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We study the bifurcation and stability of trivial stationary solution (0, 0) of coupled Kuramoto-Sivashinsky- and Ginzburg-Landau-
type equations (KS-GL) on a bounded domain (0, L) with Neumann’s boundary conditions. The asymptotic behavior of the trivial
solution of the equations is considered. With the length L of the domain regarded as bifurcation parameter, branches of nontrivial
solutions are shown by using the perturbation method. Moreover, local behavior of these branches is studied, and the stability of
the bifurcated solutions is analyzed as well.

1. Introduction

The mathematical theory of pattern formation [1–3] has a
wide range of applications. In the field of fluid mechanics,
Rayleigh-Bénard convection is themostwidely studied exam-
ple. Like the thermally driven Bénard convection, the surface
tension-driven Marangoni convection is also an interesting
pattern formation of nonlinear system. With mass transfer
from liquid phase to gas phase, a typical setup for the
Marangoni convection is a liquid layer resting on a rigid
surface, with a free deformable upper interface contacting
an infinite layer of gas. Nevertheless, at present, we still
find it hard to analyze the governing equations for the
Marangoni convection, that is, Navier-Stokes equations and
mass (surfactant) transfer equation. What we can only use is
numerical simulation so far.There is little work that has been
done on the nonlinear Marangoni convection.

In this paper, we consider a simplified model, which is
proposed to capture important nonlinear features yet more
amendable to analyse:

𝐴
𝑡
= 𝐴 + 𝐴

𝑥𝑥
−
󵄨󵄨󵄨󵄨󵄨
𝐴
2󵄨󵄨󵄨󵄨󵄨
𝐴 + 𝐴ℎ,

ℎ
𝑡
= −ℎ

𝑥𝑥
− ℎ
𝑥𝑥𝑥𝑥

+ 𝛼
󵄨󵄨󵄨󵄨󵄨
𝐴
2󵄨󵄨󵄨󵄨󵄨𝑥𝑥

,

(1)

where 𝐴(𝑥, 𝑡) is the amplitude for the Marangoni convec-
tion mode and ℎ(𝑥, 𝑡) is the interface deformation (real
function). Equation (1) has been derived by Golovin et
al. [4]. The constant 𝛼 = 𝑘/(𝑀𝑎 − 𝑀𝑎

𝑐
)
1/5 is positive,

with 𝑀𝑎 denoting the Marangoni number, and represents
the gradient (derivative) of surface tension with respect
to surfactant concentration. 𝑀𝑎

𝑐
is the critical Marangoni

number at which the trivial stationary state becomes linearly
unstable, and 𝑘 > 0 is a constant related to other system
parameters.

Equation (1) without the interaction term 𝐴ℎ is the well-
known Ginzburg-Landau equation [5, 6], while the second
equation without the term |𝐴

2
|
𝑥𝑥

is the linearized version of
the so-called Kuramoto-Sivashinsky equation [7]. Both the
G-L equation and K-S equation have been extensively inves-
tigated as model examples of infinite dimensional dynamical
systems. In [8], Kazhdan et al. have done numerical simu-
lation of this coupled system of Kuramoto-Sivashinsky- and
Ginzburg-Landau-type equations (hereafter, KS-GL system).
Duan et al. [9] have discussed the existence and uniqueness
of global solutions of this coupled system, using the contrac-
tion mapping principle and energy estimates. Despite these
publications on KS-GL equation, the static bifurcations of the
equation have not been thoroughly studied. In this paper,
we focus on studying bifurcations of the KS-GL system. In
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[10], Xiao and Gao analyzed the bifurcations of the 1D Swift-
Hohenberg equation with quintic nonlinearity. Two types of
structures in the bifurcation diagrams are presented when
the bifurcation points are closer, and their stabilities are
analyzed. Li and Chen have applied singularity theory and
the perturbation method to study the bifurcations of the 1D
and 2D K-S equations and get the asymptotic expressions of
the steady-state solution branches that have bifurcated from
the equilibrium in [11, 12]. In this paper, we will use the
methods in [10–12] to discuss the bifurcated solutions. In
(1), 𝐴 is complex. Namely, we can write 𝐴 = 𝑅 exp(𝑖𝜃). The
additional phase 𝜃 makes analysis very complicated. Here,
we restrict our attention to invariant subspace in which 𝐴 is
real. We hope to return to the general case in future study. In
this paper, we discuss steady solutions of the parabolic partial
differential equations

𝐴
𝑡
= 𝐴 + 𝐴

𝑥𝑥
− 𝐴

3
+ 𝐴ℎ,

ℎ
𝑡
= −ℎ

𝑥𝑥
− ℎ
𝑥𝑥𝑥𝑥

+ 𝛼(𝐴
2
)
𝑥𝑥
,

(2)

on the cylindrical domain 𝑄 = (0, 𝐿) × 𝑅
+ subject to the

boundary conditions

𝐴
𝑥
= ℎ
𝑥
= 𝐴

𝑥𝑥𝑥
= ℎ
𝑥𝑥𝑥

= 0 at 𝑥 = 0, 𝐿. (3)

The steady-state equation of (2) reads as

𝐴 + 𝐴
𝑥𝑥
− 𝐴

3
+ 𝐴ℎ = 0, 0 < 𝑥 < 𝐿,

−ℎ
𝑥𝑥
− ℎ
𝑥𝑥𝑥𝑥

+ 𝛼(𝐴
2
)
𝑥𝑥

= 0, 0 < 𝑥 < 𝐿,

𝜕𝐴

𝜕𝑥
= 0,

𝜕
3
𝐴

𝜕𝑥3
= 0, 𝑥 = 0, 𝐿, 𝑡 > 0,

𝜕ℎ

𝜕𝑥
= 0,

𝜕
3
ℎ

𝜕𝑥3
= 0, 𝑥 = 0, 𝐿, 𝑡 > 0.

(4)

Wewill discuss the bifurcation of the trivial steady state of the
equations.

