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We provide a maximum norm analysis of a finite element Schwarz alternating method for a nonlinear elliptic PDE on an arbitrary
number of overlapping subdomains with nonmatching grids. We consider a domain which is the union of an arbitrary number
𝑚 of overlapping subdomains where each subdomain has its own independently generated grid. The 𝑚 meshes being mutually
independent on the overlap regions, a triangle belonging to one triangulation does not necessarily belong to the other ones. Under
the a Lipschitz assumption on the nonlinearity, we establish, on each subdomain, an optimal 𝐿∞ error estimate between the discrete
Schwarz sequence and the exact solution of the PDE.

1. Introduction

The Schwarz alternating method can be used to solve elliptic
boundary value problems on domainswhich consist of two or
more overlapping subdomains. The solution is approximated
by an infinite sequence of functions which result from solving
a sequence of elliptic boundary value problems in each of the
subdomains. The effectiveness of the Schwarz methods for
various classes of nonlinear elliptic PDE problems has been
demonstrated in many papers; see [1–4] and the references
therein. Also the effectiveness of the Schwarz methods for
these problems, especially those in fluid mechanics, has been
demonstrated in many papers. See proceedings of the annual
domain decomposition conference beginning with [5].

In [6, 7], an optimal convergence order is obtained for
nonlinear elliptic PDE, in the context of two overlapping
nonmatching grids, in the sense that each subdomain has
its own independent discretization by finite element method.
This kind of discretization is very interesting as it can be
applied to solve many practical problems which cannot be
handled by global discretizations. Discretizations are earning
particular attention of computational experts and engineers
as they allow the choice of different mesh sizes and different
orders of approximate polynomials in different subdomains

according to the different properties of the solution and
different requirements of the practical problems. Quite a
few works on maximum norm error analysis of overlapping
nonmatching grids methods for elliptic problems are known
in the literature; compare and confer, for example, [8–10].

This paper is a continuation of previous work [6],
attempting to generalize the obtained result related to con-
vergence order also in the context of nonmatching grids in
domain which consists of a union of an arbitrary number of
subdomains. It is proved that the error estimate remains true
also for more than two subdomains.

The proof of the main result which consists of estimating
the error in the maximum norm between the continuous
solution of the problem and the discrete Schwarz iterates
stands on a Lipschitz continuous dependency with respect
to both the boundary condition and the source term for
linear elliptic equations. The optimal convergence order is
then derived making use of standard finite element 𝐿∞ error
estimate for linear elliptic equations.

Now, we give an outline of the paper. In Section 2 we state
the continuous alternating Schwarz sequences and define
their respective finite element counterparts in the context of
nonmatching overlapping grids. Section 3 is devoted to the
𝐿
∞ error analysis of the method.
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2. Preliminaries

We begin by laying down some definitions and classical
results related to linear elliptic equations.

2.1. Linear Elliptic Equations. LetΩ be a bounded polyhedral
domain of R2 or R3 with sufficiently smooth boundary 𝜕Ω.
We consider the following: the bilinear form

𝑎 (𝑢, V) = ∫
Ω

(∇𝑢 ⋅ ∇V) 𝑑𝑥; (1)

the linear form

(𝑓, V) = ∫
Ω

𝑓 (𝑥) ⋅ V (𝑥) 𝑑𝑥; (2)

the right hand side

𝑓, a regular function; (3)

the space

𝑉
(𝑔)

= {V ∈ 𝐻1 (Ω) such that V = 𝑔 on 𝜕Ω} , (4)

where 𝑔 is a regular function defined on 𝜕Ω.
We consider the linear elliptic equation: Find 𝜁 ∈ 𝑉

(𝑔)

such that

𝑎 (𝜁, V) + 𝑐 (𝜁, V) = (𝑓, V) , ∀V ∈ 𝑉(𝑔), (5)

where 𝑐 ∈ R 𝑐 > 0, such that

𝑐 ≥ 𝛽 > 0. (6)

