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We expose the chaotic attractors of time-reversed nonlinear system, further implement its behavior on electronic circuit, and
apply the pragmatical asymptotically stability theory to strictly prove that the adaptive synchronization of given master and
slave systems with uncertain parameters can be achieved. In this paper, the variety chaotic motions of time-reversed Lorentz
system are investigated through Lyapunov exponents, phase portraits, and bifurcation diagrams. For further applying the complex
signal in secure communication and file encryption, we construct the circuit to show the similar chaotic signal of time-reversed
Lorentz system. In addition, pragmatical asymptotically stability theorem and an assumption of equal probability for ergodic initial
conditions (Ge et al., 1999, Ge and Yu, 2000, and Matsushima, 1972) are proposed to strictly prove that adaptive control can be
accomplished successfully. The current scheme of adaptive control—by traditional Lyapunov stability theorem and Barbalat lemma,
which are used to prove the error vector—approaches zero, as time approaches infinity. However, the core question—why the
estimated or given parameters also approach to the uncertain parameters—remains without answer. By the new stability theory,
those estimated parameters can be proved approaching the uncertain values strictly, and the simulation results are shown in this

paper.

1. Introduction

Nonlinear dynamics, commonly called the chaos theory,
changes the scientific way of looking at the dynamics of
natural and social systems, which has been intensively studied
over the past several decades [1-11]. The phenomenon of
chaos has attracted widespread attention amongst math-
ematicians, physicists, and engineers and has also been
extensively studied in many fields, such as chemical reactions
[12, 13], biological systems [14, 15], information processing
(16, 17], secure communications [18-21], and the rest.

Whilst many researchers analyze complicated, physically
motivated configurations, there is also a need to investigate
simple equations in a complete different sight view, which

may capture the essence of chaos in a less involved setting,
thereby aiding the understanding of essential characteristics.
The most well-famous and classical nonlinear chaotic system
should be “Lorenz system,” which is an extraordinary three-
dimensional nonlinear system originally investigated by the
mathematical meteorologist Lorenz [22], who discovered
chaos in a simple system of three autonomous ordinary
differential equations in order to describe the simplified
Rayleigh-Benard problem in 1963. After that, the nonlinear
behaviors of Lorentz system are regarded as an important
research topic, and plenty of articles are focusing on Lorentz
system and its extensive system (which is called family
of Lorentz systems or Lorentz-like system) studying [23-
26].



Although Lorentz-related systems have been made a
thorough study, most of the existing articles are studying
these kinds of systems via changing the parameters, adding an
alternative nonlinear terms (feedback control), or inputting
additional signals to the parameter or feedback terms.
Besides, there are some articles [27-29] in studying changing
time scale to find out if there exist different phenomena
in nonlinear systems. The researches in [27-29] are only
concentrating on different time scales, and the nonlinear
systems differential with respect to negative time are not
touched in such articles. As a result, in this paper, we
follow the art of Ge and Li [30] to widen a new field of
vision in Lorentz system with negative time and express the
fruitful dynamics in this time-reversed Lorentz system. The
proposing and the thorough understanding of the physical
essence for time-reversed chaotic systems are quite beneficial
for further studies of dynamically rich chaotic systems. Most
importantly, the proposing time-reversed Lorentz system still
satisfies the condition a,,a,, > 0, which is defined via Liu
and Barbosa [31]. On the other hand, for further applying the
chaotic signal to secure communication and file encryption,
we construct the circuit to show the similar chaotic signal
of time-reversed Lorentz system. The same initial conditions
and parameters are given for comparison between MATLAB
and circuits, which shows high similarity.

Synchronization of chaotic systems is essential in variety
of applications, including secure communication, physiology,
and nonlinear optics. Accordingly, following the initial work
of Pecora and Carroll [32] in synchronization of identi-
cal chaotic systems with different initial conditions, many
approaches have been proposed for the synchronization of
chaotic and hyperchaotic systems. However, most of the
methods are used to synchronize only two systems with
exactly known structures and parameters, but in practical
situations, some or all of the systems’ parameters cannot
be exactly known in priori. As a result, more and more
applications of chaos synchronization in secure communi-
cation have made it much more important to synchronize
two different dynamics systems with uncertain parameters in
recent years. In this regard, some works on synchronization
of two different dynamical systems with uncertain parameters
have been performed [33-37]. In current scheme of adaptive
synchronization, traditional Lyapunov stability theorem and
Barbalat lemma are used to prove that the error vector
approaches zero, as time approaches infinity, but the question
that why those estimated parameters also approach the uncer-
tain values remains without answer. In this paper, pragmatical
asymptotically stability theorem and an assumption of equal
probability for ergodic initial conditions [38-40] are used to
prove strictly that those estimated parameters approach the
uncertain values. By the new stability theory, those estimated
parameters can be proved approaching the uncertain values
strictly, and the simulation results are shown in this paper.

