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This paper focuses on the problem of multiplicative noise removal. Using a gray level indicator, we derive a new functional
which consists of the adaptive total variation term and the global convex fidelity term. We prove the existence, uniqueness, and
comparison principle of the minimizer for the variational problem. The existence, uniqueness, and long-time behavior of the
associated evolution equation are established. Finally, experimental results illustrate the effectiveness of the model in multiplicative
noise reduction. Different from the other methods, the parameters in the proposed algorithms are found dynamically.

1. Introduction

Multiplicative noise occurs while one deals with active imag-
ing system, such as laser images,microscope images, and SAR
images. Given a noisy image𝑓 : Ω → 𝑅, whereΩ is a bound-
ed open subset of R2, we assume

𝑓 = 𝑢𝜂, (1)

where 𝑢 is the true image and 𝜂 is the noise. In what follows
we will always assume that 𝑓 > 0 and 𝑢 > 0. Some
prior information about the mean and variance of the multi-
plicative noise is as follows:

1

|Ω|
∫
Ω

𝜂 𝑑𝑥 = 1, (2)

1

|Ω|
∫
Ω

(𝜂 − 1)
2

𝑑𝑥 = 𝜎2, (3)

where |Ω| = ∫
Ω
1 𝑑𝑥. Our purpose is to remove noise in

images while preserving the maximum information about 𝑢.
The goal of this paper is to propose a globally strictly

convex functional well-adapted to removing multiplicative
noise, which is as follows:

𝐸 (𝑢) = ∫
Ω

𝛼 (𝑥) |𝐷𝑢| + ∫
Ω

(𝑢 + 𝑓 log 1
𝑢
) 𝑑𝑥, (4)

where 𝑓 is noisy image and ∫
Ω
𝛼(𝑥)|𝐷𝑢| stands for the

adaptive total variation of 𝑢. In the new model, we introduce
a control factor, 𝛼(𝑥), which controls the speed of diffusion at
different region: at the low gray level (𝛼(𝑥) → 0), the speed
is slow; at the high gray level (𝛼(𝑥) → 1), the speed is fast.
The second term in the functional, that is, the fidelity term is
global convex, which implies the constraint (2).

Various adaptive filters for multiplicative noise removal
have been proposed. In the beginning, variational methods
for multiplicative noise reduction deal with the Gaussian
multiplicative noise [1]. In actual life, the speckle noise
[2] is more widespread, such as synthetic aperture radar
(SAR) imagery [3, 4]. Then, Aubert and Aujol [5] propose
a new variational method for Gamma multiplicative noise
reduction. By the logarithm transform, a large variety of
methods rely on the conversion of the multiplicative noise
into additive noise.

1.1. GaussianNoise. In the additive noise case, themost classi-
cal assumption is that the noise is a white Gaussian noise.
So one case in which dealing with multiplicative noise is the
whiteGaussian noise. Using the framework in [6], Rudin et al.
[1] consider the following optimization problem for Gaussian
multiplicative noise reduction:

𝑢 = arg min
𝑢∈BV(Ω)

{𝐽 (𝑢) + 𝜆𝐻 (𝑢, 𝑓)} , (5)
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where 𝐽(𝑢) = ∫
Ω
|∇𝑢| stands for the total variation of 𝑢, and

𝐻(𝑢, 𝑓) is a fidelity term which consists of two integrals with
two Lagrange multipliers:

𝐻(𝑢, 𝑓) = 𝜆
1
∫
Ω

𝑓

𝑢
𝑑𝑥 + 𝜆

2
∫
Ω

(
𝑓

𝑢
− 1)

2

𝑑𝑥. (6)

In order to make sure the two constraints (2) and (3) are
always satisfied during the evolution, by the gradient projec-
tion method, the authors evolve the following evolution
equation:

𝜕𝑢

𝜕𝑡
= div( ∇𝑢

|∇𝑢|
) + 𝜆

1

𝑓

𝑢2
+ 𝜆

2

𝑓2

𝑢3
. (7)

If by the gradient projection method the values of 𝜆
1

and 𝜆
2
are found dynamically, the method is not always

convex; while if 𝜆
1
, 𝜆

2
> 0 are fixed, the corresponding mini-

mization problemwill lead to a sequence of constant function
𝑢 approaching +∞.

1.2. Gamma Noise. Generally, the speckle noise is treated as
Gamma noise with mean equal to one. The probability dis-
tribution function 𝑔(𝜂) of the noise 𝜂 takes the following
form:

𝑔 (𝜂) =
𝐿𝐿

Γ (𝐿)
𝜂𝐿−1 exp (−𝐿𝜂) 1

{𝜂≥0}
. (8)

Gamma noise is more complex than Gaussian noise [2].
Based on maximum a posteriori (MAP) on 𝑝(𝑢 | 𝑓),
Aubert and Aujol [5] assume that the noise 𝜂 follows a
Gamma probability distribution with mean equal to one and
𝑝(𝑢) following a Gibbs prior and then derive a functional
formulating the following minimization problem (called AA
model):

𝑢 = arg min
𝑢∈𝑆(Ω)

{∫
Ω

|𝐷𝑢| + 𝜆∫
Ω

(log 𝑢 +
𝑓

𝑢
)𝑑𝑥} , (9)

where 𝑆(Ω) = {𝑢 > 0, 𝑢 ∈ BV(Ω)}. The new fidelity term
𝐻(𝑢, 𝑓) = ∫

Ω
(log 𝑢 + (𝑓/𝑢))𝑑𝑥 is strictly convex for 𝑢 ∈

(0, 2𝑓). The authors prove the existence of a minimizer 𝑢 ∈
𝑆(Ω) to the minimization problem and derive existence and
uniqueness results of the solution to the associated evolution
equation:

𝜕𝑢

𝜕𝑡
= div( ∇𝑢

|∇𝑢|
) + 𝜆

𝑓 − 𝑢

𝑢2
. (10)

1.3. The Model Based on the Logarithm Transform. The sim-
plest idea is to take the log of both sides of (1),

log𝑓 = log 𝑢 + log 𝜂 = 𝑤 + 𝑛, (11)

which essentially converts the multiplicative problem into an
additive one. If the distribution of the noise 𝜂 takes the form
(8), the expectation and the variance of the log-noise 𝑛 are

E [𝑛] = Ψ
0
(𝐿) − Ψ

𝑘
(𝐿) ,

Var [𝑛] = Ψ
1
(𝐿) ,

(12)

where

Ψ
𝑘
(𝑧) = (

𝑑

𝑑𝑧
)
𝑘+1

log Γ (𝑧) (13)

is the polygamma function [7]. In [8], Shi and Osher use
relaxed inverse scale space (RISS) flows to deal with various
noises and provide iterative TV regularization. First, using
the log-data log𝑓, they propose the following model:

𝑢 = arg min
𝑤∈BV(Ω)

{∫
Ω

|𝐷𝑤| +
𝜆

2

𝑤 − log𝑓
2

𝐿
2
(Ω)
𝑑𝑥} , (14)

where 𝑤 = log 𝑢. The corresponding RISS flow reads

𝜕
𝑡
𝑤 = div( ∇𝑤

|∇𝑤|
) + 𝜆 (log𝑓 − 𝑤 + V) ,

𝜕
𝑡
V = 𝛼 (log𝑓 − 𝑤) ,

(15)

with V(0) = 0, 𝑤(0) = 𝑐
0
, for 𝑐

0
= ∫

Ω
log𝑓𝑑𝑥/|Ω|. Then,

they generalize several multiplicative noise models [5, 9, 10],
and for convergence reasons, use iterative TV regularization
on exp(𝑤) to obtain the RISS flow. And they investigate the
properties of the flow and study the dependence on flow
parameters.

1.4. The Model Based on the Exponent Transform. Recently,
Huang et al. [11] utilize an exponential transformation 𝑢 →
𝑒𝑢 in the fidelity term of AA model to propose the following
denoising model:

min
𝑢,𝑤

{∫
Ω

(𝑢 + 𝑓𝑒−𝑢) 𝑑𝑥 + 𝛼
1
∫
Ω

|𝑢 − 𝑤|
2𝑑𝑥

+ 𝛼
2
∫
Ω

|𝐷𝑤|} ,

(16)

where 𝛼
1
> 0 and 𝛼

2
> 0 are regularization parameters,

and 𝑤 is an auxiliary variable. Next, they further develop
an alternating minimization algorithm for the model (16) by
incorporating another way of modified TV regularization in
[12]. However, the mathematical analysis to the variational
problem (16) is not given in [11]. By the exponential trans-
formation 𝑢 → 𝑒𝑢, Jin and Yang [13] change the fidelity term
log 𝑢 + 𝑓𝑢 of AA model (2) into 𝑢 + 𝑓𝑒𝑢 and then study the
following denoising model:

min
𝑢

{∫
Ω

|𝐷𝑢| + 𝜆∫
Ω

(𝑢 + 𝑓𝑒−𝑢) 𝑑𝑥} . (17)

Notice that the fidelity term 𝐻(𝑢, 𝑓) = ∫
Ω
(𝑢 + 𝑓𝑒−𝑢)𝑑𝑥

is globally strictly convex. Based on this, they prove the
uniqueness of the solutions to the variational problem (17)
and show the existence and uniqueness of the weak solution
for the following evolution equation corresponding to (17):

𝜕𝑢

𝜕𝑡
= div( ∇𝑢

|∇𝑢|
) + 𝜆 (𝑓𝑒−𝑢 − 1) . (18)

The paper is organized as follows. In Section 2, inspired
from [1, 5, 14], based on the gray level indicator 𝛼(𝑥), we
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derive a convex adaptive total variation model (4) for multi-
plicative noise removal. In Section 3, we prove the existence
and uniqueness of the solution of the minimization problem
(4). In Section 4, we study the associated evolution problem
to the minimization problem (4). Specifically, we define the
weak solution of the evolution problem, derive estimates for
the solution of an approximating problem, prove existence
anduniqueness of theweak solution, anddiscuss the behavior
of the weak solution as 𝑡 → ∞. In Section 5, we provide two
numerical algorithms and experimental results to illustrate
the effectiveness of our algorithms in image denoising. We
also compare new algorithms with other ones.

2. A New Variational Model for Multiplicative
Noise Removal

The goal of this section is to propose a new variational model
for multiplicative noise removal. First, we proposed a new
fidelity with global convexity, which can always satisfy the
constraint (2) during the evolution. Then, by analyzing
the properties of the noise, we propose the adaptive total
variation based on a gray level indicator 𝛼(𝑥).