Let 𝑉
ℎ
be the space of finite elements consisting of

continuous piecewise linear functions V vanishing on 𝜕Ω,
and let 𝑠, 𝑠 = 1, 2, . . . , 𝑚(ℎ) be the basis function of 𝑉

ℎ
. The

discrete counterpart of (5) consists of finding 𝜁
ℎ
∈ 𝑉
(𝑔)

ℎ
such

that

𝑎 (𝜁
ℎ
, V) + 𝑐 (𝜁

ℎ
, V) = (𝑓, V) , ∀V ∈ 𝑉(𝑔)

ℎ
, (7)

where

𝑉
(𝑔)

ℎ
= {V ∈ 𝑉

ℎ
: V = 𝜋

ℎ
𝑔 on 𝜕Ω} , (8)

and 𝜋
ℎ
is an interpolation operator on 𝜕Ω.

Theorem 1 (cf. [11]). Under the suitable regularity of the
solution of problem (5), there exists a constant 𝐶 independent
of ℎ such that





𝜁 − 𝜁
ℎ




𝐿
∞
(Ω)

≤ 𝐶ℎ
2 



log ℎ


. (9)

Lemma 2 (cf. [4]). Let 𝑤 ∈ 𝐻
1
(Ω) ∩ 𝐶(Ω) satisfy 𝑎(𝑤, 𝜙) +

𝑐(𝑤, 𝜙) ≥ 0∀ nonnegative 𝜙 ∈ 𝐻1
0
(Ω), and 𝑤 ≥ 0 on 𝜕Ω. Then

𝑤 ≥ 0 on Ω.

The proposition below establishes a Lipschitz continuous
dependency of the solution with respect to the data.

Notation. Let (𝑓; 𝑔); ( ̃𝑓, 𝑔) be a pair of data and 𝜁 = 𝜎(𝑓, 𝑔);
̃
𝜁 = 𝜎(

̃
𝑓, 𝑔) the corresponding solutions to (5).

Proposition 3 (cf. [6]). Under conditions of the preceding
lemma, one has:






𝜁 −

̃
𝜁





𝐿
∞
(Ω)

≤ max{ 1
𝛽






𝑓 −

̃
𝑓





𝐿
∞
(Ω)

,




𝑔 − 𝑔




𝐿
∞
(𝜕Ω)

} . (10)

Remark 4. Lemma 2 stays true in the discrete case.

Indeed, assume that the discrete maximum principle
(d.m.p) holds; that is, the matrix resulting from the finite
element discretization is an M-Matrix. Then one has the
following.

Lemma 5. Let 𝑤 ∈ 𝑉
ℎ
satisfy 𝑎(𝑤, 𝑠) + 𝑐(𝑤, 𝑠) ≥ 0, 𝑠 =

1, 2, . . . , 𝑚(ℎ) and 𝑤 ≥ 0 on 𝜕Ω. Then, 𝑤 ≥ 0 on Ω.

Proof. The proof is a direct consequence of the discrete
maximum principle.

Let (𝑓, 𝑔); ( ̃𝑓, 𝑔) be a pair of data and 𝜁
ℎ
= 𝜎
ℎ
(𝑓, 𝑔); ̃𝜁

ℎ
=

𝜎
ℎ
(
̃
𝑓, 𝑔) the corresponding solutions to (7).

Proposition 6 (cf. [6]). Let the d.m.p hold. Then, under
conditions of Lemma 5, one has






𝜁
ℎ
−
̃
𝜁
ℎ





𝐿
∞
(Ω)

≤ max{ 1
𝛽






𝑓 −

̃
𝑓





𝐿
∞
(Ω)

,




𝑔 − 𝑔




𝐿
∞
(𝜕Ω)

} .