2. Analysis of the Trivial Steady State (0, 0)

In this section, we study some properties of the linear
problem associated with problem (4). Let 𝑋 = {(𝐴, ℎ) ∈

𝐻
2
[0, 𝐿] × 𝐻

2
[0, 𝐿] | 𝐴

󸀠
(0) = 𝐴

󸀠
(𝐿) = 𝐴

󸀠󸀠󸀠
(0) = 𝐴

󸀠󸀠󸀠
(𝐿) =

ℎ
󸀠
(0) = ℎ

󸀠
(𝐿) = ℎ

󸀠󸀠󸀠
(0) = ℎ

󸀠󸀠󸀠
(𝐿) = 0}. We linearize the

problem at the trivial solution (0, 0), and then we have the
corresponding differential operator matrix

Γ
1
= (

𝜕
2

𝜕𝑥2
+ 𝐼 0

0 −
𝜕
2

𝜕𝑥2
−

𝜕
4

𝜕𝑥4

), (5)

and the eigenvalue problem is

𝜑
𝑥𝑥
+ 𝜑 = 𝜆𝜑, 0 < 𝑥 < 𝐿,

−𝜓
𝑥𝑥
− 𝜓

𝑥𝑥𝑥𝑥
= 𝜆𝜓, 0 < 𝑥 < 𝐿,

𝜑
𝑥
(0) = 𝜑

𝑥
(𝐿) = 𝜑

𝑥𝑥𝑥
(0) = 𝜑

𝑥𝑥𝑥
(𝐿) = 0,

𝜓
𝑥
(0) = 𝜓

𝑥
(𝐿) = 𝜓

𝑥𝑥𝑥
(0) = 𝜓

𝑥𝑥𝑥
(𝐿) = 0.

(6)

The eigenvalues 𝜆 are given by

𝜆 = 𝜆
𝑚
= −(

𝑚𝜋

𝐿
)

2

+ 1, 𝜆 = 𝛿
𝑛
= (

𝑛𝜋

𝐿
)

2

− (
𝑛𝜋

𝐿
)

4

,

𝑛, 𝑚 ∈ 𝑁.

(7)

If 𝜆
𝑚
= 𝛿
𝑛
, then the corresponding eigenvectors are

(
cos 𝑚𝜋𝑥

𝐿
0

) , (

0

cos 𝑛𝜋𝑥
𝐿

) . (8)

If 𝜆
𝑚

̸= 𝛿
𝑛
, then for 𝜆

𝑚
= −(𝑚𝜋/𝐿)

2
+ 1, the corresponding

eigenvector is

(
cos 𝑚𝜋𝑥

𝐿
0

) , (9)

and for 𝛿
𝑛
= (𝑛𝜋/𝐿)

2
− (𝑛𝜋/𝐿)

4, the corresponding eigenvec-
tor is

(

0

cos 𝑛𝜋𝑥
𝐿

) . (10)

It will be convenient to rescale the spatial variable so that
the domain (0, 𝐿) maps onto the fixed domain (0, 1). Thus,
we introduce the variables 𝑥 and 𝑢̃, 𝐿𝑥 = 𝑥, 𝑢̃(𝑥) = 𝑢(𝑥),
Ṽ(𝑥) = V(𝑥), then omit the tildes, and we find that problem
(4) becomes

𝐴 + 𝐿
2
𝐴
𝑥𝑥
− 𝐿
2
𝐴
3
+ 𝐿
2
𝐴ℎ = 0, 0 < 𝑥 < 1,

−𝐿
2
ℎ
𝑥𝑥
− ℎ
𝑥𝑥𝑥𝑥

+ 𝛼𝐿
2
(𝐴
2
)
𝑥𝑥

= 0, 0 < 𝑥 < 1,

𝜕𝐴

𝜕𝑥
= 0,

𝜕
3
𝐴

𝜕𝑥3
= 0, 𝑥 = 0, 1, 𝑡 > 0,

𝜕ℎ

𝜕𝑥
= 0,

𝜕
3
ℎ

𝜕𝑥3
= 0, 𝑥 = 0, 1, 𝑡 > 0.

(11)

The corresponding eigenvalue problem at (0, 0) is

𝜑
𝑥𝑥
+ 𝐿
2
𝜑 = 𝜆

󸀠
𝜑, 0 < 𝑥 < 1,

−𝐿
2
𝜓
𝑥𝑥
− 𝜓

𝑥𝑥𝑥𝑥
= 𝜆

󸀠
𝜓, 0 < 𝑥 < 1,

𝜑
𝑥
(0) = 𝜑

𝑥
(1) = 𝜑

𝑥𝑥𝑥
(0) = 𝜑

𝑥𝑥𝑥
(1) = 0,

𝜓
𝑥
(0) = 𝜓

𝑥
(1) = 𝜓

𝑥𝑥𝑥
(0) = 𝜓

𝑥𝑥𝑥
(1) = 0.

(12)

It is easy to find that 𝜆󸀠 = 𝐿
2
𝜆.

3. Bifurcation and Stability Analysis in
Different Cases

Let 𝐿 be a bifurcation parameter; 𝐿 = 𝜋 is a bifurcation
point. In this section, we discuss how many nontrivial
solution branches will be bifurcated from the trivial solution
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near 𝐿 = 𝜋 and their asymptotic expression. Moreover, we
will discuss the stability of the solution branches.

When 𝐿 = 𝜋, the eigenvector at (0, 0) of (12) is

𝑒
1
= (

cos𝜋𝑥
𝑐

) , 𝑒
2
= (

0

cos𝜋𝑥) , 𝑐 ∈ 𝑅. (13)

We set

𝐿 = 𝜋 + 𝛾 (𝜀) ⋅ 𝜀, (14)

(
𝐴

ℎ
) =

𝑛

∑

𝑖=1

𝜀𝛼
𝑖
𝑒
𝑖
+ 𝜀
2
(
𝑎 (𝑥, 𝜀)

𝑏 (𝑥, 𝜀)
) , (15)

where 𝜀 is a small parameter, ( 𝑎(𝑥,𝜀)
𝑏(𝑥,𝜀)

) ∈ {𝑒
1
, 𝑒
2
}
⊥, 𝛼2

1
+𝛼
2

2
= 1.

Substituting (14), (15) into (11) leads to

(𝜀𝛼
1
cos𝜋𝑥 + 𝜀2𝑎 (𝑥, 𝜀))

󸀠󸀠

+ (𝜋 + 𝛾 (𝜀) ⋅ 𝜀)
2

× (𝜀𝛼
1
cos𝜋𝑥 + 𝜀2𝑎 (𝑥, 𝜀)) − (𝜋 + 𝛾 (𝜀) ⋅ 𝜀)2

× (𝜀𝛼
1
cos𝜋𝑥 + 𝜀2𝑎 (𝑥, 𝜀))

3

+ (𝜋 + 𝛾 (𝜀) ⋅ 𝜀)
2

× (𝜀𝛼
1
cos𝜋𝑥 + 𝜀2𝑎 (𝑥, 𝜀))

× (𝜀𝛼
1
𝑐 + 𝜀𝛼

2
cos𝜋𝑥 + 𝜀2𝑏 (𝑥, 𝜀)) = 0,

(16)