2.1. A Global Convex Fidelity Term. Based on the idea in [15],
we can obtain the following fidelity:

𝐻(𝑢, 𝑓) = 𝑢 + 𝑓 log 1
𝑢
. (19)

Note that 𝐻(𝑢, 𝑓) = 1 − (𝑓/𝑢). Let us consider
the following Euler-Lagrange equation for some functional-
based problem:

0 = F (∇𝑢, ∇2𝑢) − 𝜆(1 −
𝑓

𝑢
) , in Ω, (20)

𝜕𝑢

𝜕 ⃗𝑛
= 0, on 𝜕Ω, (21)

where ∇𝑢 and ∇2𝑢 stand, respectively, for the gradient and
the Hessian matrix of 𝑢 with respect to the space variable 𝑥,
and F(∇𝑢, ∇2𝑢) is divergence operator from the functional.
By integrating (20) in space, using integration by parts and
the boundary condition (21) in the sense of distributions, we
have

∫
Ω

(1 −
𝑓

𝑢
)𝑑𝑥 = 0, (22)

which implies the constraint (2). Moreover, using the idea in
[6], the parameter 𝜆 can be calculated as

𝜆 =
1

𝜎2 |Ω|
∫
Ω

F (∇𝑢, ∇2𝑢)(1 −
𝑓

𝑢
)𝑑𝑥. (23)

Remark 1. (1) It is easy to check that the function 𝑢 → 𝑢 +
𝑓 log (1/𝑢) reaches its minimum value 𝑓 + 𝑓 log (1/𝑓) over
R+ for 𝑢 = 𝑓.

(2) Let us denote by

ℎ (𝑢) = 𝑢 + 𝑓 log 1
𝑢
. (24)

We have ℎ(𝑢) = 1 − (𝑓/𝑢) = (𝑢 − 𝑓)/𝑢, and ℎ(𝑢) =

(𝑓/𝑢2) > 0, which deduce that the new fidelity term𝐻(𝑢, 𝑓)
is globally strictly convex.

2.2.The Adaptive Total VariationModel. Assume 𝑢 is a piece-
wise function, that is, 𝑢 = ∑

𝑁

𝑖=1
𝑔
𝑖
1
Ω
𝑖

, where Ω
𝑖
∩ Ω

𝑗
= 0,

for 𝑖 ̸= 𝑗, ⋃𝑁

𝑖=1
Ω
𝑖
= Ω, and 𝑔

𝑖
is the gray level. Moreover,

we assume that the samples of the noise on each pixel 𝑥 are
mutually independent and identically distributed (i.i.d.) with
the probability density function 𝜂(𝑥). For 𝑥 ∈ Ω, 𝑓(𝑥) =

𝑔
𝑖
𝜂(𝑥), and therefore, Var[𝑓] = 𝑔2

𝑖
Var[𝜂] = 𝑔2

𝑖
𝜎2, where

Var[𝑓] and Var[𝜂] are the variance of the noise image 𝑓 and
the noise at the pixel 𝑥, respectively. It is noticed that the
variance of the noise is the constant 𝜎2 on each pixel, but
the variance of the noise image 𝑓 is influenced by the gray
level. The higher the gray level is, the more remarkable the
influence of the noise is. Especially, 𝑓 = 𝑢 when 𝑢 = 0, and
therefore 𝑓 is noise free in this case. The fact is illustrious
in Figure 1. It can be seen that in despite of the independent
identically distribution of noise (see Figure 1(b)), the noise
image shows different features on the pixel, where the gray
levels are different (see Figure 1(d)).

In [14], Chan and Strong propose the following adaptive
total variation model:

min∫
Ω

𝑔 (𝑥) |∇𝑢| 𝑑𝑥, (25)

where the weight function 𝑔(𝑥) controls the speed of diffu-
sion at different region.Utilizing this idea, we proposed a gray
level indicator 𝛼(𝑥).The indicator 𝛼(𝑥) has such properties as
follows: 𝛼(𝑠) is monotonically increasing, 𝑔(0) = 0, 𝛼(𝑠) ≥ 0,
and 𝛼(𝑠) → 1, as 𝑠 → sup

𝑥∈Ω
𝑢. Therefore, we propose the

following gray indicators 𝛼(𝑥):

𝛼 (𝑥) = (1 −
1

1 + 𝑘
𝐺𝜎

∗ 𝑓

2
)
1 + 𝑘𝑀2

𝑘𝑀2
, (26)

or

𝛼 (𝑥) =
𝐺
𝜎
∗ 𝑓

𝑀
, (27)

where 𝑀 = sup
𝑥∈Ω

(𝐺
𝜎
∗ 𝑓)(𝑥), 𝐺

𝜎
(𝑥) = (1/4𝜋𝜎)

exp{−|𝑥|2/4𝜎2}, 𝜎 > 0, and 𝑘 > 0 are parameters. With this
choice, 𝛼(𝑥) is a positive-valued continuous function; 𝛼(𝑥) is
much smaller value at low gray levels (𝛼(𝑥) → 0) than at high
gray levels (𝛼(𝑥) → 1) so that some small features at low gray
levels aremuch less smoothed and therefore are preserved. As
previously stated, at high gray levels, the region of the noise
image is degraded more, while the region at low gray levels is
degraded less (see Figure 1(d)). Then, from (26)/(27), at the
high gray levels, 𝛼(𝑥) → 1, the new model is more smooth
at the region; at low gray levels, 𝛼(𝑥) → 0, the new model is
less smooth at the region.

The previous analysis leads us to propose a convex adap-
tive total variation model for multiplicative noise removal,

min
𝑢∈BV(Ω)

∫
Ω

𝛼 (𝑥) |𝐷𝑢| + 𝜆∫
Ω

(𝑢 + 𝑓 log 1
𝑢
) 𝑑𝑥. (28)
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(d) Original/noise signal

Figure 1: The relation between the influence of the noise and the gray levels. (a) 1D signal 𝑓; (b) 1D speckled noise with mean equal to 1 and
𝐿 = 5; (c) 𝑓 degraded by the speckled noise; (d) the compare between 𝑓 and the noise signal 𝑓.

The evolution of the Euler-Lagrange equation for (28) is
as follows:

𝜕𝑢

𝜕𝑡
= div(𝛼 (𝑥) ∇𝑢

|∇𝑢|
) − 𝜆(1 −

𝑓

𝑢
) , (𝑥, 𝑡) ∈ Ω × (0, 𝑇) ,

(29)

𝜕𝑢

𝜕 ⃗𝑛
= 0, (𝑥, 𝑡) ∈ 𝜕Ω × [0, 𝑇] , (30)

𝑢 (0, 𝑥) = 𝑓, 𝑥 ∈ Ω. (31)

3. The Minimization Problem (28)
In this section, we study the existence and uniqueness of
the solution to the minimization problem (28), and then we
consider the comparison principle for the problem (28).

3.1. Preliminaries. If 𝑓 ∈ 𝐿∞(Ω) with 0 < inf
𝑥∈Ω

𝑓 ≤ 𝑓 ≤
sup

𝑥∈Ω
𝑓, then

0 < 𝛼 (inf
𝑥∈Ω

𝑓) ≤ 𝛼 (𝑥) ≤ 1, 𝑥 ∈ Ω. (32)

We always assume that Ω is a bounded open subset of
R𝑛 with Lipschitz boundary. As in [16], we introduce the
following definition of 𝛼-total variation.

Definition 2. A function 𝑢 ∈ 𝐿1(Ω) has bounded 𝛼-total var-
iation in Ω, if

sup
𝜙∈Φ
𝛼

∫
Ω

𝑓 div 𝜙𝑑𝑥 < ∞, (33)

where

Φ
𝛼
=: {𝜙 ∈ 𝐶1

0
(Ω,R𝑛) ,

𝜙
 ≤ 𝛼} . (34)
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Remark 3 (see [16]). (1) If 𝑢 ∈ 𝐿1(Ω) has bounded 𝛼-total
variation inΩ, there is a Radon vectormeasure𝐷𝑢 onΩ such
that

∫
Ω

𝛼 |𝐷𝑢| =: sup
𝜙∈Φ
𝛼

∫
Ω

𝑓 div 𝜙𝑑𝑥. (35)

(2) From (32), 𝑢 ∈ 𝐿1(Ω) having bounded 𝛼-total var-
iation in Ω implies that 𝑢 ∈ BV(Ω).

Now, we directly show some lemmas on 𝛼-total variation
from [16].

Lemma 4. Assume that {𝑢
𝑘
}∞
𝑘=1

⊂ BV(Ω) and 𝑢
𝑘
→ 𝑢 in

𝐿1(Ω). Then, 𝑢 ∈ BV(Ω), and

∫
Ω

𝛼
𝐷𝑢𝑘

 ≤ lim inf
𝑘→∞

∫
Ω

𝛼
𝐷𝑢𝑘

 . (36)

Lemma 5. Assume that 𝑢 ∈ BV(Ω). Then, there exists a
sequence {𝑢

𝑗
}∞
𝑗=1

∈ 𝐻1(Ω) such that

𝑢
𝑗
→ 𝑢 in 𝐿1 (Ω) ,

∫
Ω

𝛼
𝐷𝑢𝑗

 → ∫
Ω

𝛼 |𝐷𝑢| .
(37)

By a minor modification of the proof of Lemma 1 in Sec-
tion 4.3 of [17], we can have the following lemma.

Lemma 6. Let 𝑢 ∈ BV(Ω), and let 𝜑
𝑎,𝑏

be the cut-off function
defined by

𝜑
𝑎,𝑏
(𝑥) =

{{
{{
{

𝑎, if 𝑥 ≤ 𝑎,

𝑥, if 𝑎 ≤ 𝑥 ≤ 𝑏,

𝑏, if 𝑥 ≥ 𝑏.

(38)

Then,𝐷𝜑
𝑎,𝑏
(𝑢) ∈ BV(Ω), and

∫
Ω

𝛼
𝐷𝜑𝑎,𝑏 (𝑢)

 ≤ ∫
Ω

𝛼 |∇𝑢| . (39)

3.2. Existence andUniqueness of the Problem (28). In this sub-
section, we show that problem (28) has at least one solution
in BV(Ω).

Theorem 7. Let 𝑓 ∈ 𝐿∞(Ω) with inf
𝑥∈Ω

𝑓 > 0. Then, the
problem (28) admits a unique solution 𝑢 ∈ BV(Ω) such that

0 < inf
𝑥∈Ω

𝑓 ≤ 𝑢 ≤ sup
𝑥∈Ω

𝑓. (40)

Proof. Let us rewrite

𝐸 (𝑢) = ∫
Ω

𝛼 (𝑥) |𝐷𝑢| + 𝜆∫
Ω

(𝑢 + 𝑓 log 1
𝑢
) 𝑑𝑥. (41)

From Remark 1(1), we have

𝐸 (𝑢) ≥ 𝜆∫
Ω

(𝑓 + 𝑓 log 1

𝑓
)𝑑𝑥, (42)

for 𝑢 ∈ BV(Ω) with 𝑢 > 0. This implies that 𝐸(𝑢) has a lower
bound for all 𝑢 ∈ BV(Ω) with 𝑢 > 0. Hence, there exists a
minimizing sequence {𝑢

𝑛
} ⊂ BV(Ω) for the problem (28).

Step 1. Let us denote 𝑎 = inf
𝑥∈Ω

𝑓 and 𝑏 = sup
𝑥∈Ω

𝑓. We first
claim that 0 < 𝑎 ≤ 𝑢

𝑛
≤ 𝑏.

In fact, we remark that ℎ(𝑠) is decreasing for 𝑠 ∈ (0, 𝑓) and
increasing for 𝑠 ∈ (𝑓, +∞). Therefore, if 𝑀 ≥ 𝑓, one always
has

log (min (𝑠,𝑀)) +
𝑓

min (𝑠,𝑀)
≤ log 𝑠 +

𝑓

𝑠
. (43)

Hence, if𝑀 = 𝑏 = sup
𝑥∈Ω

𝑓, we have

∫
Ω

(log (inf (𝑢,𝑀)) +
𝑓

inf (𝑢,𝑀)
)𝑑𝑥

≤ ∫
Ω

(log 𝑢 +
𝑓

𝑢
)𝑑𝑥.