(11)

2.2. The Schwarz Alternating Methods for Nonlinear PDEs.
Consider the nonlinear PDE:

−Δ𝑢 + 𝑐𝑢 = 𝑓 (𝑢) inΩ,

𝑢 = 0 on 𝜕Ω
(12)

or in its weak form

𝑎 (𝑢, V) + 𝑐 (𝑢, V) = (𝑓 (𝑢) , V) ∀V ∈ 𝐻1
0
(Ω) , (13)

where 𝑓(⋅) is a nondecreasing nonlinearity. We assume that
𝑓(⋅) is a Lipschitz continuous on R, that is





𝑓 (𝑥) − 𝑓 (𝑦)





≤ 𝑘





𝑥 − 𝑦





, ∀𝑥, 𝑦 ∈ R (14)

such that

0 <

𝑘

𝛽

< 1, (15)

where 𝛽 is the constant defined in (6).
We suppose that the problem (12) has a subsolution 𝑢 and

a supersolution 𝑢 which satisfy 0 < 𝑢 < 𝑢. Define the sector
of smooth functions as follows:

𝐴 = {𝑢 ∈ 𝐶
2

(Ω) , 𝑢 ≤ 𝑢 ≤ 𝑢 on Ω} . (16)

Finally we assume that

𝐹 (𝑢) − 𝐹 (V) < 0, V < 𝑢 ∈ 𝐴, (17)
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where

𝐹 (𝑢) =

𝑓 (𝑢)

𝑢

. (18)

With these assumptions cf. [12], the problem (12) has a
unique solution in the sector 𝐴. We can easily see that (12)
is equivalent to

−Δ𝑢 = ℎ (𝑢) inΩ,

𝑢 = 0 on 𝜕Ω,
(19)

where ℎ(𝑢) = 𝑓(𝑢) − 𝑐𝑢, and we note that the functional ℎ(𝑢)
satisfies (17) and (18).We introduce the following comparison
lemma.

Lemma 7 (cf. [3]). Suppose that −Δ𝑢 ≥ ℎ(𝑢) and −ΔV ≤ ℎ(V)
on Ω with both 𝑢, V positive in Ω and 𝑢 ≥ V ≥ 0 on 𝜕Ω. Then
𝑢 ≥ V on Ω.

We decompose Ω into 𝑚 overlapping smooth subdo-
mainsΩ

𝑖
such that

Ω =

𝑚

⋃

𝑖=1

Ω
𝑖
. (20)

We denote by 𝜕Ω
𝑖
the boundary of Ω

𝑖
and the interior

boundaries by
Γ
𝑖
= 𝜕Ω
𝑖
∩ Ω. (21)

We assume that the intersection of Γ
𝑖
and Γ

𝑗
, 𝑖 ̸= 𝑗 is empty.

Let

𝑉

(𝑤
𝑗
)

𝑖
= {V ∈ 𝐶2 (Ω

𝑖
) such that V = 𝑤

𝑗

on Γ
𝑖
, V = 0 on 𝜕Ω

𝑖
∩ 𝜕Ω} .

(22)

We associate problem (13) with the following system. Find
𝑢
𝑖
∈ ∏
𝑚

𝑖=1
𝑉
(𝑔
𝑖
)

𝑖
solution of

−Δ𝑢
𝑖
+ 𝑐𝑢
𝑖
= 𝑓 (𝑢

𝑖
) in Ω

𝑖
, (23)

where

𝑢
𝑖
=

𝑢

Ω
𝑖

, 𝑖 = 1, . . . , 𝑚 (24)

and (cf. [13])

𝑔
𝑖
=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑢
𝑖−1

on Γ
𝑖
∩ Ω
𝑖−1

𝑢
𝑖−2

on Γ
𝑖
∩ (Ω
𝑖−2
− Ω
𝑖−1
)

...
𝑢
1

on Γ
𝑖
∩ (Ω
1
− Ω
𝑖−1
− ⋅ ⋅ ⋅ − Ω

1
)

𝑢
𝑚

on Γ
𝑖
∩ (Ω

𝑚
−

𝑖−1

⋃

𝑗=1

Ω
𝑗
)

𝑢
𝑚−1

on Γ
𝑖
∩ (Ω

𝑚−1
−

𝑖−1

⋃

𝑗=1

Ω
𝑗
− Ω
𝑚
)

...