The layout of the rest of the paper is as follows. In
Section 2, classical and time-reversed Lorentz systems are
introduced, given complete information of comparison. In
Section 3, pragmatical adaptive synchronization scheme is
presented. In Section 4, adaptive RTR synchronization of
master and slave systems through pragmatical asymptotically
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FIGURE 1: Projections of phase portrait of chaotic classical Lorentz
system with a = 10, b = 8/3, and ¢ = 28.

stability is operated, and the well-performed simulation
results are provided. In Section 5, conclusions are given.

2. Lorentz System and Time-Reversed
Lorentz System

First of all, let us review the classical Lorentz system [21],
which is an extraordinary three-dimensional nonlinear sys-
tem proposed by the mathematical meteorologist Lorenz. The
well-known equation is shown as follow:

d

x;t(t) =a (xz (t) - X, (t)) ,
dx;t(t) =cx; (t) = x, () x5 () — x, (), 1)
d

x;t(t) = x, (t) x, (t) — bxs (t) .

Given initial condition (x,q, x50, X3) = (—0.1,0.2,0.3) and
parameters a = 10, b = 8/3, and ¢ = 28, chaos of (1) appears,
where the parameters a and ¢ are satisfying the condition:
ac > 0. The chaotic behavior of (1) is shown in Figure 1.

Time-reversed Lorentz equations are provided as follows
[30]:

dx, (-t) _

d(-t) =a (x2 (-1) = x (_t)) >

dx, (-

DY - e - O (D=5 (0, ()
dx, (-t

B - b ).

It is clear that in the left hand sides of (2), the derivatives
are taken with the back time. We will aims to express the
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TABLE 1: Dynamic behaviors of historical Lorentz system for
different signs of parameters.

a c States

_ + + Approach to infinite

+ + Approach to infinite

+ + - Periodic

_ _ + Approach to infinite
+ - Approach to infinite

Chaos and periodic
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FIGURE 2: Projections of phase portrait of chaotic historical Lorenz
system with Y ina = —-10,b = -8/3, and ¢ = -28.

fruitful nonlinear behaviors of the time-reversed Lorentz
system and to comprehend the relation with classical one. The
simulation results are arranged in Table 1.

When initial condition (x,g,X,9, X35) = (-0.1,0.2,0.3)
and parameters a = —10, b = —8/3, and ¢ = —28, chaos of the
time-reversed Lorentz system appears, where the parameters
a and c are also satisfying the condition: ac > 0. The chaotic
behavior of (2) is shown in Figure 2.

In order to verify the circuit, we have implemented it
using an electronics simulation package Multisim (previously
called Electronic Workbench, EWB). The electric circuit
is presented in Figure3 to compare with the simulation
result in Figure 2. The configuration of electronic circuit
for chaotic time-reversed Lorentz system is also given in
Figure 4. The voltage outputs have been normalized to 0.1V,
and the operational amplifiers are considered to be ideal.
Hence the default initial conditions are (—0.01V, 0.02V, and
0.03V). Most of the phase diagrams are plotted within the
time interval 300-400s. The time step is 0.001s. The phase
diagrams of the two simulation results given below show that
the chaotic signals generated by the electronic circuits can
perform high similarity with the original one generated by
the ideal simulation tools. Accordingly, the chaotic signals
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FIGURE 3: Projection of phase portraits outputs in electronic circuit
for time-reversed Lorenz system.

produced by electronic circuits have high controllability and
can be applied to encryption of signals or files.

The different and similar dynamics information between
classical and time-reversed Lorentz systems are reported
in detail through bifurcation diagrams, Lyapunov expo-
nents, and tables. The complete simulation results about the
dynamic systems are divided into three parts.

Part 1: changing c, and with a, b fixed, the simulation
results are shown in Figure 5.