(44)

Moreover, utilizing Lemma 6, we can have

∫
Ω

𝛼 |𝐷 (inf (𝑢, 𝑏))| ≤ ∫
Ω

𝛼 |𝐷𝑢| . (45)

Combining (44) and (45), we deduce that

𝐸 (inf (𝑢, 𝑏)) ≤ 𝐸 (𝑢) . (46)

On the other hand, in the sameway, we get that𝐸(sup(𝑢, 𝑎)) ≤
𝐸(𝑢). Therefore, we can assume that 𝑎 ≤ 𝑢

𝑛
≤ 𝑏 without

restriction.

Step 2. Let us prove that there exists 𝑢 ∈ BV(Ω) such that

𝐸 (𝑢) = min
V∈BV(Ω)

𝐸 (V) . (47)

Theproof in the Step 1 implies in particular that 𝑢
𝑛
is bounded

in 𝐿1(Ω). Since 𝑎 ≤ 𝑢
𝑛
≤ 𝑏 and ℎ(𝑠) ∈ 𝐶[𝑎, 𝑏], ℎ(𝑢

𝑛
) is

bounded. Moreover, by the definition of {𝑢
𝑛
}, there exists a

constant 𝐶 such that

∫
Ω

𝛼
𝐷𝑢𝑛

 + ∫
Ω

ℎ (𝑢
𝑛
) 𝑑𝑥 ≤ 𝐶. (48)

Then,

∫
Ω

𝛼
𝐷𝑢𝑛

 ≤ 𝐶, (49)

which implies that the sequence {𝑢
𝑛
}∞
𝑛=1

is bounded in BV(Ω).
Consequently, there exists a function 𝑢 ∈ BV(Ω) and a
subsequence {𝑢

𝑛
}∞
𝑛=1

, denoted by itself, such that as 𝑛 → ∞,

𝑢
𝑛
⇀ 𝑢 in weak∗ in BV (Ω) ,

𝑢
𝑛
→ 𝑢 strongly in 𝐿1 (Ω) ,

𝑎 ≤ 𝑢 ≤ 𝑏.

(50)

Utilizing Lemma 4 and Fatou’s lemma, we get that 𝑢 is a
solution of the problem (28).

Finally, from Remark 1(2), ℎ is strictly convex as 𝑓 > 0,
and then the uniqueness of the minimizer follows from the
strict convexity of the energy functional in (28).
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3.3. Comparison Principle. In this subsection, we state a com-
parison principle for problem (28).

Proposition 8. Let 𝑓
1
, 𝑓

2
∈ 𝐿∞(Ω) with inf

𝑥∈Ω
𝑓
1
,

inf
𝑥∈Ω

𝑓
2
> 0, and 𝑓

1
< 𝑓

2
. Assume that 𝑢

1
(resp., 𝑢

2
) is a

solution of the problem (28) for 𝑓 = 𝑓
1
(resp., 𝑓 = 𝑓

2
). Then,

𝑢
1
≤ 𝑢

2
a.e. in Ω.

Proof. Let us denote 𝑢 ∨ V = sup(𝑢, V), and 𝑢 ∧ V = inf(𝑢, V).
From Theorem 7, It is noticed that there exist the solu-

tions 𝑢
1
and 𝑢

2
for 𝑓

1
and 𝑓

2
, respectively. Since 𝑢

𝑖
is a

minimizer with data 𝑓
𝑖
, for 𝑖 = 1, 2,

∫
Ω

𝛼
𝐷 (𝑢

1
∧ 𝑢

2
)
 + 𝜆∫

Ω

(𝑢
1
∧ 𝑢

2
+ 𝑓

1
log 1

𝑢
1
∧ 𝑢

2

)

≥ ∫
Ω

𝛼 (𝑥)
𝐷𝑢1

 + 𝜆∫
Ω

(𝑢
1
+ 𝑓

1
log 1

𝑢
1

)𝑑𝑥,

∫
Ω

𝛼
𝐷 (𝑢

1
∨ 𝑢

2
)
 + 𝜆∫

Ω

(𝑢
1
∨ 𝑢

2
+ 𝑓

1
log 1

𝑢
1
∨ 𝑢

2

)

≥ ∫
Ω

𝛼 (𝑥)
𝐷𝑢2

 + 𝜆∫
Ω

(𝑢
2
+ 𝑓

2
log 1

𝑢
2

)𝑑𝑥.

(51)

Adding these two inequalities and by aminormodification of
the facts in [18, 19], which is as follows:

∫
Ω

𝛼
𝐷 (𝑢

1
∧ 𝑢

2
)
 + ∫

Ω

𝛼
𝐷 (𝑢

1
∨ 𝑢

2
)


≤ ∫
Ω

𝛼
𝐷𝑢1

 + ∫
Ω

𝛼
𝐷𝑢2

 ,

(52)

then we can deduce that

∫
Ω

(𝑢
1
∧ 𝑢

2
− 𝑢

1
) 𝑑𝑥 + ∫

Ω

𝑓
1
(log 1

𝑢
1
∧ 𝑢

2

− log 1

𝑢
1

)𝑑𝑥

+ ∫
Ω

(𝑢
1
∨ 𝑢

2
− 𝑢

2
) 𝑑𝑥

+ ∫
Ω

𝑓
2
(log 1

𝑢
1
∨ 𝑢

2

− log 1

𝑢
2

)𝑑𝑥 ≥ 0.

(53)

WritingΩ = {𝑢
1
> 𝑢

2
} ∪ {𝑢

1
≤ 𝑢

2
}, we easily deduce that

∫
{𝑢
1
>𝑢
2
}

(log 𝑢
1
− log 𝑢

2
) (𝑓

1
− 𝑓

2
) 𝑑𝑥 ≥ 0. (54)

Since 𝑓
1
< 𝑓

2
, the set {𝑢

1
> 𝑢

2
} is a zero Lebesgue measure,

that is, 𝑢
1
≤ 𝑢

2
a.e. inΩ.

4. The Associated Evolution
Equations (29)–(31)

In this section, by an approach from the theory used in
both [16, 20], we define the weak solution of the evolution
problems (29)–(31), derive estimates for the solution of an
approximating problem, prove existence and uniqueness of
the weak solution, and discuss the behavior of the weak
solution as 𝑡 → ∞.

4.1. Definition of a Pseudosolution to the Problems (29)–(31).
Denote 𝑄

𝑇
= Ω × [0, 𝑇), 0 < 𝑇 ≤ ∞. Suppose that V ∈

𝐿2(0, 𝑇;𝐻1(Ω)) ∩ 𝐿∞(𝑄
𝑇
) with V > 0, 𝜕V/𝜕 ⃗𝑛 = 0 and 𝑢 is a

classical solution of (29)–(31) with 𝑢 > 0. Multiplying (29) by
(V − 𝑢), integrating overΩ, we have

∫
Ω

𝜕
𝑡
𝑢 (V − 𝑢) 𝑑𝑥 + ∫

Ω

𝛼 (𝑥)
∇𝑢

|∇𝑢|
∇ (V − 𝑢) 𝑑𝑥

+ 𝜆∫
Ω

𝑢 − 𝑓

𝑢
(V − 𝑢) 𝑑𝑥 = 0.

(55)

Since

∫
Ω

∇𝑢

|∇𝑢|
∇ (V − 𝑢) 𝑑𝑥

= ∫
Ω

𝛼 (𝑥)
∇𝑢

|∇𝑢|
∇V 𝑑𝑥 − ∫

Ω

𝛼 (𝑥) |∇𝑢| 𝑑𝑥

≤ ∫
Ω

𝛼 (𝑥) |∇V| 𝑑𝑥 − ∫
Ω

𝛼 (𝑥) |∇𝑢| 𝑑𝑥,

(56)

and utilizing the Lagrange mean value theorem,

∫
Ω

(V + 𝑓 log 1
V
)𝑑𝑥 − ∫

Ω

(𝑢 + 𝑓 log 1
𝑢
) 𝑑𝑥

= ∫
Ω

(V − 𝑢) 𝑑𝑥 − ∫
Ω

𝑓

𝜉
(V − 𝑢) 𝑑𝑥

≥ ∫
Ω

(V − 𝑢) 𝑑𝑥 − ∫
Ω

𝑓

𝑢
(V − 𝑢) 𝑑𝑥,

(57)

for either V ≥ 𝜉 ≥ 𝑢 > 0 or 𝑢 ≥ 𝜉 ≥ V > 0, we have

∫
Ω

𝜕
𝑡
(V − 𝑢) 𝑑𝑥 + 𝐸 (V) ≥ 𝐸 (𝑢) . (58)

Integrating over [0, 𝑡] for any 𝑡 ∈ [0, 𝑇] then yields

∫
𝑡

0

∫
Ω

𝜕
𝑠
𝑢 (V − 𝑢) 𝑑𝑥 𝑑𝑠 + ∫

𝑡

0

𝐸 (V) 𝑑𝑠 ≥ ∫
𝑡

0

𝐸 (𝑢) 𝑑𝑠. (59)

On the other hand, let V = 𝑢+𝜖𝜙 in (59) with 𝜙 ∈ 𝐶∞(Ω),
𝜕𝜙/𝜕 ⃗𝑛 = 0, and 𝜙 > 0. Then left-hand side of the inequality
(59) has a minimum at 𝜖 = 0. Hence, if 𝑢 satisfies (59) and
𝑢 ∈ 𝐿2(0, 𝑇;BV ∩ 𝐿2(Ω)) ∩ 𝐿∞(𝑄

𝑇
) with 𝑢

𝑡
∈ 𝐿2(𝑄

𝑇
), 𝑢 > 0,

and 𝜕𝑢/𝜕 ⃗𝑛 = 0, 𝑢 is also a solution of the problems (29)–(31)
in the sense of distribution. Based on this fact which is similar
to the ideas in [13, 16, 21], we give the following definition.