− (𝜋 + 𝛾 (𝜀) ⋅ 𝜀)
2

(𝜀𝛼
1
𝑐 + 𝜀𝛼

2
cos𝜋𝑥 + 𝜀2𝑏 (𝑥, 𝜀))

󸀠󸀠

− (𝜀𝛼
1
𝑐 + 𝜀𝛼

2
cos𝜋𝑥 + 𝜀2𝑏 (𝑥, 𝜀))

󸀠󸀠󸀠󸀠

+ 𝛼(𝜋 + 𝛾 (𝜀) ⋅ 𝜀)
2

((𝜀𝛼
1
cos𝜋𝑥 + 𝜀2𝑎 (𝑥, 𝜀))

2

)

󸀠󸀠

= 0,

(17)

where 󸀠 means 𝜕/𝜕𝑥 and 󸀠󸀠 means 𝜕2/𝜕𝑥2.
Letting the coefficient of 𝜀2 vanish in (16), (17) gives

𝑎
󸀠󸀠

0
(𝑥) + 𝜋

2
𝑎
0
(𝑥) + 2𝜋𝛾 (0) 𝛼

1
cos𝜋𝑥

+ 𝜋
2
𝛼
1
cos𝜋𝑥 (𝛼

1
𝑐 + 𝛼

2
cos𝜋𝑥) = 0,

(18)

𝑏
󸀠󸀠󸀠󸀠

0
(𝑥) + 𝜋

2
𝑏
󸀠󸀠

0
(𝑥) + 2𝜋𝛾 (0) 𝛼

1
cos𝜋𝑥

+ 𝜋
2
𝛼
1
cos𝜋𝑥 (𝛼

1
𝑐 + 𝛼

2
cos𝜋𝑥) = 0,

(19)

where ( 𝑎0(𝑥)
𝑏0(𝑥)

) = (
𝑎(𝑥,0)

𝑏(𝑥,0)
) ∈ {𝑒

1
, 𝑒
2
}
⊥.

Taking the inner product of (16) with cos𝜋𝑥, we obtain

∫

1

0

𝑎
󸀠󸀠

0
(𝑥) cos𝜋𝑥𝑑𝑥 + 𝜋2 ∫

1

0

𝑎
0
(𝑥) cos𝜋𝑥𝑑𝑥

+ 2𝜋𝛾 (0) 𝛼
1
∫

1

0

cos2𝜋𝑥𝑑𝑥

+ 𝜋
2
𝛼
1
∫

1

0

cos2𝜋𝑥 (𝛼
1
𝑐 + 𝛼

2
cos𝜋𝑥) 𝑑𝑥 = 0.

(20)

For the first term of (20), integrate it by part and from the
boundary condition 𝑎

󸀠
(0) = 𝑎

󸀠
(1) = 0, and we have

∫

1

0

𝑎
󸀠󸀠

0
(𝑥) cos𝜋𝑥𝑑𝑥 = −𝜋

2
∫

1

0

𝑎
0
(𝑥) cos𝜋𝑥𝑑𝑥. (21)

Substituting (21) to (20), we get

𝛾 (0) = −
1

2
𝑐𝛼
1
𝜋, (𝛼

1
̸= 0) ,

𝛾 (0) is an arbitrary constant, (𝛼
1
= 0) .

(22)

From the aforementioned orthogonality condition, we
know that

∫

1

0

𝑎
0
(𝑥) cos𝜋𝑥 + 𝑐𝑏

0
(𝑥) 𝑑𝑥 = 0, (23)

∫

1

0

𝑏
0
(𝑥) cos𝜋𝑥𝑑𝑥 = 0. (24)

Taking the inner product of (19) with cos𝜋𝑥, we obtain

∫

1

0

𝑏
󸀠󸀠󸀠󸀠

0
(𝑥) cos𝜋𝑥𝑑𝑥 + 𝜋2 ∫

1

0

𝑏
󸀠󸀠

0
(𝑥) cos𝜋𝑥𝑑𝑥

− 2𝛼
2
𝜋
3
𝛾 (0) ∫

1

0

cos2𝜋𝑥

+ 2𝛼𝛼
2

1
𝜋
4
∫

1

0

cos 2𝜋𝑥 cos𝜋𝑥𝑑𝑥 = 0.

(25)

Because of the boundary condition 𝑏
󸀠
(0) = 𝑏

󸀠
(1) = 𝑏

󸀠󸀠󸀠
(0) =

𝑏
󸀠󸀠󸀠
(1) = 0, orthogonality condition (24), we get

𝛾 (0) = 0, (𝛼
2

̸= 0) ,

𝛾 (0) is an arbitrary constant, (𝛼
2
= 0) ,

(26)

from (25).
Comparing (22) and (26), for 𝛼2

1
+ 𝛼
2

2
= 1, we deduce the

following important relation:

𝛾 (0) = −
1

2
𝑐𝛼
1
𝜋. (27)

Substituting (27) to (18), we get

𝑎
󸀠󸀠

0
(𝑥) + 𝜋

2
𝑎
0
(𝑥) + 𝜋

2
𝛼
1
𝛼
2
cos2𝜋𝑥 = 0. (28)

For 𝑎
0
(𝑥) satisfies the boundary condition 𝑎

󸀠

0
(0) = 𝑎

󸀠

1
(0) =

𝑎
󸀠󸀠󸀠

0
(0) = 𝑎

󸀠󸀠󸀠

0
(1), we calculate from (28) that

𝑎
0
(𝑥) = 𝑘

1
cos𝜋𝑥 + 𝛼

1
𝛼
2

6
cos 2𝜋𝑥 − 𝛼

1
𝛼
2

2
, 𝑘

1
∈ 𝑅.

(29)

Next, we want to calculate 𝑏
0
(𝑥) and substitute (27) to

(19); we get the following ODE:

𝑏
󸀠󸀠󸀠󸀠

0
(𝑥) + 𝜋

2
𝑏
󸀠󸀠

0
(𝑥) + 𝑐𝛼

1
𝛼
2
𝜋
4 cos𝜋𝑥

+ 2𝛼𝛼
2

1
𝜋
4 cos 2𝜋𝑥 = 0.