Part 2: changing b, and with a, c fixed, the simulation
results are shown in Figure 6.

Part 3: changing a, and with b, ¢ fixed, the simulation
results are shown in Figure 7.
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FIGURE 4: The electronic circuit of chaotic time-reversed Lorenz system.
3. Pragmatical Adaptive From (6) we have
Synchronization Scheme
yn e=i-, )
3.1. Adaptive Synchronization Scheme. There are two identical ] _ -
nonlinear dynamical systems, and the master system controls ¢=Ax—-Ay+f(xB)-f (y > B) —u(). (8)

the slave system. The master system is given by

x=Ax+ f (x,B), (3)
where x = [xl,xz,...,xn]T € R" denotes a state vector,
A is an n x n uncertain constant coefficient matrix, f is a
nonlinear vector function, and B is a vector of uncertain
constant coefficients in f.
The slave system is given by
y=Ay+f(yB)+u), (4)
where y = [y}, ¥5,...,¥,]" € R" denotes a state vector, A is
an nxn estimated coefficient matrix, B is a vector of estimated
coefficients in f, and u(t) = [u,(t), uz(t),...,un(t)]T € R"is
a control input vector.

Our goal is to design a controller u(t), so that the state
vector of the chaotic system (3) asymptotically approaches the
state vector of the master system (4).

The chaos synchronization can be accomplished in the

sense that the limit of the error vector e(t) = [e;, e,,...,e,]"
approaches zero as follows:

e =0 )
where

e=x-y (6)

A Lyapunov function V(e, A, B,) is chosen as a positive
definite function

€

where A = A— A, B= B- B,and A, and B, are two column
matrices whose elements are all the elements of matrix A and
of matrix B, respectively.

Its derivative along any solution of the differential equa-
tion system consisting of (8) and update parameter differen-
tial equations for A, and B, is

V(e, ZC,E’C) =é [Ax ~ Ay + Bf (x) - Bf (y) - u(t)]
_ (10)
CBC’

ool

+ KCZC +

where u(t), A,, and B, are chosen so that V = e'Ce, C
is a diagonal negative definite matrix, and V' is a negative
semidefinite function of e and parameter differences A, and
B,. In current scheme of adaptive control of chaotic motion
[33-37], traditional Lyapunov stability theorem and Barbalat
lemma are used to prove that the error vector approaches
zero, as time approaches infinity. But the question, why the
estimated or given parameters also approach to the uncertain
or goal parameters, remains without answer. By pragmatical
asymptotical stability theorem, the question can be answered
strictly.
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FIGURE 5: (a) Bifurcation diagram and Lyapunov exponents of
chaotic classical Lorentz system with b = 8/3 and a = 10.
(b) Bifurcation diagram and Lyapunov exponents of chaotic time-
reversed Lorentz system with b = —8/3 and a = —10. The tables given
previously show the different dynamic characters between classical
and time-reversed Lorentz.
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FIGURE 6: (a) Bifurcation diagram and Lyapunov exponents of
chaotic classical Lorentz system with ¢ = 28 and a = 10.
(b) Bifurcation diagram and Lyapunov exponents of chaotic time-
reversed Lorentz system with ¢ = —28 and a = —10. The tables
given previously show the different dynamic characters between
classical and time-reversed Lorentz systems with different ranges of
parameter b.
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FIGURE 7: (a) Bifurcation diagram and Lyapunov exponents of
chaotic classical Lorentz system with b = 8/3 and ¢ = 28.
(b) Bifurcation diagram and Lyapunov exponents of chaotic time-
reversed Lorentz system with b = —8/3 and ¢ = —28. The tables
given previously show the different dynamic characters between
classical and time-reversed Lorentz systems with different ranges of
parameter a.
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3.2. Pragmatical Asymptotical Stability Theory. The stability
for many problems in real dynamical systems is actual
asymptotical stability, although it may not be mathematical
asymptotical stability. The mathematical asymptotical stabil-
ity demands that trajectories from all initial states in the
neighborhood of zero solution must approach the origin
as t — oo. If there are only a small part or even a
few of the initial states from which the trajectories do not
approach the origin as t — 00, the zero solution is not
mathematically asymptotically stable. However, when the
probability of occurrence of an event is zero, it means that the
event does not occur actually. If the probability of occurrence
of the event that the trajectories from the initial states are that
they do not approach zero whent — o0 is zero, the stability
of zero solution is actual asymptotical stability, though it is
not mathematical asymptotical stability. In order to analyze
the asymptotical stability of the equilibrium point of such
systems, the pragmatical asymptotical stability theorem is
used.