Definition 9. A function 𝑢 ∈ 𝐿2(0, 𝑇;BV(Ω) ∩ 𝐿2(Ω)) ∩
𝐿∞(𝑄

𝑇
) is called a pseudosolution of (29)–(31), if 𝜕𝑢/𝜕𝑡 ∈

𝐿2(𝑄
𝑇
), 𝜕𝑢/𝜕 ⃗𝑛 = 0, 𝑢 > 0, and 𝑢 satisfies (59) for all 𝑡 ∈ [0, 𝑇],

V ∈ 𝐿2(0, 𝑇;BV(Ω) ∩ 𝐿2(Ω)) ∩ 𝐿∞(𝑄
𝑇
) with V > 0 and

𝜕V/𝜕 ⃗𝑛 = 0. Moreover,

lim
𝑡→0
+

∫
Ω

𝑢 (𝑥, 𝑡) − 𝑓 (𝑥)

2

𝑑𝑥 = 0. (60)
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4.2. The Approximating Problem for Problems (29)–(31). In
this subsection, we consider the approximating problem

𝜕𝑢
𝑝,𝛿

𝜕𝑡
− div (𝛼∇𝑢𝑝,𝛿


𝑝−2

∇𝑢
𝑝,𝛿
) + 𝜆

𝑢
𝑝,𝛿

− 𝑓
𝛿

𝑢
𝑝,𝛿

= 0,

in (𝑥, 𝑡) ∈ Ω ×R
+,

(61)

𝜕𝑢
𝑝,𝛿

𝜕 ⃗𝑛
= 0, on (𝑥, 𝑡) ∈ 𝜕Ω ×R

+, (62)

𝑢
𝑝,𝛿

(𝑥, 0) = 𝑓
𝛿
, on 𝑥 ∈ Ω, (63)

where 1 < 𝑝 ≤ 2, 𝑓
𝛿
∈ 𝐻1(Ω) ∩ 𝐿∞(Ω) such that as 𝛿 → 0,

𝑓
𝛿
→ 𝑓 in 𝐿2 (Ω) , ∫

Ω

𝛼
𝐷𝑓𝛿

 → ∫
Ω

𝛼
𝐷𝑓

 ,

0 < inf
𝑥∈Ω

𝑓 ≤ 𝑓
𝛿
≤ sup

𝑥∈Ω

𝑓.
(64)

From Lemma 5, we can have the existence of 𝑓
𝛿
.

Let us denote

𝐸
𝑝
(𝑢) =

1

𝑝
∫
Ω

𝛼 (𝑥) |∇𝑢|
𝑝 + 𝜆∫

Ω

(𝑢 + 𝑓 log 1
𝑢
) 𝑑𝑥, (65)

which is associate with the problems (61)–(63). Combining
the proof ofTheorem 3.4 in [16] with the proof ofTheorem 7,
we also have the following lemma.

Lemma 10. Let 𝑓
𝛿
∈ 𝐿∞(Ω) with inf

𝑥∈Ω
𝑓
𝛿
> 0. Then, there is

a unique solution to the problem

min
𝑢∈𝑊
1,𝑝

+
(Ω)∩𝐿

∞
(Ω)

𝐸
𝑝
(𝑢) , (66)

which is satisfying

0 < inf
𝑥∈Ω

𝑓
𝛿
≤ 𝑢 ≤ sup

𝑥∈Ω

𝑓
𝛿
, (67)

where𝑊1,𝑝

+
(Ω) = {𝑢 > 0, 𝑢 ∈ 𝑊1,𝑝(Ω)}.

Based on this fact, we have the following existence and
uniqueness result for the problems (61)–(63).

Theorem 11. Let 𝑓
𝛿

∈ 𝐿∞(Ω) with inf
𝑥∈Ω

𝑓
𝛿

> 0 and
sup

𝑥∈Ω
𝑓 ≤ 1. Then, the problems (61)–(63) admit a unique

pseudosolution 𝑢
𝑝,𝛿

∈ 𝐿∞(0,∞;𝑊1,𝑝(Ω) ∩ 𝐿2(Ω)) with
𝜕
𝑡
𝑢
𝑝,𝛿

∈ 𝐿2(𝑄
∞
), that is,

∫
𝑡

0

∫
Ω

𝜕
𝑠
𝑢 (V − 𝑢

𝑝,𝛿
) 𝑑𝑥 𝑑𝑠 + ∫

𝑡

0

𝐸
𝑝
(V) 𝑑𝑠 ≥ ∫

𝑡

0

𝐸
𝑝
(𝑢

𝑝,𝛿
) 𝑑𝑠,

(68)

for any 𝑡 ∈ [0, 𝑇] and V ∈ 𝐿2(0, 𝑇;𝐻1(Ω)) with V > 0 and
𝜕V/𝜕 ⃗𝑛 = 0. Moreover,

0 < inf
𝑥∈Ω

𝑓
𝛿
≤ 𝑢 ≤ sup

𝑥∈Ω

𝑓
𝛿
, (69)

and for any 𝑇 > 0,

∫
𝑇

0

∫
Ω

𝜕𝑡𝑢𝑝,𝛿

2

𝑑𝑥 𝑑𝑡

+ sup
𝑡∈[0,𝑇]

{
1

𝑝
∫
Ω

𝛼
∇𝑢𝑝,𝛿


𝑝

𝑑𝑥

+𝜆∫
Ω

(𝑢
𝑝,𝛿

+ 𝑓
𝛿
log 1

𝑢
𝑝,𝛿

)𝑑𝑥}

≤
1

𝑝
∫
Ω

𝛼
∇𝑓𝛿


𝑝

𝑑𝑥 + 𝜆∫
Ω

(𝑓
𝛿
+ 𝑓

𝛿
log 1

𝑓
𝛿

)𝑑𝑥.

(70)

Proof. Let us fix 𝑘 = inf
𝑥∈Ω

𝑓
𝛿
> 0 and introduce the follow-

ing functions:

[𝑢]𝑘 = max {𝑢, 𝑘} =: {
𝑢, if 𝑢 ≥ 𝑘,

𝑘, if 𝑢 < 𝑘.
(71)

We consider the auxiliary problem as follows:

𝜕𝑢
𝑝,𝛿

𝜕𝑡
− div (𝛼∇𝑢𝑝,𝛿


𝑝−2

∇𝑢
𝑝,𝛿
) + 𝜆

𝑢
𝑝,𝛿

− 𝑓
𝛿

[𝑢]𝑘
= 0,

in (𝑥, 𝑡) ∈ Ω ×R
+,

(72)

𝜕𝑢
𝑝,𝛿

𝜕 ⃗𝑛
= 0, on (𝑥, 𝑡) ∈ 𝜕Ω ×R

+, (73)

𝑢
𝑝,𝛿

(𝑥, 0) = 𝑓
𝛿
, on 𝑥 ∈ Ω. (74)

Since 𝑝-Laplacian operator is a maximal monotone operator,
using Galerkin method and Lebesgue convergence theorem,
from standard results for parabolic equations [22], we get that
the problems (72)–(74) admit a unique weak solution 𝑢

𝑝,𝛿

such that

𝑢
𝑝,𝛿

∈ 𝐿∞ (0,∞;𝑊1,𝑝
(Ω) ∩ 𝐿

2
(Ω)) ,

𝜕
𝑡
𝑢
𝑝,𝛿

∈ 𝐿2 (𝑄
∞
) .

(75)

Next, let us verify that the truncated function [⋅]
𝑘
in

the problems (72)–(74) can be omitted. Multiply (72) by
(𝑢

𝑝,𝛿
− 𝑘)

−
, where

(𝑢
𝑝,𝛿

− 𝑘)
−
= {

𝑢
𝑝,𝛿

− 𝑘, if 𝑢
𝑝,𝛿

− 𝑘 ≤ 0,

0, otherwise,
(76)

and integrate over Ω to get

1

2

𝑑

𝑑𝑡
∫
Ω

(𝑢
𝑝,𝛿

− 𝑘)
2

−
𝑑𝑥 + ∫

Ω

𝛼
∇(𝑢𝑝,𝛿 − 𝑘)−


𝑝

𝑑𝑥

+ ∫
Ω

(𝑢
𝑝,𝛿

− 𝑓
𝛿
) (𝑢

𝑝,𝛿
− 𝑘)

−

[𝑢]𝑘
𝑑𝑥 = 0.

(77)

Then,

1

2

𝑑

𝑑𝑡
∫
Ω

(𝑢
𝑝,𝛿

− 𝑘)
2

−
𝑑𝑥 ≤ 0. (78)
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Therefore, (1/2)(𝑑/𝑑𝑡) ∫
Ω
(𝑢

𝑝,𝛿
− 𝑘)2

−
𝑑𝑥 is decreasing in 𝑡 and

since
1

2
∫
Ω

(𝑢
𝑝,𝛿

− 𝑘)
2

−
𝑑𝑥 ≥ 0,

1

2
∫
Ω

(𝑢
𝑝,𝛿

− 𝑘)
2

−
𝑑𝑥|

𝑡=0
= 0,

(79)

we have that
1

2
∫
Ω

(𝑢
𝑝,𝛿

− 𝑘)
2

−
𝑑𝑥 = 0, (80)

for all 𝑡 ∈ [0, 𝑇], and so
𝑢 (𝑡) ≥ 𝑘 = inf

𝑥∈Ω

𝑓
𝛿
> 0 L − a.e. on Ω ∀𝑡 > 0. (81)

Then, 𝑢
𝑝,𝛿

is also the solution to the problems (61)–(63). Let
us fix 𝐾 = sup

𝑥∈Ω
𝑓
𝛿
. Multiplying (61) by (𝑢 − 𝐾)

+
, where

(𝑢
𝑝,𝛿

− 𝐾)
+
= {

𝑢
𝑝,𝛿

− 𝐾, if 𝑢
𝑝,𝛿

− 𝐾 ≥ 0,

0, otherwise,
(82)

a similar argument yields that 𝑢(𝑡) ≤ 𝐾 = sup
𝑥∈Ω

𝑓
𝛿
for all 𝑡,

and then (69) follows.
Moreover, multiplying (61) by 𝜕

𝑡
𝑢
𝑝,𝛿

and integrating it
overΩ

𝑡
yield

∫
𝑡

0

∫
Ω

𝜕𝑠𝑢𝑝,𝛿

2

𝑑𝑥 𝑑𝑠 +
1

𝑝
∫
𝑡

0

𝜕
𝑠
(∫

Ω

𝛼
∇𝑢𝑝,𝛿


𝑝

𝑑𝑥) 𝑑𝑠

+ 𝜆∫
𝑡

0

𝜕
𝑠
(𝑢

𝑝,𝛿
+ 𝑓 log 1

𝑢
𝑝,𝛿

𝑑𝑥)𝑑𝑠 = 0,

(83)

for 𝑡 ∈ [0, 𝑇]. Then (70) follows.
Finally, we will verify that the above weak solution will be

the pseudosolution for the problems (61)–(63). Suppose that
V ∈ 𝐿2(0, 𝑇;𝐻1(Ω)) with V > 0 and 𝜕V/𝜕 ⃗𝑛 = 0. Multiplying
(61) by V − 𝑢

𝑝,𝛿
, then integrating by parts over Ω

𝑇
, we obtain

∫
𝑇

0

∫
Ω

𝜕
𝑡
𝑢
𝑝,𝛿

(V − 𝑢
𝑝,𝛿
) 𝑑𝑥 𝑑𝑡

+ ∫
𝑇

0

∫
Ω

𝛼
∇𝑢𝑝,𝛿


𝑝−2

(∇V − ∇𝑢
𝑝,𝛿
) 𝑑𝑥 𝑑𝑡

+ ∫
𝑇

0

∫
Ω

(𝑢
𝑝,𝛿

− 𝑓
𝛿
) (V − 𝑢

𝑝,𝛿
)

𝑢
𝑝,𝛿

𝑑𝑥 𝑑𝑡 = 0.