(30)

By lengthy computations and the boundary conditions
𝑏
󸀠

0
(0) = 𝑏

󸀠

1
(0) = 𝑏

󸀠󸀠󸀠

0
(0) = 𝑏

󸀠󸀠󸀠

0
(1), we deduce that

𝑏
0
(𝑥) = 𝑐

1
+ 𝑐
2
cos𝜋𝑥 −

𝛼𝛼
2

1

6
cos 2𝜋𝑥, (31)

𝑐𝛼
1
𝛼
2
= 0. (32)
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Taking the inner product with cos𝜋𝑥 of (31), from (24), we
know that

∫

1

0

(𝑐
1
+ 𝑐
2
cos𝜋𝑥 −

𝛼𝛼
2

1

6
cos 2𝜋𝑥) cos𝜋𝑥𝑑𝑥 = 0, (33)

which gives us

𝑐
2
= 0, (34)

(
𝜋
2

96
𝛼
1
−
𝜋
2

96
𝛼𝛼
3

1
−
𝜋
2

24
𝛼
3

1
) cos 3𝜋𝑥𝑏

0
(𝑥)

= 𝑐
1
−
𝛼𝛼
2

1

6
cos 2𝜋𝑥.

(35)

Substituting (29), (35) to (23), we have

∫

1

0

cos𝜋𝑥(𝑘
1
cos𝜋𝑥 + 𝛼

1
𝛼
2

6
cos 2𝜋𝑥 − 𝛼

1
𝛼
2

2
)

+ 𝑐(𝑐
1
−
𝛼𝛼
2

1

6
cos 2𝜋𝑥)𝑑𝑥 = 0,

(36)

from which we get

𝑘
1
= −2𝑐𝑐

1
,

𝑎
0
(𝑥) = −2𝑐𝑐

1
cos𝜋𝑥 + 𝛼

1
𝛼
2

6
cos 2𝜋𝑥 − 𝛼

1
𝛼
2

2
.

(37)

From the previous discussion, we obtain

𝑐𝛼
1
𝛼
2
= 0, (38)

with the normal condition

𝛼
2

1
+ 𝛼
2

2
− 1 = 0. (39)

When 𝑐 = 0, then we have

𝛾
0
= 0; (40)

at this time,

𝑎
0
(𝑥) =

𝛼
1
𝛼
2

6
cos 2𝜋𝑥 − 𝛼

1
𝛼
2

2
,

𝑏
0
(𝑥) = 𝑐

1
−
𝛼𝛼
2

1

6
cos 2𝜋𝑥.

(41)

Letting the coefficient of 𝜀3 of (16), (17) vanish, we get

𝑎
󸀠󸀠

1
(𝑥) + 𝜋

2
𝑎
1
(𝑥) + 2𝜋𝛼

1
𝛾
1
(0) cos𝜋𝑥

− 𝜋
2
𝛼
3

1
cos3𝜋𝑥 + 𝜋2𝛼

1
cos𝜋𝑥𝑏

0
(𝑥)

+ 𝜋
2
𝛼
2
𝑎
0
(𝑥) cos𝜋𝑥 = 0,

(42)

𝑏
󸀠󸀠󸀠󸀠

1
(𝑥) + 𝜋

2
𝑏
󸀠󸀠

1
(𝑥) − 2𝛼

1
𝛼𝜋
2 cos𝜋𝑥𝑎󸀠󸀠

0
(𝑥)

+ 4𝛼
1
𝛼𝜋
3 sin𝜋𝑥𝑎󸀠

0
(𝑥)

+ 2𝛼
1
𝛼𝜋
4 cos𝜋𝑥𝑎

0
(𝑥)

− 2𝜋
3
𝛾
1
(0) 𝛼

2
cos𝜋𝑥 = 0,

(43)

where 𝑎
1
(𝑥) = (𝜕𝑎(𝑥, 𝜀)/𝜕𝑥)|

𝜀=0
, 𝑏
1
(𝑥) = (𝜕𝑏(𝑥, 𝜀)/𝜕𝑥)|

𝜀=0

and 𝛾
1
(0) = 𝛾

󸀠
(0).

Taking the inner product of (42) with cos𝜋𝑥, we obtain

∫

1

0

𝑎
󸀠󸀠

1
(𝑥) cos𝜋𝑥𝑑𝑥 + 𝜋2 ∫

1

0

𝑎
1
(𝑥) cos𝜋𝑥𝑑𝑥

+ 2𝜋𝛼
1
𝛾
1
(0) ∫

1

0

cos2𝜋𝑥𝑑𝑥 − 𝜋2𝛼3
1
∫

1

0

cos4𝜋𝑥𝑑𝑥

+ 𝜋
2
𝛼
1
∫

1

0

cos2𝜋𝑥𝑏
0
(𝑥) 𝑑𝑥

+ 𝜋
2
𝛼
2
∫

1

0

𝑎
0
(𝑥) cos2𝜋𝑥𝑑𝑥 = 0,

(44)

from which we know that

𝛾
1
(0) =

3

8
𝜋𝛼
2

1
+
𝛼𝛼
2

1
𝜋

24
−
𝑐
1
𝜋

2
+

5

24
𝜋𝛼
2

2
, 𝛼

1
̸= 0,

𝛾
1
(0) is an arbitrary constant, 𝛼

1
= 0.

(45)

Next, we discuss the expression and the stability of the
bifurcated solutions in different cases.

Case 1. 𝑐 = 0, 𝛼
1

̸= 0.
Substituting (41), (45) to (42), we have

𝑎
󸀠󸀠

1
(𝑥) + 𝜋

2
𝑎
1
(𝑥) + (

𝜋
2

12
𝛼
1
−
𝜋
2

12
𝛼𝛼
3

1
−
𝜋
2

3
𝛼
3

1
) cos 3𝜋𝑥 = 0.

(46)

Because of the orthogonality condition

∫

1

0

𝑎
1
(𝑥) cos𝜋𝑥𝑑𝑥 = 0, (47)

and boundary condition

𝑎
󸀠

1
(0) = 𝑎

󸀠

1
(1) = 0, (48)

we get

𝑎
1
(𝑥) = (

𝜋
2

96
𝛼
1
−
𝜋
2

96
𝛼𝛼
3

1
−
𝜋
2

24
𝛼
3

1
) cos 3𝜋𝑥. (49)

Substituting (41) to (43), we have

𝑏
󸀠󸀠󸀠󸀠

1
(𝑥) + 𝜋

2
𝑏
󸀠󸀠

1
(𝑥)

− (2𝜋
3
𝛾
1
(0) 𝛼

2
+
5

6
𝛼𝛼
2

1
𝛼
2
𝜋
4
) cos𝜋𝑥

+
3

2
𝛼𝛼
2

1
𝛼
2
𝜋
4 cos 3𝜋𝑥 = 0.