𝑢
𝑖+1

on Γ
𝑖
∩ (Ω

𝑖+1
−

𝑖−1

⋃

𝑗=1

Ω
𝑗
−

𝑚

⋃

𝑗=𝑖+2

Ω
𝑗
) .

(25)

In the sequel, we define a subsolution and a supersolution
of (23)

Definition 8. A smooth function 𝑢
𝑖
is a subsolution of (23) if

− Δ𝑢
𝑖
+ 𝑐𝑢
𝑖
≤ 𝑓 (𝑢

𝑖
) inΩ

𝑖
,

𝑢
𝑖
= 𝑔
𝑖

on Γ
𝑖
, 𝑢
𝑖
= 0 on 𝜕Ω ∩ 𝜕Ω

𝑖
,

(26)

where

𝑔
𝑖

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑢
𝑖−1

on Γ
𝑖
∩ Ω
𝑖−1

𝑢
𝑖−2

on Γ
𝑖
∩ (Ω
𝑖−2
− Ω
𝑖−1
)

...
𝑢
1

on Γ
𝑖
∩ (Ω
1
− Ω
𝑖−1
− ⋅ ⋅ ⋅ − Ω

1
)

𝑢
𝑚

on Γ
𝑖
∩ (Ω

𝑚
−

𝑖−1

⋃

𝑗=1

Ω
𝑗
)

𝑢
𝑚−1

on Γ
𝑖
∩ (Ω

𝑚−1
−

𝑖−1

⋃

𝑗=1

Ω
𝑗
− Ω
𝑚
)

...

𝑢
𝑖+1

on Γ
𝑖
∩ (Ω

𝑖+1
−

𝑖−1

⋃

𝑗=1

Ω
𝑗
−

𝑚

⋃

𝑗=𝑖+2

Ω
𝑗
) .

(27)

Similarly, a supersolution 𝑢
𝑖
of (23) satisfies

−Δ𝑢
𝑖
+ 𝑐𝑢
𝑖
≥ 𝑓 (𝑢

𝑖
) inΩ

𝑖
,

𝑢
𝑖
= 𝑔
𝑖

on Γ
𝑖
, 𝑢
𝑖
= 0 on 𝜕Ω ∩ 𝜕Ω

𝑖
.

(28)

2.3. The Continuous Schwarz Sequences. Let 𝑢0
𝑖
be an initial-

ization data:

𝑢
0

𝑖
= 𝑢
𝑖
, 𝑖 = 1, . . . , 𝑚. (29)

We define the alternating Schwarz sequences (𝑢𝑛+1
𝑖
) on

Ω
𝑖
, 𝑖 = 1, . . . , 𝑚, such that each term of each sequence 𝑢𝑛+1

𝑖
∈

𝑉
(𝑔
𝑛+1

𝑖
), 𝑛 ≥ 0 solves

−Δ𝑢
𝑛+1

𝑖
+ 𝑐𝑢
𝑛+1

𝑖
= 𝑓 (𝑢

𝑛+1

𝑖
) inΩ

𝑖
, (30)

where (cf. [13])

𝑔
𝑛+1

𝑖
=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑢
𝑛+1

𝑖−1
on Γ
𝑖
∩ Ω
𝑖−1

𝑢
𝑛+1

𝑖−2
on Γ
𝑖
∩ (Ω
𝑖−2
− Ω
𝑖−1
)

...
𝑢
𝑛+1

1
on Γ
𝑖
∩ (Ω
1
− Ω
𝑖−1
− ⋅ ⋅ ⋅ − Ω

1
)

𝑢
𝑛

𝑚
on Γ
𝑖
∩ (Ω

𝑚
−

𝑖−1

⋃

𝑗=1

Ω
𝑗
)

𝑢
𝑛

𝑚−1
on Γ
𝑖
∩ (Ω

𝑚−1
−

𝑖−1

⋃

𝑗=1

Ω
𝑗
− Ω
𝑚
)

...