(84)

Utilizing Young’s inequality with 𝜖 = |∇𝑢
𝑝,𝛿
|2−𝑝 yields for the

second term in the left-hand side of the above inequality (84),
we obtain

∇𝑢𝑝,𝛿

𝑝−2

∇𝑢
𝑝,𝛿
∇V −

∇𝑢𝑝,𝛿

𝑝

≤
|∇V|𝑝

𝑝
+

∇𝑢𝑝,𝛿

𝑝

𝑝
. (85)

Utilizing the Lagrange mean value theorem yields

∫
Ω

(V + 𝑓
𝛿
log 1

V
)𝑑𝑥 − ∫

Ω

(𝑢
𝑝,𝛿

+ 𝑓
𝛿
log 1

𝑢
𝑝,𝛿

)𝑑𝑥

= ∫
Ω

(V − 𝑢
𝑝,𝛿
) 𝑑𝑥 − ∫

Ω

𝑓
𝛿

𝜉
(V − 𝑢

𝑝,𝛿
) 𝑑𝑥

≥ ∫
Ω

(V − 𝑢
𝑝,𝛿
) 𝑑𝑥 − ∫

Ω

𝑓
𝛿

𝑢
𝑝,𝛿

(V − 𝑢
𝑝,𝛿
) 𝑑𝑥,

(86)

for either V ≥ 𝜉 ≥ 𝑢
𝑝,𝛿

> 0 or 𝑢
𝑝,𝛿

≥ 𝜉 ≥ V > 0. Returning to
(84), we therefore conclude

∫
𝑇

0

∫
Ω

𝜕
𝑡
𝑢
𝑝,𝛿

(V − 𝑢
𝑝,𝛿
) 𝑑𝑥 𝑑𝑡 +

1

𝑝
∫
𝑇

0

∫
Ω

𝛼|∇V|
𝑝𝑑𝑥

+ 𝜆∫
𝑇

0

∫
Ω

(V + 𝑓
𝛿
log 1

V
) 𝑑𝑥 𝑑𝑡

≥
1

𝑝
∫
𝑇

0

∫
Ω

𝛼
∇𝑢𝑝,𝛿


𝑝

𝑑𝑥

+ 𝜆∫
𝑇

0

∫
Ω

(𝑢
𝑝,𝛿

+ 𝑓
𝛿
log 1

𝑢
𝑝,𝛿

)𝑑𝑥𝑑𝑡,

(87)

that is,

∫
𝑡

0

∫
Ω

𝜕
𝑠
𝑢 (V − 𝑢

𝑝,𝛿
) 𝑑𝑥 𝑑𝑠 + ∫

𝑡

0

𝐸
𝑝
(V) 𝑑𝑠

≥ ∫
𝑡

0

𝐸
𝑝
(𝑢

𝑝,𝛿
) 𝑑𝑠,

(88)

for any 𝑡 ∈ [0, 𝑇]. This fact implies that 𝑢
𝑝,𝛿

is a pseudoso-
lution for the problems (61)–(63). The uniqueness follows by
the uniqueness of the weak solution for the problems (61)–
(63).

4.3. Existence and Uniqueness of the Problems (29)–(31). In
this subsection, we will prove the main theorem for the
existence and uniqueness for the solution to the problems
(29)–(31).

Theorem 12. Suppose 𝑓 ∈ BV(Ω) ∩ 𝐿∞(Ω) with inf
𝑥∈Ω

𝑓 > 0
and sup

𝑥∈Ω
𝑓 ≤ 1. Then, there exists a unique pseudosolution

𝑢 ∈ 𝐿∞(0,∞,BV(Ω) ∩ 𝐿∞(Ω)) to the problems (29)–(31).
Moverover,

0 < inf
𝑥∈Ω

𝑓 ≤ 𝑢 ≤ sup
𝑥∈Ω

𝑓, (89)

∫
∞

0

∫
Ω

𝜕𝑡𝑢

2

𝑑𝑥 𝑑𝑡

+ sup
𝑡∈[0,∞)

{∫
Ω

𝛼 |𝐷𝑢| + 𝜆∫
Ω

(𝑢 + 𝑓 log 1
𝑢
) 𝑑𝑥}

≤ ∫
Ω

𝛼
𝐷𝑓

 + 𝜆∫
Ω

(𝑓 + 𝑓 log 1

𝑓
)𝑑𝑥.

(90)

Proof

Step 1. First we fix 𝛿 > 0 and pass to the limit 𝑝 → 1.
Let 𝑢

𝑝,𝛿
be the pseudosolution solution of (61)–(63).

From (69)-(70), we know that, for fixed 𝛿 > 0, 𝑢
𝑝,𝛿

is
uniformly bounded in 𝐿∞(0,∞,BV(Ω) ∩ 𝐿∞(Ω)) and 𝜕

𝑡
𝑢
𝑝,𝛿

is uniformly bounded in 𝐿2(𝑄
∞
), that is,

𝑢𝑝,𝛿
𝐿∞(𝑄

∞
)
+
𝑢𝑝,𝛿

𝐿∞(0,∞,BV(Ω))
≤ 𝐶,

𝜕𝑡𝑢𝑝,𝛿
𝐿2(𝑄

∞
)
≤ 𝐶,

(91)
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where 𝐶 > 0 is constant. Now we claim that there
exists a sequence of functions 𝑢

𝑝
𝑗
,𝛿

and a function 𝑢
𝛿

∈

𝐿∞(0,∞,BV(Ω) ∩ 𝐿∞(Ω)) such that, as 𝑝
𝑗
→ 1,

𝜕
𝑡
𝑢
𝑝
𝑗
,𝛿
→ 𝜕

𝑡
𝑢
𝛿
weakly in 𝐿2 (𝑄

∞
) , (92)

𝑢
𝑝
𝑗
,𝛿
→ 𝑢

𝛿
weakly∗ in 𝐿∞ (𝑄

∞
)

with 0 < inf
𝑥∈Ω

𝑓
𝛿
≤ 𝑢

𝛿
≤ sup

𝑥∈Ω

𝑓
𝛿
,

(93)

𝑢
𝑝
𝑗
,𝛿
→ 𝑢

𝛿
strongly in 𝐿1 (Ω) for each 𝑡 ∈ [0,∞) , (94)

𝑢
𝑝
𝑗
,𝛿
→ 𝑢

𝛿
in 𝐿2 (Ω) uniformly in 𝑡, (95)

lim
𝑡→0
+

∫
Ω


𝑢
𝑝
𝑗
,𝛿
(𝑥, 𝑡) − 𝑓

𝛿
(𝑥)



2

𝑑𝑥 = 0. (96)

In fact, from (91), there is a sequence 𝑢
𝑝
𝑗
,𝛿
and a function

𝑢
𝛿
∈ 𝐿∞(𝑄

∞
) with 𝜕

𝑡
𝑢
𝛿
∈ 𝐿2(𝑄

∞
) such that (92) and (93)

hold.
Note that, for any 𝜓 ∈ 𝐿2(Ω), as 𝑗 → ∞,

∫
Ω

(𝑢
𝑝
𝑗
,𝛿
(𝑥, 𝑡) − 𝑓

𝛿
(𝑥)) 𝜓 (𝑥) 𝑑𝑥

= ∫
𝑄
𝑡

𝜕
𝑠
𝑢
𝑝
𝑗
,𝛿
(𝑥, 𝑠) 1

[0,𝑡]
(𝑠) 𝜓 (𝑥) 𝑑𝑥 𝑑𝑠

→ ∫
𝑄
𝑡

𝜕
𝑠
𝑢
𝛿
(𝑥, 𝑠) 1

[0,𝑡]
(𝑠) 𝜓 (𝑥) 𝑑𝑥 𝑑𝑠

= ∫
Ω

(𝑢
𝛿
(𝑥, 𝑡) − 𝑓

𝛿
(𝑥)) 𝜓 (𝑥) 𝑑𝑥,

(97)

which shows that, for each 𝑡,

𝑢
𝑝
𝑗
,𝛿
→ 𝑢

𝛿
weakly in 𝐿2 (Ω) . (98)

By (69) and (70), for each 𝑡 ∈ [0,∞), 𝑢
𝑝
𝑗

(⋅, 𝑡) is a bounded
sequence in𝑊1,1(Ω). Hence, combining this with (98), we get
that, for each 𝑡 as 𝑝

𝑗
→ 1,

𝑢
𝑝
𝑗
,𝛿
→ 𝑢

𝛿
in 𝐿1 (Ω) , (99)

which implies (94).
Since


𝑢
𝑝
𝑗
,𝛿
(⋅, 𝑡) − 𝑢

𝑝
𝑗
,𝛿
(⋅, 𝑡)



2

𝐿
2
(Ω)

≤
𝑡 − 𝑡

 ∫
𝑄
𝑇

(𝜕
𝑡
𝑢
𝑝
𝑗
,𝛿
)
2

𝑑𝑥 𝑑𝑡,

(100)

(96) follows.
To see (95), noting that from (100), 𝑡 → 𝑢

𝑝
𝑗
,𝛿
(⋅, 𝑡) ∈

𝐿2(Ω) is equicontinuous, and from (93) and (99), we have,
for each 𝑡 ∈ [0,∞),

𝑢
𝑝
𝑗
,𝛿
→ 𝑢

𝛿
strongly in 𝐿2 (Ω) . (101)

Then, a standard argument yields (95).

From (70) and (92), we also obtain that 𝑢
𝛿

∈
𝐿∞(0,∞,BV(Ω) ∩ 𝐿∞(Ω)) with 𝜕

𝑡
𝑢
𝛿
∈ 𝐿2(𝑄

∞
). The claim

is proved.
Next we show that, for all V ∈ 𝐿2(0, 𝑇;𝐻1(Ω)) with V > 0

and 𝜕V/𝜕 ⃗𝑛 = 0, and for each 𝑡 ∈ [0,∞),

∫
𝑡

0

∫
Ω

𝜕
𝑠
𝑢
𝛿
(V − 𝑢

𝛿
) 𝑑𝑥 𝑑𝑠 + ∫

𝑡

0

∫
Ω

𝛼 |∇V| 𝑑𝑥 𝑑𝑠

+ 𝜆∫
𝑡

0

∫
Ω

(V + 𝑓
𝛿
log 1

V
) 𝑑𝑥 𝑑𝑠

≥ ∫
𝑡

0

∫
Ω

𝛼
𝐷𝑢𝛿

 𝑑𝑠 + 𝜆∫
𝑡

0

∫
Ω

(𝑢
𝛿
+ 𝑓

𝛿
log 1

𝑢
𝛿

)𝑑𝑥𝑑𝑠.