(50)

Taking the inner product of (50) with cos𝜋𝑥, we obtain

∫

1

0

𝑏
󸀠󸀠󸀠󸀠

1
(𝑥) cos𝜋𝑥𝑑𝑥 + 𝜋2 ∫

1

0

𝑏
󸀠󸀠

1
(𝑥) cos𝜋𝑥𝑑𝑥

− (2𝜋
3
𝛾
1
(0) 𝛼

2
+
5

6
𝛼𝛼
2

1
𝛼
2
𝜋
4
)∫

1

0

cos2𝜋𝑥𝑑𝑥

+
3

2
𝛼𝛼
2

1
𝛼
2
𝜋
4
∫

1

0

cos 3𝜋𝑥 cos𝜋𝑥𝑑𝑥 = 0,

(51)
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for 𝑏
1
(𝑥) satisfies the orthogonality condition

∫

1

0

𝑏
1
(𝑥) cos𝜋𝑥𝑑𝑥 = 0, (52)

and the boundary condition

𝑏
󸀠

1
(0) = 𝑏

󸀠

1
(1) = 𝑏

󸀠󸀠󸀠

1
(0) = 𝑏

󸀠󸀠󸀠

1
(1) ; (53)

we know

∫

1

0

𝑏
󸀠󸀠󸀠󸀠

1
(𝑥) cos𝜋𝑥𝑑𝑥 + 𝜋2 ∫

1

0

𝑏
󸀠󸀠

1
(𝑥) cos𝜋𝑥𝑑𝑥 = 0, (54)

which forces

2𝜋
3
𝛾
1
(0) 𝛼

2
+
5

6
𝛼𝛼
2

1
𝛼
2
𝜋
4
= 0. (55)

From (45) and (55), we get

𝛾
1
(0) = −

5

12
𝛼𝛼
2

1
𝜋 =

3

8
𝜋𝛼
2

1
+
𝛼𝛼
2

1
𝜋

24
−
𝑐
1
𝜋

2
+

5

24
𝜋𝛼
2

2
,

𝛼
2

̸= 0,

(56)

or

𝛾
1
(0) =

3

8
𝜋𝛼
2

1
+
𝛼𝛼
2

1
𝜋

24
−
𝑐
1
𝜋

2
+

5

24
𝜋𝛼
2

2
,

𝛼
2
= 0.

(57)

Substituting (55) to (50), we get

𝑏
󸀠󸀠󸀠󸀠

1
(𝑥) + 𝜋

2
𝑏
󸀠󸀠

1
(𝑥) +

3

2
𝛼𝛼
2

1
𝛼
2
𝜋
4 cos 3𝜋𝑥 = 0, (58)

which gives us

𝑏
1
(𝑥) = 𝑐

1
−

1

48
𝛼𝛼
2

1
𝛼
2
cos 3𝜋𝑥. (59)

As has been discussed previously, we have the following.
For 𝐿 near 𝜋, there are nontrivial steady-state solution

branches of (11) bifurcated from the trivial solution:

𝐴 (𝜀) = 𝜀𝛼
1
cos𝜋𝑥 + 𝜀2 (𝛼1𝛼2

6
cos𝜋𝑥 − 𝛼

1
𝛼
2

2
)

+ 𝜀
3
(
𝜋
2

96
𝛼
1
−
𝜋
2

96
𝛼𝛼
3

1
−
𝜋
2

24
𝛼
3

1
) cos 3𝜋𝑥

+ 𝑜 (𝜀
3
) ,

ℎ (𝜀) = 𝜀𝛼
2
cos𝜋𝑥 + 𝜀2 (𝑐

1
−
𝛼𝛼
2

1

6
cos 2𝜋𝑥)

+ 𝜀
3
(𝑐
1
−

1

48
𝛼𝛼
2

1
𝛼
2
cos 3𝜋𝑥) + 𝑜 (𝜀3) ,

𝐿 = 𝜋 + 𝜀
2
𝛾
1
(0) + 𝑜 (𝜀

2
) .

(60)

𝛼
1

̸= 0, 𝛼
2
, 𝛾
1
(0) satisfy (56), (57). 𝑐

1
, 𝑐
1
∈ 𝑅. 𝑐

1
, 𝑐
1
are arbi-

trary constants.
Next, we wish to consider the stability of the nontrivial

solutions given in (60).
Considering the eigenvalue problem

𝐹
𝐴,ℎ

(𝐴 (𝜀) , ℎ (𝜀) , 𝐿 (𝜀)) (
𝜙 (𝜀)

𝜓 (𝜀)
) = 𝜆 (𝜀) (

𝜙 (𝜀)

𝜓 (𝜀)
) , (61)

since 𝜆(0) = 0, 𝜙(0) = cos𝜋𝑥, 𝜓(0) = 0, we assume

(
𝜙 (𝜀)

𝜓 (𝜀)
) = (

cos𝜋𝑥
0

) + 𝜀 (
𝜙
1

𝜓
1

) + 𝜀
2
(
𝜙
2

𝜓
2

) + ⋅ ⋅ ⋅ ,

𝜆 (𝜀) = 𝜆
1
𝜀 + 𝜆

2
𝜀
2
+ ⋅ ⋅ ⋅ ,

𝐹
𝐴,ℎ (𝐴 (𝜀) , ℎ (𝜀) , 𝐿 (𝜀))

= (

𝐿
2
+
𝜕
2

𝜕𝑥
2
− 3𝐿

2
𝐴
2
(𝜀) + 𝐿

2
ℎ (𝜀) 𝐿

2
𝐴(𝜀)

2𝛼𝐿
2
(2
𝜕𝐴(𝜀)

𝜕𝑥

𝜕

𝜕𝑥
+
𝜕
2
𝐴(𝜀)

𝜕𝑥
2
+ 𝐴(𝜀)

𝜕
2

𝜕𝑥
2
) −𝐿

2 𝜕
2

𝜕𝑥
2
−
𝜕
4

𝜕𝑥
4

) .

(62)

Substituting (62) to (61), we get

𝜕
2

𝜕𝑥2
𝜙 (𝜀) + 𝐿

2
𝜙 (𝜀) − 3𝐿

2
𝐴
2
(𝜀) 𝜙 (𝜀)

+ 𝐿
2
ℎ (𝜀) 𝜙 (𝜀) + 𝐿

2
𝐴 (𝜀) 𝜓 (𝜀)

− 𝜆 (𝜀) 𝜙 (𝜀) = 0,

2𝛼𝐿
2
(2

𝜕𝐴 (𝜀)

𝜕𝑥

𝜕𝜙 (𝜀)

𝜕𝑥
+
𝜕
2
𝐴 (𝜀)

𝜕𝑥2
𝜙 (𝜀) + 𝐴 (𝜀)

𝜕
2
𝜙 (𝜀)

𝜕𝑥2
)

− 𝐿
2 𝜕
2
𝜓

𝜕𝑥2
−
𝜕
4
𝜓

𝜕𝑥4
− 𝜆 (𝜀) 𝜓 (𝜀) = 0.