𝑢
𝑛

𝑖+1
on Γ
𝑖
∩ (Ω

𝑖+1
−

𝑖−1

⋃

𝑗=1

Ω
𝑗
−

𝑚

⋃

𝑗=𝑖+2

Ω
𝑗
) .

(31)
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Theorem 9. The Schwarz sequences (𝑢𝑛+1
𝑖
), 𝑖 = 1, . . . , 𝑚

converge to the solution of (23).

Proof. (1)We first show by induction, that each term of the
Schwarz sequences is well defined in 𝐴. Indeed, for 𝑛 = 0, we
begin by subdomain one, since 𝑢1

1
, 𝑢
1
and 𝑢

1
satisfy

−Δ𝑢
1

1
+ 𝑐𝑢
1

1
= 𝑓 (𝑢

1

1
) inΩ

1
, 𝑢

1

1
= 0 on 𝜕Ω

1
∩ 𝜕Ω,

(32)

−Δ𝑢
1
+ 𝑐𝑢
1
≥ 𝑓 (𝑢

1
) inΩ

1
,

𝑢
1
= 0 on 𝜕Ω

1
∩ 𝜕Ω,

(33)

−Δ𝑢
1
+ 𝑐𝑢
1
≤ 𝑓 (𝑢

1
) inΩ

1
, (34)

𝑢
1
= 0 on 𝜕Ω

1
∩ 𝜕Ω (35)

respectively with

𝑢
1

1
= 𝑔
1

1
= 𝑔
1

≤ 𝑔
1

on Γ
1

(36)

Lemma 7 implies that

𝑢
1
≤ 𝑢
1

1
≤ 𝑢
1

inΩ
1
. (37)

In subdomain 2, the condition of the interior boundary Γ
2
is

given by

𝑔
1

2
=

{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{

{

𝑢
1

1
on Γ
2
∩ Ω
1

𝑢
0

𝑚
on Γ
2
∩ (Ω
𝑚
− Ω
1
)

𝑢
0

𝑚−1
on Γ
2
∩ (Ω
𝑚−1

− Ω
1
− Ω
𝑚
)

...

𝑢
𝑛

3
on Γ
2
∩ (Ω

3
− Ω
1
−

𝑚

⋃

𝑗=4

Ω
𝑗
) .

(38)

so (37) implies that

𝑔
2

≤ 𝑔
1

2
≤ 𝑔
2

on Γ
2
. (39)

On the other hand 𝑢1
2
, 𝑢
2
, and 𝑢

2
satisfy, respectively,

−Δ𝑢
1

2
+ 𝑐𝑢
1

2
= 𝑓 (𝑢

1

2
) inΩ

2
,

𝑢
1

2
= 0 on 𝜕Ω

2
∩ 𝜕Ω,

−Δ𝑢
2
+ 𝑐𝑢
2
≥ 𝑓 (𝑢

2
) inΩ

2
,

𝑢
2
= 0 on 𝜕Ω

2
∩ 𝜕Ω,

−Δ𝑢
2
+ 𝑐𝑢
2
≤ 𝑓 (𝑢

2
) inΩ

2
,

𝑢
2
= on 𝜕Ω

2
∩ 𝜕Ω.

(40)

Then Lemma 7 implies that

𝑢
2
≤ 𝑢
1

2
≤ 𝑢
2

in Ω
2
. (41)

The same idea is used sequentially in the remainder of the
proof related to the rest of subdomainsΩ

𝑖
, 3 ≤ 𝑖 ≤ 𝑚. Indeed

we obtain for 𝑖 = 1, . . . , 𝑚 and for 𝑛 = 0

𝑢
𝑖
≤ 𝑢
1

𝑖
≤ 𝑢
𝑖

in Ω
𝑖
. (42)

