝐴

2
= 14.21was selected for the study.

Figure 2 shows the numerical simulation results for the phase
plane trajectory of the gyroscope [2]. The results indicate
that chaos phenomena resulted from two attractors of system
trajectories.

Since the gyroscope system has chaotic motion, driving
its state into periodic motion requires the addition of 𝑢
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Figure 1: A schematic diagram of a heavy symmetric gyroscope [2].
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Figure 2: Phase portrait of gyroscope system.

respectively. The dynamic equation for the system can then
be rewritten as

�̇� = 𝑦, (3)
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A controller was designed into the system to solve two
consecutive equations for tracking 𝜃

𝑑
and 𝜓

𝑑
in the sys-

tem, which allows the gyroscope system to exhibit periodic
motion.Through the system control input and state response,
the tracking error can be defined as 𝐸(𝑡) = [𝑒
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equations and system errors equations, the error dynamic
equation can be computed as
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Definition 1. Considering the design of the state signal and
the gyroscope system in (3)–(5), if 𝑇 = 𝑇(𝐸(0)) > 0 exists,
then

lim
𝑡≥𝑇

‖𝐸 (𝑡)‖ = 0. (7)

If 𝑡 ≥ 𝑇, then the gyroscope state track to the state signal
design within a limited time.

This study designed a fuzzy sliding mode controller to
enable the output state of the gyroscope system to tracking the
design state. Tracking control is achieved by using the con-
troller for gradual convergence of the error dynamics equa-
tion to zero.

3. Sliding Mode Control

In accordance with the analysis of chaotic phenomena in a
gyroscope system, Wang and Yau proposed the use of sliding
mode controller to tracking system status and harmonic
signals [1]. To ensure system stability and error convergence
to zero, two sliding surfaces were defined:
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where 𝜆
1
and 𝜆

2
are positive constants.When the system acts

on the sliding surface, (8) are satisfied as
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Equations (9) can calculate the equivalent control for the
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𝑠1eq(𝑡) and 𝑢
𝑠2eq(𝑡). The equivalent control can drive

the system dynamic error to maintain the gradual movement

of the sliding surface toward the origin. It can be deducted
that this ensures that the dynamic system error progressively
approaches zero. In order to make the system error status
contact the designed sliding surface, the system selects two
sliding mode control inputs, which is designed as

𝑢
𝑠1

= −𝛾
1
𝛼
1
sgn (𝑠

𝑠1
(𝑡)) , 𝛾

1
> 0,

𝑢
𝑠2

= −𝛾
2
𝛼
2
sgn (𝑠

𝑠2
(𝑡)) , 𝛾

2
> 0.

(10)

Based on [1], 𝛼
1
and 𝛼

2
are

𝛼
1
=



(𝛽
𝜓
− 𝛽
𝜑
cos (𝑒

1
+ 𝜃
𝑑
)) (𝛽
𝜑
− 𝛽
𝜓
cos (𝑒

1
+ 𝜃
𝑑
))

𝐼
2

1
⋅ sin3 (𝑒

1
+ 𝜃
𝑑
)

𝑓

+(
𝐶

𝐼
1

− 𝜆
1
) 𝑒
2



+

𝑀
𝑔

𝐼
1

(𝑙 + 𝐴
2
) +



𝐶

𝐼
1

̇𝜃
𝑑



+

̈𝜃
𝑑


,

𝛼
2
=



− [
2 cos (𝑒

1
+ 𝜃
𝑑
)

sin (𝑒
1
+ 𝜃
𝑑
)

(𝑒
2
+ 𝜃
𝑑
) (𝑒
3
+ �̇�
𝑑
)]

+ 𝜆
2
𝑒
3
+

𝛽
𝜑
(𝑒
2
+ ̇𝜃
𝑑
)

𝐼
1
sin (𝑒
1
+ 𝜃
𝑑
)



+
�̈�𝑑

 .

(11)

To prevent the sgn(∙) equation from forming a noncontinu-
ous control signal in the design, whichwould cause chattering
phenomenon in the system, the controller presented in (10)
can be modified as
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denominator from becoming zero.

4. Fuzzy Sliding Mode Control

This section describes the design and implementation of a
fuzzy sliding mode controller in the gyroscope system. First,
the two controller inputs for the gyroscope were designed for
the two sliding planes as follows:
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where 𝑘
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When the gyroscope system error states are during the sliding
surface design, the controllers in (16) can be used to maintain
the system states in sliding surfaces. Two fuzzy sliding mode
controllers are used so that the error state quickly comes into
contact with the sliding surfaces:
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where NB, NM, NS, ZE, PS, PM, and PB are colloquial nar-
ratives representing negative big, negative medium, negative
small, zero, positive small, positive medium, and positive big,
respectively. The 𝑆
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controller inference corresponds to fuzzy singleton, and the
weighted average defuzzification method is used to calculate
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Adjusting the fuzzy controller can drive the gyroscope system
state to tracking the design state.