(63)

On the branches given in (60), equating the coefficient of 𝜀 in
(63) to 0, we obtain

𝜙
󸀠󸀠

1
+ 𝜋

2
𝜙
1
+ 𝛼
2
𝜋
2cos2𝜋𝑥 − 𝜆

1
cos𝜋𝑥 = 0,

4𝛼𝛼
1
𝜋
4 cos 2𝜋𝑥 + 𝜋2𝜓󸀠󸀠

1
+ 𝜓

󸀠󸀠󸀠󸀠

1
= 0.

(64)

From (64) and the boundary conditions

𝜙
󸀠

1
(0) = 𝜙

󸀠

1
(1) = 𝜙

󸀠󸀠󸀠

1
(0) = 𝜙

󸀠󸀠󸀠

1
(1) ,

𝜓
󸀠

1
(0) = 𝜓

󸀠

1
(1) = 𝜓

󸀠󸀠󸀠

1
(0) = 𝜓

󸀠󸀠󸀠

1
(1) ,

(65)

we get

𝜆
1
= 0,

(
𝜙
1

𝜓
1

) = (

𝑝
1
cos𝜋𝑥 + 𝛼

2

6
cos 2𝜋𝑥 − 𝛼

2

2

𝑞
1
+ 𝑞
2
cos𝜋𝑥 − 𝛼𝛼

1

3
cos 2𝜋𝑥

) ⋅ 𝑝
1
,

𝑞
1
, 𝑞
2
∈ 𝑅.

(66)
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Using the second-order term of 𝜀 in (63), we obtain

𝜙
󸀠󸀠

2
+ 𝜋

2
𝜙
2
− [(−

3

2
𝛼
2

1
+ 𝛼
1
𝑞
1
−
𝛼

6
𝛼
2

1
)𝜋
2
− 𝜆

2
] cos𝜋𝑥

+ (
𝑝
1
𝛼
2

2
+
𝑞
2
𝛼
1

2
)𝜋
2 cos 2𝜋𝑥

+ (−
3

4
𝛼
2

1
+

1

12
𝛼
2

1
−
𝜋
2

4
𝛼𝛼
2

1
) cos 3𝜋𝑥

+
𝜋
2

2
𝑝
1
𝛼
2
+
𝜋
2

2
𝑞
2
𝛼
1
= 0,

𝜓
󸀠󸀠󸀠󸀠

2
+ 𝜋

2
𝜓
󸀠󸀠

2
−
5

3
𝛼
1
𝛼
2
𝛼𝜋
4 cos𝜋𝑥 + 4𝛼𝛼

1
𝑝
1
𝜋
4 cos 2𝜋𝑥

+ 3𝛼
1
𝛼
2
𝛼𝜋
4 cos 3𝜋𝑥 = 0,

(67)

and considering the boundary condition

𝜙
󸀠

2
(0) = 𝜙

󸀠

2
(1) = 𝜙

󸀠󸀠󸀠

1
(0) = 𝜙

󸀠󸀠󸀠

2
(1) ,

𝜓
󸀠

2
(0) = 𝜓

󸀠

2
(1) = 𝜓

󸀠󸀠󸀠

2
(0) = 𝜓

󸀠󸀠󸀠

2
(1) ,

(68)

we deduce that (67) has solution if and only if 𝛼
2
= 0; in this

case, we have 𝛼
1
= ±1 (𝛼2

1
+𝛼
2

2
= 1). Taking the sign of 𝜀 into

account in (15), we consider 𝛼
1
= 1 only. Therefore, we have

𝜆
2
= (−

3

2
−
𝛼

6
+ 𝑞
1
)𝜋
2
,

(
𝜙
2

𝜓
2

)

= (

𝑝
2
cos𝜋𝑥 +

𝑞
2

6
cos 2𝜋𝑥 − ( 3

32
+
𝛼

32
) cos 3𝜋𝑥 −

𝑞
2

2

𝑞
1
+ 𝑞
2
cos𝜋𝑥 −

𝑝
1
𝛼

3
cos 2𝜋𝑥

) ⋅ 𝑝
2
,

𝑞
1
, 𝑞
2
∈ 𝑅.

(69)

So in Case 1, on the branches (60), the eigenvalue
of 𝐹

𝐴,ℎ
(𝐴(𝜀), ℎ(𝜀), 𝐿(𝜀)) is

𝜆 (𝜀) = (−
3

2
−
𝛼

6
+ 𝑞
1
)𝜋
2
𝜀
2
+ 𝑜 (𝜀

2
) . (70)

The corresponding eigenfunction is

(
𝜙

𝜓
) = (

cos𝜋𝑥
0
) + (

𝑝
1
cos𝜋𝑥

𝑞
1
+ 𝑞
2
cos𝜋𝑥 − 𝛼

3
cos 2𝜋𝑥) 𝜀

+(

𝑝
2
cos𝜋𝑥 − ( 3

32
+
𝛼

32
) cos 3𝜋𝑥 −

𝑞
2

2
+
𝑞
2

6
cos 2𝜋𝑥

𝑞
1
+ 𝑞
2
cos𝜋𝑥 −

𝑝
1
𝛼

3
cos 2𝜋𝑥

)𝜀
2

+𝑜 (𝜀
2
) .

(71)

From (70), we know that the eigenvalue of the lin-
earized operator 𝐹

𝐴,ℎ
(𝐴(𝜀), ℎ(𝜀), 𝐿(𝜀)) at the nontrivial solu-

tions given in (60) is negative if 𝑞
1
< (3/2+𝛼/6), and positive

if 𝑞
1
> (3/2 + 𝛼/6). Finally, for small 𝜀, if 𝑞

1
< (3/2 + 𝛼/6),

then the corresponding solution branches are stable; if 𝑞
1
>

(3/2 + 𝛼/6), then the corresponding solution branches are
unstable; if 𝑞

1
= (3/2 + 𝛼/6), we need higher-order items

of 𝜆 to determine the result.
Thus, we have proved the following theorems.