Now, let us assume that

𝑢
𝑖
≤ 𝑢
𝑛

𝑖
≤ 𝑢
𝑖

in Ω
𝑖
, 𝑖 = 1, . . . , 𝑚. (43)

and prove that

𝑢
𝑖
≤ 𝑢
𝑛+1

𝑖
≤ 𝑢
𝑖

in Ω
𝑖
, 𝑖 = 1, . . . , 𝑚. (44)

Indeed, in subdomain 1 (43) implies that

𝑔
1

≤ 𝑔
𝑛+1

1
≤ 𝑔
1

on Γ
1
. (45)

Since

−Δ𝑢
𝑛+1

1
+ 𝑐𝑢
𝑛+1

1
= 𝑓 (𝑢

𝑛+1

1
) in Ω

1
,

𝑢
𝑛+1

1
= 0 on 𝜕Ω

1
∩ 𝜕Ω,

−Δ𝑢
1
+ 𝑐𝑢
1
≥ 𝑓 (𝑢

1
) in Ω

1
,

𝑢
1
= 0 on 𝜕Ω

1
∩ 𝜕Ω,

−Δ𝑢
1
+ 𝑐𝑢
1
≤ 𝑓 (𝑢

1
) in Ω

1
,

𝑢
1
= 0 on 𝜕Ω

1
∩ 𝜕Ω,

(46)

then Lemma 7 implies that

𝑢
1
≤ 𝑢
𝑛+1

1
≤ 𝑢
1

inΩ
1
. (47)

Using (47) and (43), we can write

𝑔
2

≤ 𝑔
𝑛+1

2
≤ 𝑔
2

on Γ
2
. (48)

We can easily obtain

𝑢
2
≤ 𝑢
𝑛+1

2
≤ 𝑢
2

inΩ
2

(49)

using (48) and by adopting the same approach used in
subdomain one. The result related to rest of subdomains Ω

𝑖
,

3 ≤ 𝑖 ≤ 𝑚, is obtained sequentially by similar way; that is

𝑢
𝑖
≤ 𝑢
𝑛+1

𝑖
≤ 𝑢
𝑖

inΩ
𝑖
, 𝑖 = 1, . . . , 𝑚, 𝑛 ≥ 0. (50)

(2) We demonstrate, by induction, that the Schwarz
sequences are nondecreasing. Indeed for 𝑛 = 0, we have
demonstrated in (50) that, for 𝑖 = 1, . . . , 𝑚,

𝑢
0

𝑖
≤ 𝑢
1

𝑖
in Ω
𝑖

(51)

Now, let us assume that

𝑢
𝑛−1

𝑖
≤ 𝑢
𝑛

𝑖
inΩ
𝑖
, 𝑖 = 1, . . . , 𝑚 (52)

and prove that

𝑢
𝑛

𝑖
≤ 𝑢
𝑛+1

𝑖
in Ω
𝑖
, 𝑖 = 1, . . . , 𝑚. (53)

Begining by subdomain one, (52) implies that

𝑔
𝑛

1
≤ 𝑔
𝑛+1

1
on Γ
1
. (54)
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Making use of (54),

−Δ𝑢
𝑛+1

1
+ 𝑐𝑢
𝑛+1

1
= 𝑓 (𝑢

𝑛+1

1
) in Ω

1
,

𝑢
𝑛+1

1
= 0 on 𝜕Ω

1
∩ 𝜕Ω,

−Δ𝑢
𝑛

1
+ 𝑐𝑢
𝑛

1
= 𝑓 (𝑢

𝑛

1
) in Ω

1
,

𝑢
𝑛

1
= 0 on 𝜕Ω

1
∩ 𝜕Ω.