Let X and Y be two manifolds of dimensions m and n
(m < n), respectively, and let ¢ be a differentiable map from
X toY, then ¢(X) is subset of Lebesque measure 0 of Y [40].
For an autonomous system

d
=), (i

where x = [x,,...,x,]" is a state vector, the function f =

[fis--s f)" is defined on D ¢ R" and |x|| < H > 0. Let
x = 0 be an equilibrium point for the system (11). Then

f)=0. (12)

Definition 1. The equilibrium point for the system (11) is
pragmatically asymptotically stable provided that with initial
points on C which is a subset of Lebesque measure 0 of D, the
behaviors of the corresponding trajectories cannot be deter-
mined, while with initial points on D — C, the corresponding
trajectories behave as that agree with traditional asymptotical
stability [33-37].

Theorem 2. Let V. = [x,,...,x,]": D — R, be positive
definite and analytic on D, such that the derivative of V
through (11), V, is negative semidefinite. Let X be the m-
manifold consisted of point set for which ¥x #0, V(x) = 0, and
D is a n-manifold. If m + 1 < n, then the equilibrium point of
the system is pragmatically asymptotically stable.

Proof. Since every point of X can be passed by a trajectory
of (11), which is one-dimensional, the collection of these
trajectories, A, is a (m + 1)-manifold [38, 39].

If m+ 1 < n, then the collection C is a subset of Lebesque
measure 0 of D. By the previous definition, the equilibrium
point of the system is pragmatically asymptotically stable.

If an initial point is ergodicity chosen in D, the probability
of that the initial point falls on the collection C is zero.
Here, equal probability is assumed for every point chosen
as an initial point in the neighborhood of the equilibrium
point. Hence, the event that the initial point is chosen
from collection C does not occur actually. Therefore, under
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the equal probability assumption, pragmatical asymptotical
stability becomes actual asymptotical stability. When the
initial point falls on D — C, V(x) < 0, the corresponding
trajectories behave as that agree with traditional asymptotical
stability because by the existence and uniqueness of the
solution of initial-value problem, these trajectories never
meet C.

In (9) V is a positive definite function of n variables,
that is, p error state variables and n — p = m differences
between unknown and estimated parameters, while V =
e’ Ce is a negative semidefinite function of # variables. Since
the number of error state variables is always more than one,
p > 1, m+1 < nis always satisfied, and by pragmatical
asymptotical stability theorem we have

lime =0 8
and the estimated parameters approach the uncertain param-
eters. The pragmatical adaptive control theorem is obtained.
Therefore, the equilibrium point of the system is prag-
matically asymptotically stable. Under the equal probability
assumption, it is actually asymptotically stable for both error
state variables and parameter variables. O

4. Pragmatical Adaptive RTR
Synchronization of Master Lorentz System
and Slave Time-Reversed Lorentz System

In this section, adaptive regular and time-reversed (RTR)
synchronization from time-reversed Lorentz system (with
respect to negative time) to regular Lorentz system (with
respect to positive time) is proposed. The time-reversed
Lorentz system is considered as slave system, and the regular
Lorenz system is regarded as master system. These two
equations are shown as follows.
Master system—contemporary Lorenz system:

d
xcllt(t) =a(x, (t) - x, (1)),

dx;t(t) =cxp (t) — %, () x5 (8) — x5 (t) (14)

d
x;t(t) = xp (£) x5 () = bx; ().

Slave system—historical Lorenz system:

dy, (-1)
d(-t)

dy, (-t)
d(-t)

dy; (-1) _
d(-t)

=—-a (yz (-t) - N1 (_t)) +up

= — (@, (=) = y1 (1) y3 (=) = 3, (1)) + 1y,

~ (31 (1) 32 (1) = bys (1)) + us,
(15)

where x;(t) stands for states variables of the master system,
and y;(—t) stands for the slave system, respectively. Parame-
ters, a, b, and ¢ are uncertain parameters of master system. d,

b, and € are estimated parameters. u;, u,, and 15 are nonlinear
controller to synchronize the slave Lorenz system to master
one; that is,

lime =0, (16)

t— 00

where the error vector e = [e,;(t) e,(t) e5(¢)] and
e (t) =x, (1) =y (-1),
e (1) =x,(t) -y, (1), (17)
es(t) =x3(t) - y;(-1).