(102)
ByTheorem 11, we obtain that

∫
𝑇

0

∫
Ω

𝜕
𝑡
𝑢
𝑝
𝑗
,𝛿
(V − 𝑢

𝑝
𝑗
,𝛿
) 𝑑𝑥 𝑑𝑡 +

1

𝑝
𝑗

∫
𝑇

0

∫
Ω

𝛼|∇V|
𝑝
𝑗𝑑𝑥 𝑑𝑡

+ 𝜆∫
𝑇

0

∫
Ω

(V + 𝑓
𝛿
log 1

V
)𝑑𝑥𝑑𝑡

≥
1

𝑝
𝑗

∫
𝑇

0

∫
Ω

𝛼

∇𝑢

𝑝
𝑗
,𝛿



𝑝
𝑗

𝑑𝑥 𝑑𝑡

+ 𝜆∫
𝑇

0

∫
Ω

(𝑢
𝑝
𝑗
,𝛿
+ 𝑓

𝛿
log 1

𝑢
𝑝
𝑗
,𝛿

)𝑑𝑥𝑑𝑡,

(103)
Notice that, using Lemma 4, we have

∫
Ω

𝛼
𝐷𝑢𝛿



≤ lim inf
𝑗→∞

∫
Ω

𝛼

𝐷𝑢

𝑝
𝑗
,𝛿



≤ lim inf
𝑗→∞

(∫
Ω

𝛼

∇𝑢

𝑝
𝑗
,𝛿



𝑝
𝑗

𝑑𝑥)
1/𝑝
𝑗

(∫
Ω

𝛼 (𝑥) 𝑑𝑥)
1−1/𝑝

𝑗

= lim inf
𝑗→∞

1

𝑝
𝑗

(∫
Ω

𝛼

∇𝑢

𝑝
𝑗
,𝛿



𝑝
𝑗

𝑑𝑥)
1/𝑝
𝑗

.

(104)
Letting 𝑗 → ∞, 𝑝

𝑗
→ 1 in (103) and using (92), (94), and

(104), we obtain (102) for all V ∈ 𝐿2(0, 𝑇;𝐻1(Ω)) with V > 0
and 𝜕V/𝜕 ⃗𝑛 = 0.

Step 2. Now it only remains to pass to the limit as 𝛿 → 0 in
(102) to complete the existence of the solution to (29)–(31).

Replacing 𝑢
𝑝
by 𝑢

𝑝
𝑗

in (70), letting 𝑗 → ∞ (𝑝
𝑗
→ 1),

and using (92)–(95), (104), and (64), we obtain

∫
∞

0

∫
Ω

𝜕𝑡𝑢𝛿

2

𝑑𝑥 𝑑𝑡

+ sup
𝑡∈[0,∞)

{∫
Ω

𝛼
𝐷𝑢𝛿

 + 𝜆∫
Ω

(𝑢
𝛿
+ 𝑓

𝛿
log 1

𝑢
𝛿

)𝑑𝑥}

≤ ∫
Ω

𝛼
∇𝑓𝛿

 𝑑𝑥 + 𝜆∫
Ω

(𝑓
𝛿
+ 𝑓

𝛿
log 1

𝑓
𝛿

)𝑑𝑥.

(105)
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(a) Noisy: 𝐿 = 1, PSNR = −3.46 (b) Original

(c) 𝛼-TV: PSNR = 19.67, MAE = 2.45 (d) 𝑝-LA: PSNR = 19.76, MAE = 2.51

(e) SO: PSNR = 4.14, MAE = 23.94 (f) AA: PSNR = 16.33, MAE = 4.50

Figure 2: Synthetic image (300 × 300). (a) Noisy image corrupted by speckle noise for 𝐿 = 1 in (8). (b) Original image. (c) Our algorithm by
𝛼-TV, 𝜎 = 2, 𝑘 = 0.05, and 𝜏 = 0.05. (d) Our algorithm by 𝑝-LA, 𝑝

𝑈
= 1.3. (e) SO algorithm, 𝜆 = 0.1, 𝛼 = 0.25. (f) AA algorithm, 𝜆 = 50.

Combining this with (69), we have

𝑢
𝛿
is uniformly bounded in 𝐿∞ (0,∞,BV (Ω) ∩ 𝐿

∞
(Ω)) ,

𝜕
𝑡
𝑢
𝛿
is uniformly bounded in 𝐿2 (𝑄

∞
) .

(106)

Then, by a processing similar to the one for getting (92)–
(96), we can obtain a sequence of functions 𝑢

𝛿
𝑗

and a function
𝑢 ∈ 𝐿∞(0,∞;BV(Ω) ∩ 𝐿∞(Ω) such that, as 𝑗 → ∞, 𝛿

𝑗
→

0,

𝜕
𝑡
𝑢
𝛿
𝑗

→ 𝜕
𝑡
𝑢 weakly in 𝐿2 (𝑄

∞
) , (107)

𝑢
𝛿
𝑗

→ 𝑢 weakly∗ in 𝐿∞ (𝑄
∞
)

with 0 < inf
𝑥∈Ω

𝑓 ≤ 𝑢 ≤ sup
𝑥∈Ω

𝑓,
(108)

𝑢
𝛿
𝑗

→ 𝑢 strongly in 𝐿1 (Ω)

for each 𝑡 ∈ [0,∞) ,
(109)

𝑢
𝛿
𝑗

→ 𝑢 in 𝐿2 (Ω) uniformly in 𝑡, (110)

lim
𝑡→0
+

∫
Ω


𝑢
𝛿
𝑗
(𝑥, 𝑡) − 𝑓



2

𝑑𝑥 = 0. (111)
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(a) Noisy: 𝐿 = 4, PSNR = 2.52 (b) Original

(c) 𝛼-TV: PSNR = 23.86, MAE = 1.27 (d) 𝑝-LA: PSNR = 23.14, MAE = 1.43

(e) SO: PSNR = 15.18, MAE = 6.15 (f) AA: PSNR = 20.14, MAE = 2.94

Figure 3: Synthetic image (300 × 300) (a) Noisy image corrupted by speckle noise for 𝐿 = 4 in (8). (b) Original image. (c) Our algorithm by
𝛼-TV, 𝜎 = 2, 𝑘 = 0.05, 𝜏 = 0.05. (d) Our algorithm by 𝑝-LA, 𝑝

𝑈
= 1.3. (e) SO algorithm, 𝜆 = 0.7, 𝛼 = 0.25. (f) AA algorithm, 𝜆 = 150.

Replacing 𝑢
𝛿
by 𝑢

𝛿
𝑗

in (102), letting 𝑗 → ∞, 𝛿
𝑗
→ 0,

and using Lemma 4, we can have from (107)–(110)

∫
𝑡

0

∫
Ω

𝜕
𝑠
𝑢 (V − 𝑢) 𝑑𝑥 𝑑𝑠 + ∫

𝑡

0

∫
Ω

𝛼 |∇V| 𝑑𝑥 𝑑𝑠

+ 𝜆∫
𝑡

0

∫
Ω

(V + 𝑓 log 1
V
) 𝑑𝑥 𝑑𝑠

≥ ∫
𝑡

0

∫
Ω

𝛼 |𝐷𝑢| 𝑑𝑠

+ 𝜆∫
𝑡

0

∫
Ω

(𝑢 + 𝑓 log 1
𝑢
) 𝑑𝑥 𝑑𝑠,

(112)

for all V ∈ 𝐿2(0, 𝑇;𝐻1(Ω)) with V > 0 and 𝜕V/𝜕 ⃗𝑛 = 0. Then,
the existence of the pseudosolution to (29)–(31) is completed.

Moreover, replacing 𝑢
𝛿
by 𝑢

𝛿
𝑗

, letting 𝑗 → ∞ in (105),
and using (107)–(110) and (64), we have

∫
∞

0

∫
Ω

𝜕𝑡𝑢

2

𝑑𝑥 𝑑𝑡

+ sup
𝑡∈[0,∞)

{∫
Ω

𝛼 |𝐷𝑢| + 𝜆∫
Ω

(𝑢 + 𝑓 log 1
𝑢
) 𝑑𝑥}

≤ ∫
Ω

𝛼
𝐷𝑓

 𝑑𝑥 + 𝜆∫
Ω

(𝑓 + 𝑓 log 1

𝑓
)𝑑𝑥.

(113)
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(a) Noisy: 𝐿 = 10, PSNR = 6.52 (b) Original

(c) 𝛼-TV: PSNR = 26.37, MAE = 0.92 (d) 𝑝-LA: PSNR = 25.68, MAE = 0.96

(e) SO: PSNR = 21.00, MAE = 2.84 (f) AA: PSNR = 23.94, MAE = 1.49

Figure 4: Synthetic image (300 × 300) (a) Noisy image corrupted by speckle noise for 𝐿 = 10 in (8). (b) Original image. (c) Our algorithm
by 𝛼-TV, 𝜎 = 2, 𝑘 = 0.05, 𝜏 = 0.05. (d) Our algorithm by 𝑝-LA, 𝑝

𝑈
= 1.2. (e) SO algorithm, 𝜆 = 0.7, 𝛼 = 0.25. (f) AA algorithm, 𝜆 = 240.

Finally, the uniqueness of pseudosolutions to the prob-
lems (29)–(31) follows as in [21, 23]. Let 𝑢

1
, 𝑢

2
be two

pseudosolutions to (29)–(31) with 𝑢
1
(𝑥, 0) = 𝑢

2
(𝑥, 0) = 𝑓.

Then, we have

∫
𝑡

0

∫
Ω

𝜕
𝑠
𝑢
1
(𝑢

2
− 𝑢

1
) 𝑑𝑥 𝑑𝑠 + ∫

𝑡

0

∫
Ω

𝛼
∇𝑢2

 𝑑𝑥 𝑑𝑠

+ 𝜆∫
𝑡

0

∫
Ω

(𝑢
2
+ 𝑓 log 1

𝑢
2

)𝑑𝑥𝑑𝑠

≥ ∫
𝑡

0

∫
Ω

𝛼
𝐷𝑢1

 𝑑𝑠 + 𝜆∫
𝑡

0

∫
Ω

(𝑢
1
+ 𝑓 log 1

𝑢
1

)𝑑𝑥𝑑𝑠,

∫
𝑡

0

∫
Ω

𝜕
𝑠
𝑢
2
(𝑢

1
− 𝑢

2
) 𝑑𝑥 𝑑𝑠 + ∫

𝑡

0

∫
Ω

𝛼
∇𝑢1

 𝑑𝑥 𝑑𝑠

+ 𝜆∫
𝑡

0

∫
Ω

(𝑢
1
+ 𝑓 log 1

𝑢
1

)𝑑𝑥𝑑𝑠

≥ ∫
𝑡

0

∫
Ω

𝛼
𝐷𝑢2

 𝑑𝑠 + 𝜆∫
𝑡

0

∫
Ω

(𝑢
2
+ 𝑓 log 1

𝑢
2

)𝑑𝑥𝑑𝑠.

(114)
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(a) Noisy: 𝐿 = 1, PSNR = 12.39 (b) Original

(c) 𝛼-TV: PSNR = 23.25, MAE = 12.00 (d) 𝑝-LA: PSNR = 23.47, MAE = 11.64

(e) SO: PSNR = 17.82, MAE = 25.44 (f) AA: PSNR = 22.34, MAE = 13.35

Figure 5: Aerial image (512 × 512). (a) Noisy image corrupted by speckle noise for 𝐿 = 1 in (8). (b) Original image. (c) Our algorithm by
𝛼-TV, 𝜎 = 2, 𝑘 = 0.03, and 𝜏 = 0.05. (d) Our algorithm by 𝑝-LA, 𝑝

𝑈
= 1.4. (e) SO algorithm, 𝜆 = 0.1, 𝛼 = 0.25. (f) AA algorithm, 𝜆 = 25.

Adding the above two inequalities, we get

∫
𝑡

0

∫
Ω

𝜕
𝑠
(𝑢

1
− 𝑢

2
)
2

𝑑𝑥 𝑑𝑠 ≤ 0, (115)

for all 𝑡 > 0. This implies that 𝑢
1
= 𝑢

2
a.e. in (𝑥, 𝑡) ∈ 𝑄

∞
.