Theorem 2. Considering the error dynamics equations (6) for
the gyroscope system and the designed control inputs (19), the
gyroscope systemasymptotically synchronizeswith the designed
signal so that the system error converges to zero.
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�̇� < 0.The states errors of the system are ensured to converge
to zero. This completes the proof.

To verify the performance merits of the designed fuzzy
sliding controller, integral absolute error (IAE) was used as
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Figure 3: Time response of gyroscope via sliding mode control.

a performance index. As described by the gyroscope system
verification, IAE is expressed as

IAE = ∫

∞

𝑡0

|𝑒 (𝑡)| 𝑑𝑡. (23)

5. Simulation Results

This section presents the results of a numerical simulation
performed to evaluate the proposed method. The efficiency
of the gyroscope system was evaluated using the sliding
mode control method introduced by [1] and the proposed
fuzzy sliding mode controller. Performance indices were also
used to compare its advantages and disadvantages. In the
numerical simulation, the gyroscope system parameters were
set to 𝛽

𝜑
= 5, 𝐼
1
= 1, 𝑀

𝑔
= 4, 𝑙 = 0.25, 𝐶 = 0.5, and 𝜔

2
= 2.

Calculations were made at 1ms intervals. The initial value of
the gyroscope system is set to 𝑥(0) = −0.3, 𝑦(0) = −0.1, and
𝑧(0) = 5.The periodic trajectories designed for the gyroscope
system were 𝜃

𝑑
= 0.5 ⋅ sin(8𝑡), 𝜙

𝑑
= 0.4 ⋅ sin(4𝑡). During

the simulation, control signals were added at 𝑡 = 5 sec to the
gyroscope system. According to the sliding mode control in
[1], the parameters for sliding surfaces (8) are 𝜆

1
= 𝜆
2
= 3;

the selected parameters for controllers (12) and (13) are 𝛾
1
=

𝛾
2
= 2. Figures 3 and 4 show the simulation results. The solid

line represents the status of the gyroscope system; the dashed
line represents the cyclical trace design in Figure 3. Figure 4
is the control signal of the sliding mode of the gyroscope
system. The parameters for the proposed fuzzy sliding mode
controller sliding surfaces (14) and (15) are set to 𝑘

1
= 2,

𝑘
2
= 20, and 𝑘

3
= 10. The parameters chosen for controller

(17) are 𝜀
1

= 1.5, and 𝜀
2

= 2, 𝜀
𝑠1

= 1, 𝜀
𝑠2

= 50. Figures 5
and 6 show the simulation results. The solid line represents
the status of the gyroscope system; the dashed line represents
the periodic trajectory in Figure 5. Figure 6 shows the control
signal for the fuzzy sliding mode for the gyroscope system.
Figure 7 shows the tracking error signal where, the solid line
represents the sliding mode control and the dashed line the
fuzzy sliding mode control. Table 1 shows the control system
performance. Thus, the performance indicators confirm the
satisfactory performance of the proposed gyroscope system.

6. Conclusions

The study was able to explore the problem from chaotic
motion to periodic motion control of the gyroscope system
states. The fuzzy sliding mode control was used to drive
the system states into the designed states. Introducing the
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Figure 4: Control input using sliding mode control.

0 2 4 6 8 10

0

Time (s)

−3

−2.5

−2

−1.5

−1

−0.5

x

(a)

0 2 4 6 8 10

0

2

4

6

8

Time (s)

−8

−6

−4

−2

y

(b)

0 2 4 6 8 10

0

5

10

15

20

25

30

Time (s)

z

−5

(c)

Figure 5: Time response of gyroscope via fuzzy sliding mode control.
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Table 1: Performance index of controllers.

IAE of 𝑒
1

IAE of 𝑒
2

IAE of 𝑒
3

SMC 0.5671 1.6411 1.6413
FSMC 0.3572 1.5711 1.3852

Lyapunov stability theory in the design of the fuzzy sliding
mode controller enables the use of the proposed control law
to ensure a stable and robust gyroscope system. Simulation
results show that the proposed fuzzy slidingmode control can
solve gyroscope system tracking control problems and does
not produce chattering.
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