From (17), we have the following error dynamics:

de, (t) _ dx, (t) B dy, (-t) _ dx, (t) dy, (1)

dt dt dt dt d(-t)’
de,(t) _dx,(t) dy,(-t) _dx,(t) dy, (1)

dr  dt dt dt d(-t)’
des(t) _dxs(t) dys(=t) _dx; (1) dys(-t)

e dt . dr d(-t) "’ (18)

ey =a(x,—x)+(=a(y,—»)+u),
& =cxy— x5 =%+ (= (& = y1y3 = 3n) + 1)
&3 = x1x, —bxy + (_ ()’1)’2 _E)’3) + ”3)‘

The two systems will be synchronized for any initial con-
dition by appropriate controllers and update laws for those
estimated parameters. As a result, the following controllers
and update laws are designed by pragmatical asymptotical
stability theorem as follows.

Choosing Lyapunov function as

V=%(ef+e§+e§+52+52+22), (19)
where@=a—-a,b=b-b,and¢=c-C.
Its time derivative is
V = €6, +eyé, +esés +ad + bb + T
= e (a(x,—x)+(-a(y,—n) +u))
+ ey (exy = x5 = X + (= (&1 = y193 = 32) + 1))
+ e (xlx2 - bx; + (— (ylyz - l;y3) + u3))

va@-a)+b(b-b)+E(c-0).
(20)

We choose the update laws for those uncertain parame-
ters as

d=-a=—(x,-x,)e +ae,
C=-C=—(x))e, + e, (21)
b=-b= (x5) e5 + bes.
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FiGURE 8: Time histories of errors for master and slave chaotic
Lorentz systems.

20
10

N

10 20 30 40 50 60 70 80 90 100

10 .

(Nl
(=]

-10
=20

(b)
60 — T T T T T T

20

-20 ! ! ! ! ! ! ! ! !
0 10 20 30 40 50 60 70 80 90 100

FIGURE 9: Time histories of parametric errors for master and slave
chaotic Lorentz systems.

Through (21) and (22), the appropriate controllers can be
designed as

~ 2

uy =—a(x,—x, -y, +y)-a —e,

-2
Uy =—=C(x, = y) + XX+ X, + Y13+ ), —C —ey (22)
~ )

Uy =b(x3-y3) — X%, = Y1y, —b —es

‘We obtain
V=—ef—e§—e§<0, (23)
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FIGURE 10: Time histories of states of master and slave chaotic
Lorenz systems.
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which is negative semidefinite function of e, e,, 5, @, b, and .
The Lyapunov asymptotical stability theorem is not satisfied.
We cannot obtain that common origin of error dynamics
(18) and parameter dynamics (21) is asymptotically stable.
By pragmatical asymptotically stability theorem, D is a 6-
manifold, n = 6, and the number of error state variables
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p = 3 Whene, = e = e; = 0anda,b, and ¢ take
arbitrary values, V' = 0, X is of 3 dimensions, m = n —
p =6-3=3andm+ 1 < nis satisfied. According
to the pragmatical asymptotically stability theorem, error
vector e approaches zero, and the estimated parameters also
approach the uncertain parameters. The equilibrium point
is pragmatically asymptotically stable. Under the assumption
of equal probability, it is actually asymptotically stable. The
simulation results are shown in Figures 8, 9, 10, and 11.

5. Conclusions

In this paper, three main contributions are proposed. The first
one is exposing the complete information of time-reversed
nonlinear system, which providing the range of parameters
in detail for researchers to follow and reference; the second
one is to realize the chaotic behavior of the time-reversed
nonlinear system on electronic circuit, which shows the high
corrections between the results by MATLAB and electronic
circuits; the third one is to solve the existing problem in non-
linear science, applying the pragmatical asymptotically stabil-
ity theory to strictly prove that the adaptive synchronization
of given master and slave systems with uncertain parameters
can be achieved. This paper gives a complete novel sight
view to investigate the chaotic attractors and provides a strict
mathematical proof to achieve the adaptive synchronization
exactly, and for more practical, the chaotic signal generated
via electronic circuits can be applied to the communications
security, file encryption, biosignal simulation, and so forth.
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