4.4. Long-Time Behavior. At last, we will show the asymptotic
limit of the solution 𝑢(⋅, 𝑡) as 𝑡 → ∞.

Theorem 13. As 𝑡 → ∞, the pseudosolutions to the problems
(29)–(31), 𝑢(𝑥, 𝑡), converges strongly in 𝐿2(Ω) to the minimizer

�̃� of the functional 𝐸(𝑢), that is, the solution of the problem
(28).

Proof. Take a function V ∈ BV(Ω) ∩ 𝐿∞(Ω) with V > 0 in
(59), then

∫
Ω

(𝑢 (𝑥, 𝑡) − 𝑓 (𝑥)) V (𝑥) 𝑑𝑥 −
1

2
∫
Ω

(𝑢2 (𝑥, 𝑡) − 𝑓
2
(𝑥)) 𝑑𝑥

+ 𝑡∫
Ω

𝛼 |∇V| 𝑑𝑥 𝑑𝑠 + 𝜆𝑡 ∫
Ω

(V + 𝑓 log 1
V
) 𝑑𝑥 𝑑𝑠
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(a) Noisy: 𝐿 = 4, PSNR = 18.39 (b) Original

(c) 𝛼-TV: PSNR = 25.82, MAE = 8.95 (d) 𝑝-LA: PSNR = 26.16, MAE = 8.81

(e) SO: PSNR = 24.00, MAE = 11.05 (f) AA: PSNR = 24.20, MAE = 10.30

Figure 6: Aerial image (512 × 512). (a) Noisy image corrupted by speckle noise for 𝐿 = 4 in (8). (b) Original image. (c) Our algorithm by
𝛼-TV, 𝜎 = 2, 𝑘 = 0.015, and 𝜏 = 0.05. (d) Our algorithm by 𝑝-LA, 𝑝

𝑈
= 1.4. (e) SO algorithm, 𝜆 = 0.3, 𝛼 = 0.25. (f) AA algorithm, 𝜆 = 120.

≥ ∫
𝑡

0

∫
Ω

𝛼 |𝐷𝑢| 𝑑𝑠 + 𝜆∫
𝑡

0

∫
Ω

(𝑢 + 𝑓 log 1
𝑢
) 𝑑𝑥 𝑑𝑠. (116)

As in [16], let

𝑤 (𝑥, 𝑡) =
1

𝑡
∫
𝑡

0

𝑢 (𝑥, 𝑠) 𝑑𝑠. (117)

Since 𝑢 ∈ 𝐿∞(0,∞;BV(Ω) ∩ 𝐿∞(Ω)) with 𝑢 > 0, for each
𝑡 > 0, we have that 𝑤(⋅, 𝑡) ∈ BV(Ω) ∩ 𝐿∞(Ω) with {𝑤(⋅, 𝑡)}
uniformly bounded in BV(Ω) and𝐿∞(Ω).Then, there exists a

subsequence {𝑤(⋅, 𝑡
𝑖
)} of {𝑤(⋅, 𝑡)} and a function �̃� ∈ BV(Ω) ∩

𝐿∞(Ω), such that as 𝑡
𝑖
→ ∞,

𝑤 (⋅, 𝑡
𝑖
) → �̃� strongly in 𝐿1 (Ω) ,

𝑤 (⋅, 𝑡
𝑖
) → �̃� weakly∗ in BV (Ω) .

(118)

Since {𝑤(⋅, 𝑡)} is uniformly bounded in 𝐿∞(Ω), we have

{𝑤 (⋅, 𝑡
𝑖
)} → �̃� strongly in 𝐿2 (Ω) . (119)



Abstract and Applied Analysis 15

(a) Noisy: 𝐿 = 10, PSNR = 22.45 (b) Original

(c) 𝛼-TV: PSNR = 27.92, MAE = 7.12 (d) 𝑝-LA: PSNR = 28.18, MAE = 6.98

(e) SO: PSNR = 27.27, MAE = 7.42 (f) AA: PSNR = 26.04, MAE = 8.13

Figure 7: Aerial image (512 × 512). (a) Noisy image corrupted by speckle noise for 𝐿 = 10 in (8). (b) Original image. (c) Our algorithm by
𝛼-TV, 𝜎 = 2, 𝑘 = 0.015, and 𝜏 = 0.05. (d) Our algorithm by 𝑝-LA, 𝑝

𝑈
= 1.4. (e) SO algorithm, 𝜆 = 1.2, 𝛼 = 0.25. (f) AA algorithm, 𝜆 = 130.

By dividing 𝑡 in (116) and then taking the limit along 𝑠
𝑖
→

∞, we get that, for any V ∈ BV(Ω) ∩ 𝐿∞ with V > 0,

∫
Ω

𝛼 |𝐷V| 𝑑𝑥 + 𝜆∫
Ω

(V + 𝑓 log 1
V
)𝑑𝑥

≥ ∫
Ω

𝛼 |𝐷�̃�| 𝑑𝑠 + 𝜆∫
Ω

(�̃� + 𝑓 log 1
�̃�
) 𝑑𝑥,

(120)

which implies that �̃� is the minimizer of the problem (28).

5. Numerical Methods and
Experimental Results

We present in this section some numerical examples illus-
trating the capability of our model. We also compare it with
the known model (AA). In the next two subsections, two
numerical discrete schemes, the 𝛼-total variation (𝛼-TV)
scheme and the 𝑝-Laplace approximate (𝑝-LA) scheme, will
be proposed.
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(a) Noisy: 𝐿 = 1, PSNR = 5.26 (b) Original

(c) 𝛼-TV: PSNR = 20.81, MAE = 14.65 (d) 𝑝-LA: PSNR = 21.03, MAE = 13.94

(e) SO: PSNR = 14.15, MAE = 38.92 (f) AA: PSNR = 18.81, MAE = 22.14

Figure 8: Cameraman image (512 × 512). (a) Noisy image corrupted by speckle noise for 𝐿 = 1 in (8). (b) Original image. (c) Our algorithm
by 𝛼-TV, 𝜎 = 2, 𝑘 = 0.01, and 𝜏 = 0.05. (d) Our algorithm by 𝑝-LA, 𝑝

𝑈
= 1.3. (e) SO algorithm, 𝜆 = 0.04, 𝛼 = 0.25. (f) AA algorithm, 𝜆 = 125.

5.1. 𝛼-Total Variation Scheme. Numerically we get a solution
to the problem (28) by computing the associated equation
(29) to a steady state. To discretize (29), the finite difference
scheme in [6] is used. Denote the space step by ℎ = 1 and the
time step by 𝜏. Thus, we have

𝐷±

𝑥
(𝑢

𝑖,𝑗
) = ± [𝑢

𝑖±1,𝑗
− 𝑢

𝑖,𝑗
] ,

𝐷±

𝑦
(𝑢

𝑖,𝑗
) = ± [𝑢

𝑖,𝑗±1
− 𝑢

𝑖,𝑗
] ,

𝐷𝑥
(𝑢

𝑖,𝑗
)


= √(𝐷+

𝑥
(𝑢

𝑖,𝑗
))

2

+ (𝑚 [𝐷+

𝑦
(𝑢

𝑖,𝑗
) , 𝐷−

𝑦
(𝑢

𝑖,𝑗
)])

2

+ 𝜖,

𝐷𝑥
(𝑢

𝑖,𝑗
)


= √(𝐷+

𝑦
(𝑢

𝑖,𝑗
))

2

+ (𝑚 [𝐷+

𝑥
(𝑢

𝑖,𝑗
) , 𝐷−

𝑥
(𝑢

𝑖,𝑗
)])

2

+ 𝜖,

(121)
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(a) Noisy: 𝐿 = 4, PSNR = 11.23 (b) Original

(c) 𝛼-TV: PSNR = 24.22, MAE = 8.88 (d) 𝑝-LA: PSNR = 24.10, MAE = 9.18

(e) SO: PSNR = 21.61, MAE = 14.64 (f) AA: PSNR = 21.91, MAE = 14.25

Figure 9: Cameraman image (512 × 512). (a) Noisy image corrupted by speckle noise for 𝐿 = 4 in (8). (b) Original image. (c) Our algorithm
by 𝛼-TV, 𝜎 = 2, 𝑘 = 0.005, and 𝜏 = 0.05. (d) Our algorithm by 𝑝-LA, 𝑝

𝑈
= 1.2. (e) SO algorithm, 𝜆 = 0.2, 𝛼 = 0.25. (f) AA algorithm, 𝜆 = 240.

where 𝑚[𝑎, 𝑏] = (sign 𝑎 + sign 𝑏)min(|𝑎|, |𝑏|)/2 and 𝜖 > 0 is
the regularized parameter chosen near 0.

The numerical algorithms for the problems (29)–(31) are
given as follows:

𝛼
𝑖,𝑗
= (1 −

1

1 + 𝑘
𝐺𝜎

∗ 𝑓

2

𝑖,𝑗

)
1 + 𝑘𝑀2

𝑘𝑀2
, (122)

𝑍𝑛

𝑖,𝑗
= 𝐷−

𝑥
(
𝛼
𝑖,𝑗
𝐷+

𝑥
𝑢𝑛
𝑖,𝑗

𝐷
+

𝑥
𝑢𝑛
𝑖,𝑗



) + 𝐷−

𝑦
(
𝛼
𝑖,𝑗
𝐷+

𝑦
𝑢𝑛
𝑖,𝑗

𝐷
+

𝑦
𝑢𝑛
𝑖,𝑗



) , (123)

𝜆𝑛 =
∑
𝑖,𝑗
(𝑍𝑛

𝑖,𝑗
(1 − (𝑓/ (𝑢 + 𝜖))) 𝐿)

𝐼𝐽
, (124)

𝑢𝑛+1
𝑖,𝑗

= 𝑢𝑛
𝑖,𝑗
+ 𝜏𝑍𝑛

𝑖,𝑗
− 𝜏𝜆𝑛 (1 −

𝑓

𝑢 + 𝜖
) , (125)

𝑢0
𝑖,𝑗
= 𝑓

𝑖,𝑗
= 𝑓 (𝑖ℎ, 𝑗ℎ) , 0 ≤ 𝑖 ≤ 𝐼, 0 ≤ 𝑗 ≤ 𝐽, (126)

𝑢𝑛
𝑖,0
= 𝑢𝑛

𝑖,1
, 𝑢𝑛

0,𝑗
= 𝑢𝑛

1,𝑗

𝑢𝑛
𝐼,𝑖
= 𝑢𝑛

𝐼−1,𝑖
, 𝑢𝑛

𝑖,𝐽
= 𝑢𝑛

𝑖,𝐽−1
.

(127)
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(a) Noisy: 𝐿 = 10, PSNR = 15.27 (b) Original

(c) 𝛼-TV: PSNR = 26.29, MAE = 7.14 (d) 𝑝-LA: PSNR = 26.03, MAE = 7.43

(e) SO: PSNR = 24.96, MAE = 8.36 (f) AA: PSNR = 24.25, MAE = 9.97

Figure 10: Cameraman image (512 × 512). (a) Noisy image corrupted by speckle noise for 𝐿 = 10 in (8). (b) Original image. (c) Our
algorithm by 𝛼-TV, 𝜎 = 8/6, 𝑘 = 0.005, and 𝜏 = 0.05. (d) Our algorithm by 𝑝-LA, 𝑝

𝑈
= 1.2. (e) SO algorithm, 𝜆 = 1, 𝛼 = 0.25. (f) AA

algorithm, 𝜆 = 390.