(55)

We get by using Lemma 7

𝑢
𝑛

1
≤ 𝑢
𝑛+1

1
inΩ
1
. (56)

On the other hand, (52) and (56) imply

𝑔
𝑛

2
≤ 𝑔
𝑛+1

2
on Γ
2
; (57)

then making use of (57),

−Δ𝑢
𝑛+1

2
+ 𝑐𝑢
𝑛+1

2
= 𝑓 (𝑢

𝑛+1

2
) in Ω

2
,

𝑢
𝑛+1

2
= 0 on 𝜕Ω

2
∩ 𝜕Ω,

−Δ𝑢
𝑛

2
+ 𝑐𝑢
𝑛

2
= 𝑓 (𝑢

𝑛

2
) inΩ

2
,

𝑢
𝑛

2
= 0 on 𝜕Ω

2
∩ 𝜕Ω.

(58)

We get by using Lemma 7 the following result related to the
second subdomain:

𝑢
𝑛

2
≤ 𝑢
𝑛+1

2
inΩ
2
. (59)

The same idea is sequentially applied to the rest of subdo-
mains. Finally, we obtain

𝑢
𝑛

𝑖
≤ 𝑢
𝑛+1

𝑖
in Ω
𝑖
, 𝑖 = 1, . . . , 𝑚, 𝑛 ≥ 0. (60)

(3)The sequences (𝑢𝑛
𝑖
) are bounded and nondecreasing,

so they are monotone converging pointwise to 𝑢
𝑖
, 𝑖 =

1, . . . , 𝑚. By using an elliptic regularity argument, we can see
that functions 𝑢

𝑖
satisfy the same PDE onΩ

𝑖
cf. [3, 12].

2.4. The Discretization. For 𝑖 = 1, . . . , 𝑚, let 𝜏ℎ𝑖 be a standard
regular and quasiuniform finite element triangulation in Ω

𝑖
;

ℎ
𝑖
being themeshsize.The𝑚meshes ismutually independent

on Ω
𝑖
∩ Ω
𝑗
, 𝑖, 𝑗 = 1, . . . , 𝑚, where 𝑖 ̸= 𝑗; that is a triangle

belonging to one triangulation does not necessarily belong to
the other ones.

We consider the following discrete spaces:

𝑉
ℎ
𝑖

= {V ∈ 𝐶 (Ω
𝑖
) ∩ 𝐻

1

(Ω
𝑖
) such that V

𝐾

∈ 𝑃
1
∀𝐾 ∈ 𝜏

ℎ
𝑖

} ,

(61)

and for every 𝑤 ∈ 𝐶(Γ
𝑖
), we set

𝑉
(𝑤)

ℎ
𝑖

= {V ∈ 𝑉
ℎ
𝑖

: V = 0 on 𝜕Ω
𝑖
∩ 𝜕Ω; V = 𝜋

ℎ
𝑖

(𝑤) on Γ
𝑖
} ,

(62)

where 𝜋
ℎ
𝑖

denotes the interpolation operator on Γ
𝑖
.

TheDiscrete Maximum Principle (cf. [14, 15]). We assume that
the respective matrices resulting from the discretiztions of
problems (30) are M-matrices.

Note that as the meshes ℎ
𝑖
are independent over the

overlapping subdomains, it is impossible to formulate a global
approximate problem which would be the direct discrete
counterpart of problem (13).

2.5. The Discrete Schwarz Sequences. Now, we define the
discrete counterparts of the continuous Schwarz sequences
defined in (30). Indeed, let 𝑢0

ℎ
be the discrete analog of 𝑢

0
,

defined in (29) and we define for 𝑖 = 1, . . . , 𝑚, the discrete
sequences (𝑢𝑛+1

ℎ
𝑖

) onΩ
𝑖
such that 𝑢𝑛+1

ℎ
𝑖

∈ 𝑉

(𝑔
𝑛+1

ℎ
𝑖

)

ℎ
𝑖

solves

𝑎
𝑖
(𝑢
𝑛+1

ℎ
𝑖

, V) + 𝑐 (𝑢𝑛+1
ℎ
𝑖

, V) = (𝑓 (𝑢𝑛+1
ℎ
𝑖

) , V) ,

∀V ∈ 𝑉
(𝑔
𝑛+1

ℎ
𝑖

)