Theorem 1. For 𝐿 near 𝜋, there are nontrivial steady-state
solution branches of (4) bifurcated from the trivial solution:

𝐴 (𝜀) = 𝜀𝛼
1
cos 𝜋𝑥

𝐿
+ 𝜀
2
(
𝛼
1
𝛼
2

6
cos 2𝜋𝑥

𝐿
−
𝛼
1
𝛼
2

2
)

+ 𝜀
3
(
𝜋
2

96
𝛼
1
−
𝜋
2

96
𝛼𝛼
3

1
−
𝜋
2

24
𝛼
3

1
) cos 3𝜋𝑥

𝐿
+ 𝑜 (𝜀

3
) ,

ℎ (𝜀) = 𝜀𝛼
2
cos 𝜋𝑥

𝐿
+ 𝜀
2
(𝑐
1
−
𝛼𝛼
2

1

6
cos 2𝜋𝑥

𝐿
)

+ 𝜀
3
(𝑐
1
−

1

48
𝛼𝛼
2

1
𝛼
2
cos 3𝜋𝑥) + 𝑜 (𝜀3) ,

𝐿 = 𝜋 + 𝜀
2
𝛾
1
(0) + 𝑜 (𝜀

2
) ,

(72)

where 𝛼
1
= 1, 𝛼

2
= 0, 𝛾

1
(0) = 3/8 + 𝛼/24 − 𝑐

1
/2, 𝑐

1
, 𝑐
1
∈ 𝑅.

Remark 2. Since 𝛾
1
(0) = 3/8 + 𝛼/24 − 𝑐

1
/2, when 𝑐

1
< 3/4 +

𝛼/12, 𝐿 = 𝜋 is a supercritical bifurcation point; when 𝑐
1
>

(3/4 + 𝛼/12), 𝐿 = 𝜋 is a supercritical bifurcation point.

Theorem 3. The eigenvalue of the linearized operator
𝐹
𝐴,ℎ
(𝐴(𝜀), ℎ(𝜀), 𝐿(𝜀)) at the nontrivial solutions given in

Theorem 1 is negative if 𝑞
1
< (3/2+𝛼/6), positive if 𝑞

1
> (3/2+

𝛼/6). Finally, for small 𝜀, if 𝑞
1
< (3/2 + 𝛼/6), then the corre-

sponding solution branches are stable; if 𝑞
1
> (3/2 +𝛼/6), then

the corresponding solution branches are unstable.

Case 2. 𝑐 = 0, 𝛼
1
= 0.

If 𝑐 = 0, 𝛼
1
= 0, then 𝛼

2
= ±1; taking the sign of 𝜀 into

account in (15), we consider 𝛼
2
= 1 only. In this case, from

(40), (41), (45), (49), (56), and (59), we have

𝑎
0
(𝑥) = 0, 𝑏

0
(𝑥) = 𝑐

1
, 𝛾 (0) = 0,

𝑎
1
(𝑥) = 0, 𝑏

1
(𝑥) = 𝑐

1
, 𝛾

1
(0) = 0.

(73)

Similarly discussed as in Case 1 previously, we get

𝛾
2
(0) = 𝛾

3
(0) = 𝛾

4
(0) = ⋅ ⋅ ⋅ = 0. (74)

Remark 4. Since 𝛾(0) = 𝛾
1
(0) = 𝛾

2
(0) = 𝛾

3
(0) = 𝛾

4
(0) =

⋅ ⋅ ⋅ = 0, there are no solution branches of (4) bifurcated from
the trivial solution in Case 2.

Case 3. 𝑐 ̸= 0, 𝛼
1

̸= 0.
If 𝑐 ̸= 0, 𝛼

1
̸= 0, then 𝛼

2
= 0, 𝛼

1
= ±1; taking the sign of

𝜀 into account in (15), we consider 𝛼
2
= 1 only. In this case,



Journal of Applied Mathematics 7

from (27), (31), and (37), we have

𝑎
0
(𝑥) = −2𝑐𝑐

1
cos𝜋𝑥,

𝑏
0
(𝑥) = 𝑐

1
−
𝛼

6
cos 2𝜋𝑥,

𝛾 (0) = −
1

2
𝑐𝜋.

(75)

Letting the coefficient of 𝜀3 of (16) vanish, we get

𝑎
󸀠󸀠

1
(𝑥) + 𝜋

2
𝑎
1
(𝑥) + (𝑐

1
𝜋
2
+ 2𝜋𝛾

1
−
3

4
𝑐
2
𝜋
2

−
3

4
𝜋
2
−

𝛼

12
𝜋
2
) cos𝜋𝑥

+ (
𝛼

12
𝜋
2
−
𝜋
2

4
) cos 3𝜋𝑥 = 0.

(76)

Taking the inner product of (76) with cos𝜋𝑥, we obtain

∫

1

0

𝑎
󸀠󸀠

1
(𝑥) cos𝜋𝑥𝑑𝑥 + 𝜋2 ∫

1

0

𝑎
1
(𝑥) cos𝜋𝑥𝑑𝑥

+ ∫

1

0

(𝑐
1
𝜋
2
+ 2𝜋𝛾

1
−
3

4
𝑐
2
𝜋
2

−
3

4
𝜋
2
−

𝛼

12
𝜋
2
) cos2𝜋𝑥𝑑𝑥

+ (
𝛼

12
𝜋
2
−
𝜋
2

4
)∫

1

0

cos 3𝜋𝑥 cos𝜋𝑥𝑑𝑥,

(77)

from which we get

𝛾
1
(0) =

3

8
𝑐
2
𝜋 +

3

8
𝜋 −

𝑐
1
𝜋

2
+

𝛼

24
𝜋,

𝑎
1
(𝑥) = 𝑘

2
cos𝜋𝑥 + ( 𝛼

96
−

1

32
) cos 3𝜋𝑥.

(78)

Letting the coefficient of 𝜀3 of (17) vanish, we get

𝑏
󸀠󸀠󸀠󸀠

1
(𝑥) + 𝜋

2
𝑏
󸀠󸀠

1
(𝑥) − (8𝑐

1
+
8

3
)𝜋
4
𝛼𝑐 cos 2𝜋𝑥 = 0, (79)

from which we get

𝑏
1
(𝑥) = (

2

3
𝑐
1
𝛼𝑐 +

2

9
𝛼𝑐) cos 2𝜋𝑥 + 𝑐

2
. (80)

Substituting (78), (80) to the orthogonality condition

∫

1

0

cos𝜋𝑥𝑎
1
(𝑥) + 𝑐𝑏

1
(𝑥) 𝑑𝑥 = 0, (81)

we get

𝑘
2
= −2𝑐𝑐

2
. (82)

Thus, we have that for 𝐿 near 𝜋, there are nontrivial steady-
state solution branches of (11) bifurcated from the trivial
solution:

𝐴 (𝜀) = 𝜀 cos𝜋𝑥 + 𝜀2 (−2𝑐𝑐
1
) cos𝜋𝑥

+ 𝜀
3
[−2𝑐𝑐

2
cos𝜋𝑥 + ( 𝛼

96
−

1

32
) cos 3𝜋𝑥] + 𝑜 (𝜀3) ,

ℎ (𝜀) = 𝜀
2
(𝑐
1
−
𝛼

6
cos 2𝜋𝑥)

+ 𝜀
3
(𝑐
2
+
2

3
𝑐
1
𝛼𝑐 +

2

9
𝛼𝑐) cos 2𝜋𝑥 + 𝑜 (𝜀3) ,

𝐿 = 𝜋 −
1

2
𝑐𝜋𝜀 + (

3

8
𝑐
2
𝜋 +

3

8
𝜋

−
𝑐
1
𝜋

2
+

𝛼

24
𝜋) 𝜀

2
+ 𝑜 (𝜀

2
) .