Here the MATLAB function “conv2” is used to represent
the two-dimensional discrete convolution transform of the
matrix 𝑢

𝑖,𝑗
, that is, 𝐺 ∗ 𝑢. Through the above lines, we can

obtain 𝑢1
𝑖,𝑗
by 𝑢0

𝑖,𝑗
. The program will stop when it achieves our

desire.

5.2. 𝑝-Laplace Approximate Scheme. From the proof of
Theorem 12, we can know that the term ∫

Ω
𝛼|𝐷𝑢| can be

approximated by the term (1/𝑝) ∫
Ω
𝛼|∇𝑢|𝑝𝑑𝑥. Based on this,

we can use the numerical algorithms for the problems (61)–
(63) to get a solution to the problem (28), as 𝑝 → 1. As in
[24], the numerical discrete scheme for the problems (61)–
(63) is given as follows:

𝛼
𝑖,𝑗
= (1 −

1

1 + 𝑘
𝐺𝜎

∗ 𝑓

2

𝑖,𝑗

)
1 + 𝑘𝑀2

𝑘𝑀2
,

𝑍𝑛

1𝑖,𝑗
= 𝛼

𝑖,𝑗
((𝐷+

𝑥
𝑢𝑛
𝑖,𝑗
)
2

+ (𝐷+

𝑦
𝑢𝑛
𝑖,𝑗
)
2

)
(𝑝
𝑛
−2)/2

𝐷+

𝑥
𝑢𝑛
𝑖,𝑗
,
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𝑍𝑛

2𝑖,𝑗
= 𝛼

𝑖,𝑗
((𝐷+

𝑥
𝑢𝑛
𝑖,𝑗
)
2

+ (𝐷+

𝑦
𝑢𝑛
𝑖,𝑗
)
2

)
(𝑝
𝑛
−2)/2

𝐷+

𝑦
𝑢𝑛
𝑖,𝑗
,

𝜆𝑛 =
∑
𝑖,𝑗
((𝐷−

𝑥
𝑍𝑛

1𝑖,𝑗
+ 𝐷−

𝑦
𝑍𝑛

2𝑖,𝑗
) (1 − 𝑓/ (𝑢 + 𝜖)) 𝐿)

𝐼𝐽
,

𝑢𝑛+1
𝑖,𝑗

= 𝑢𝑛
𝑖,𝑗
+ 𝜏 (𝐷−

𝑥
𝑍𝑛

1𝑖,𝑗
+ 𝐷−

𝑦
𝑍𝑛

2𝑖,𝑗
) − 𝜏𝜆𝑛 (1 −

𝑓

𝑢 + 𝜖
) ,

𝑝𝑛+1 = 𝑝𝑛 +
𝑛 (𝑝

𝐿
− 𝑝

𝑈
)

𝑁
,

𝑝0 = 𝑝
𝑈
, 𝑢0

𝑖,𝑗
= 𝑓

𝑖,𝑗
= 𝑓 (𝑖ℎ, 𝑗ℎ) ,

0 ≤ 𝑖 ≤ 𝐼, 0 ≤ 𝑗 ≤ 𝐽,

𝑢𝑛
𝑖,0
= 𝑢𝑛

𝑖,1
, 𝑢𝑛

0,𝑗
= 𝑢𝑛

1,𝑗
,

𝑢𝑛
𝐼,𝑖
= 𝑢𝑛

𝐼−1,𝑖
, 𝑢𝑛

𝑖,𝐽
= 𝑢𝑛

𝑖,𝐽−1
,

(128)

where 𝑝
𝐿
= 1, 1 < 𝑝

𝑈
≤ 2 is upper limit of the exponent 𝑝,

𝑛 = 1, 2, . . . , 𝑁, and𝑁 is the iteration time.

5.3. Comparison with Other Methods. In this section, we
used the similar way for numerical experiments as [25]. For
comparison purposes, some very recent multiplicative noise
removal algorithms from the literature are considered, such
as the SOAlgorithm [8] (see (16)-(17)) and the AAAlgorithm
[5] (see (10)). As recommended in [8], the stopping rule about
SO Algorithm is to reach 𝐾 such that 𝐾 = max{𝑘 ∈ N :
Var[𝑤

𝑘
−𝑤

𝑂
] ≥ Var[𝜂] = Ψ

1
(𝐿)}, where𝑤

𝑂
is the underlying

log-image, and 𝜂 is the relevant noise, and the variance is
defined by (16).

The denoising algorithms were tested on three images: a
synthetic image (300 × 300 pixels), an aerial image (256 ×
256 pixels), and a cameraman image (256 × 256 pixels).
In all numerical experiments by our algorithms, the images
do not need to be normalized in the range [1, 256]. This is
different from the other algorithms. For each image, a noisy
observation is generated by multiplying the original image
by the speckle noise according to the model in (8) with the
choice 𝐿 ∈ {1, 4, 10}.

For a noise-free image 𝑢
𝑂
and its denoised version by any

algorithm 𝑢, the denoising performance is measured in terms
of peak signal to noise ratio (PSNR) [25],

PSNR = 10 log
10

𝑀𝑁
max 𝑢

𝑂
−min 𝑢

𝑂


2

𝑢 − 𝑢𝑂

2

𝐿
2

dB, (129)

and mean absolute-deviation error (MAE),

MAE =

𝑢 − 𝑢𝑂
𝐿1

𝑀𝑁
, (130)

where |max 𝑢
𝑂
− min 𝑢

𝑂
| gives the gray-scale range of the

original image,𝑀,𝑁 is the size of the image.
For fair comparison, the parameters of SO and AA were

tweakedmanually to reach their best performance level.Their
values are summarized in Table 1. In the 𝛼-total variation (𝛼-
TV) scheme, there are four parameters: the influencing factor

Table 1: Parameters used in the comparison study.

Algorithm Parameters
𝐿 = 1 𝐿 = 4 𝐿 = 10

The synthetic image (300 × 300)
𝛼-TV 𝜎 = 2, 𝑘 = 0.05 𝜎 = 2, 𝑘 = 0.05 𝜎 = 2, 𝑘 = 0.05

𝑝-LA 𝑝
𝑈
= 1.3 𝑝

𝑈
= 1.3 𝑝

𝑈
= 1.2

SO 𝜆 = 0.1, 𝛼 = 0.25 𝜆 = 0.7, 𝛼 = 0.25 𝜆 = 0.2, 𝛼 = 0.25

AA 𝜆 = 20 𝜆 = 150 𝜆 = 240

The aerial image (512 × 512)
𝛼-TV 𝜎 = 2, 𝑘 = 0.03 𝜎 = 2, 𝑘 = 0.015 𝜎 = 2, 𝑘 = 0.015

𝑝-LA 𝑝
𝑈
= 1.4 𝑝

𝑈
= 1.4 𝑝

𝑈
= 1.4

SO 𝜆 = 0.1, 𝛼 = 0.25 𝜆 = 0.3, 𝛼 = 0.25 𝜆 = 1.2, 𝛼 = 0.25

AA 𝜆 = 25 𝜆 = 120 𝜆 = 130

The cameraman image (256 × 256)
𝛼-TV 𝜎 = 2, 𝑘 = 0.005 𝜎 = 2, 𝑘 = 0.005 𝜎 = 2, 𝑘 = 0.005

𝑝-LA 𝑝
𝑈
= 1.3 𝑝

𝑈
= 1.2 𝑝

𝑈
= 1.2

SO 𝜆 = 0.04, 𝛼 = 0.25 𝜆 = 0.2, 𝛼 = 0.25 𝜆 = 1, 𝛼 = 0.25

AA 𝜆 = 125 𝜆 = 240 𝜆 = 390

𝑘, the scale of convolution 𝜎, the time step 𝜏, and the turning
factor 𝜆. However, the parameter 𝜆 is found dynamically by
(124). To ensure stability as well as optimal results, we choose
𝜏 = 0.05. In 𝑝-Laplace approximate (𝑝-LA) scheme, besides
the same four parameters with 𝛼-TV scheme, there is a new
parameter 𝑝

𝑈
with 1 < 𝑝

𝑈
≤ 2. We need not the the exact

value of 𝑝
𝑈
but an approximate estimate (e.g., 𝑝

𝑈
= 1.2).

Notice that the parameters of ourmethod are very stable with
respect to the image.

The results are depicted in Figures 2, 3, and 4 for the
synthetic image, Figures 5, 6, and 7 for the aerial image, and
Figures 8, 9, and 10 for the cameraman image. Our methods
do a good job at restoring faint geometrical structures of
the images even for low values of 𝐿, see for instance the
results on the aerial image for 𝐿 = 1 and 𝐿 = 4. Our
algorithm performs among the best and even outperforms its
competitors most of the time both visually and quantitatively
as revealed by the PSNR and MAE values. For SO method,
the number of iterations necessary to satisfy the stopping rule
rapidly increases when 𝐿 decreases [25]. For AAmethod, the
appropriate parameter 𝜆 is necessary.

In the numerical experiments, we can see that for the
nontexture image, our methods and AA method work well
(see Figure 4); for the texture image, our methods and SO
method work well (see Figure 7).The denoising performance
results are tabulated in Table 2, where the best PSNR and
MAE values are shown in boldface. The PSNR improvement
brought by our approach can be quite high particularly for
𝐿 = 1 (see e.g., Figures 2–4), and the visual resolution is
quite respectable. This is an important achievement since
in practice 𝐿 has a small value, usually 1, rarely above 4.
This improvement becomes less salient as 𝐿 increases which
is intuitively expected. But even for 𝐿 = 10, the PSNR of
our algorithm can be higher than AA and SO methods (see
Table 2).
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Table 2: PSNR and MAE.

PSNR MAE
𝐿 1 4 10 𝐿 1 4 10

The synthetic image (300 × 300)
𝛼-TV 19.67 23.86 26.37 𝛼-TV 2.45 1.27 0.92
𝑝-LA 19.76 23.14 25.68 𝑝-LA 2.51 1.43 0.96
SO 4.14 15.81 21.00 SO 23.94 6.15 2.84
AA 16.33 20.14 23.94 AA 4.50 2.94 1.49

The aerial image (512 × 512)
𝛼-TV 23.25 25.82 27.92 𝛼-TV 12.00 8.95 7.12
𝑝-LA 23.47 26.16 28.18 𝑝-LA 11.64 8.81 6.98
SO 17.82 24.00 27.27 SO 25.44 11.05 7.42
AA 22.34 24.20 26.04 AA 13.35 10.30 8.13

The cameraman image (256 × 256)
𝛼-TV 20.81 24.22 26.29 𝛼-TV 14.65 8.88 7.14
𝑝-LA 24.10 23.14 26.03 𝑝-LA 13.94 9.18 7.43
SO 14.15 21.61 24.96 SO 38.92 14.64 8.36
AA 18.81 21.91 24.25 AA 22.14 14.25 9.97
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