(83)

Next, we wish to consider the stability of the nontrivial
solutions given in (83).

Considering the eigenvalue problem

𝐹
𝐴,ℎ

(𝐴 (𝜀) , ℎ (𝜀) , 𝐿 (𝜀)) (
𝜙 (𝜀)

𝜓 (𝜀)
) = 𝜆 (𝜀) (

𝜙 (𝜀)

𝜓 (𝜀)
) , (84)

since 𝜆(0) = 0, 𝜙(0) = cos𝜋𝑥, 𝜓(0) = 𝑐, we assume that

(
𝜙 (𝜀)

𝜓 (𝜀)
) = (

cos𝜋𝑥
𝑐

) + 𝜀 (
𝜙
1

𝜓
1

) + 𝜀
2
(
𝜙
2

𝜓
2

) + ⋅ ⋅ ⋅ ,

𝜆 (𝜀) = 𝜆
1
𝜀 + 𝜆

2
𝜀
2
+ ⋅ ⋅ ⋅ ,

𝐹
𝐴,ℎ (𝐴 (𝜀) , ℎ (𝜀) , 𝐿 (𝜀))

= (

𝐿
2
+
𝜕
2

𝜕𝑥
2
− 3𝐿

2
𝐴
2
(𝜀) + 𝐿

2
ℎ (𝜀) 𝐿

2
𝐴(𝜀)

2𝛼𝐿
2
(2
𝜕𝐴(𝜀)

𝜕𝑥

𝜕

𝜕𝑥
+
𝜕
2
𝐴(𝜀)

𝜕𝑥
2
+ 𝐴(𝜀)

𝜕
2

𝜕𝑥
2
) −𝐿

2 𝜕
2

𝜕𝑥
2
−
𝜕
4

𝜕𝑥
4

) .

(85)

Substituting (85) to (84), we get

𝜕
2

𝜕𝑥2
𝜙 (𝜀) + 𝐿

2
𝜙 (𝜀) − 3𝐿

2
𝐴
2
(𝜀) 𝜙 (𝜀) + 𝐿

2
ℎ (𝜀) 𝜙 (𝜀)

+ 𝐿
2
𝐴 (𝜀) 𝜓 (𝜀) − 𝜆 (𝜀) 𝜙 (𝜀) = 0,

2𝛼𝐿
2
(2

𝜕𝐴 (𝜀)

𝜕𝑥

𝜕𝜙 (𝜀)

𝜕𝑥
+
𝜕
2
𝐴 (𝜀)

𝜕𝑥2
𝜙 (𝜀) + 𝐴 (𝜀)

𝜕
2
𝜙 (𝜀)

𝜕𝑥2
)

− 𝐿
2 𝜕
2
𝜓

𝜕𝑥2
−
𝜕
4
𝜓

𝜕𝑥4
− 𝜆 (𝜀) 𝜓 (𝜀) = 0.

(86)

On the branches given in (83), equating the coefficient of 𝜀 in
(86) to 0, we obtain

𝜙
󸀠󸀠

1
+ 𝜋

2
𝜙
1
− 𝑐𝜋

2 cos𝜋𝑥 − 𝜆
1
cos𝜋𝑥 = 0,

4𝛼𝜋
4 cos 2𝜋𝑥 + 𝜋2𝜓󸀠󸀠

1
+ 𝜓

󸀠󸀠󸀠󸀠

1
+ 𝜆

1
𝑐 = 0.

(87)
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From (87) and the boundary conditions

𝜙
󸀠

1
(0) = 𝜙

󸀠

1
(1) = 𝜙

󸀠󸀠󸀠

1
(0) = 𝜙

󸀠󸀠󸀠

1
(1) ,

𝜓
󸀠

1
(0) = 𝜓

󸀠

1
(1) = 𝜓

󸀠󸀠󸀠

1
(0) = 𝜓

󸀠󸀠󸀠

1
(1) ,

(88)

we get

𝑐 = 0,

𝜆
1
= −𝑐𝜋

2
= 0,

(
𝜙
1

𝜓
1

) = (

̃̃𝑝
1
cos𝜋𝑥

̃̃𝑞
1
+ ̃̃𝑞
2
cos𝜋𝑥 − 𝛼

3
cos 2𝜋𝑥) ⋅ ̃̃𝑝

1
,

̃̃𝑞
1
, ̃̃𝑞
2
∈ 𝑅.

(89)

We find that 𝑐 = 0 is a contradiction to 𝑐 ̸= 0, so there are no
solution branches of (4) bifurcated from the trivial solution
in Case 3.

Case 4. 𝑐 ̸= 0, 𝛼
1
= 0.

If 𝑐 ̸= 0, 𝛼
1
= 0, then 𝛼

2
= ±1; taking the sign of 𝜀 into

account in (15), we consider 𝛼
2
= 1 only. In this case, from

(27), (31), and (37), we have

𝑎
0
(𝑥) = −2𝑐𝑐

1
cos𝜋𝑥, 𝑏

0
(𝑥) = 𝑐

1
, 𝛾 (0) = 0. (90)

Similarly discussed as in Case 1 previously, we get

𝛾
1
(0) = 𝛾

2
(0) = 𝛾

3
(0) = 𝛾

4
(0) = ⋅ ⋅ ⋅ = 0. (91)

Remark 5. Since 𝛾(0) = 𝛾
1
(0) = 𝛾

2
(0) = 𝛾

3
(0) = 𝛾

4
(0) =

⋅ ⋅ ⋅ = 0, there were no solution branches of (4) bifurcated
from the trivial solution in Case 4.

Remark 6. In this paper, trivial stationary solution and
bifurcations at it are considered for the KS-GL equations with
Neumann’s boundary conditions on a finite domain (0, 𝐿).
The results we get in this paper are new and original. It
would be very interesting and much more complicated to try
and extend our study to stationary patterns and the corre-
sponding bifurcations. Another interesting but challenging
direction would be the case in several space dimensions.
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