ℎ
𝑖

; 𝑛 ≥ 0,

(63)

where

𝑎
𝑖
(𝑢, V) = ∫

Ω
𝑖

(∇𝑢 ⋅ ∇V) 𝑑𝑥,

𝑔
𝑛+1

ℎ
𝑖

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑢
𝑛+1

ℎ
𝑖−1

on Γ
𝑖
∩ Ω
𝑖−1

𝑢
𝑛+1

ℎ
𝑖−2

on Γ
𝑖
∩ (Ω
𝑖−2
− Ω
𝑖−1
)

...
𝑢
𝑛+1

ℎ
1

on Γ
𝑖
∩ (Ω
1
− Ω
𝑖−1
− ⋅ ⋅ ⋅ − Ω

1
)

𝑢
𝑛

ℎ
𝑚

on Γ
𝑖
∩ (Ω

𝑚
−

𝑖−1

⋃

𝑗=1

Ω
𝑗
)

𝑢
𝑛

ℎ
𝑚−1

on Γ
𝑖
∩ (Ω

𝑚−1
−

𝑖−1

⋃

𝑗=1

Ω
𝑗
− Ω
𝑚
)

...

𝑢
𝑛

ℎ
𝑖+1

on Γ
𝑖
∩ (Ω

𝑖+1
−

𝑖−1

⋃

𝑗=1

Ω
𝑗
−

𝑚

⋃

𝑗=𝑖+1

Ω
𝑗
) .

(64)

Notation. From now on, we will adopt the following nota-
tions 𝑖 = 1, . . . , 𝑚:

|⋅|
𝑖
= ‖⋅‖
𝐿
∞
(Γ
𝑖
)

‖⋅‖
𝑖
= ‖⋅‖
𝐿
∞
(Ω
𝑖
)
,

𝜋
ℎ
𝑖

= 𝜋
ℎ
.

(65)

3. 𝐿∞ Error Analysis

3.1. The Auxiliary Schwarz Problems. This section is devoted
to the proof of the main result of the present paper. To that
end, we begin by introducing𝑚 discrete auxiliary problems.

We define the following problems; for 𝑖 = 1, . . . , 𝑚, 𝑤
ℎ
𝑖

∈

𝑉
(𝑔
𝑖
)

ℎ
𝑖

solves

𝑎
𝑖
(𝑤
ℎ
𝑖

, V) + 𝑐 (𝑤
ℎ
𝑖

, V) = (𝑓 (𝑢
𝑖
) , V) ∀V ∈ 𝑉(𝑔𝑖)

ℎ
𝑖

. (66)

It is then clear that 𝑤
ℎ
𝑖

is the finite element approximation
of 𝑢
𝑖
solutions of (23). Therefore, making use of standard
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maximum norm estimates for linear elliptic problems, we
have






𝑢
𝑖
− 𝑤
ℎ
𝑖





𝑖
≤ 𝐶ℎ
2 



log ℎ


, (67)

where 𝐶 is a constant independent of ℎ.

3.1.1. The Main Results

Theorem 10. Let 𝜌 = 𝑘/𝛽 < 1. Then, there exists a constant 𝐶
independent of both ℎ and 𝑛 such that






𝑢
𝑖
− 𝑢
𝑛+1

ℎ
𝑖





𝑖
≤

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


; 𝑛 ≥ 0; 𝑖 = 1, . . . , 𝑚.

(68)

Proof. The proof of (68) will be carried by induction and
is decomposed in three principal parts where each part is
devoted to one of the following situations: situation (A), situ-
ation (B), and situation (C), respectively. The three situations
are defined by

(A) max
1≤𝑖≤𝑚






𝑢
𝑖
− 𝑢
0

ℎ
𝑖





𝑖
< 𝐶ℎ
2 



log ℎ


, (69)

(B) 𝐶ℎ2 

log ℎ


<






𝑢
𝑖
− 𝑢
0

ℎ
𝑖





𝑖
, 𝑖 = 1, . . . , 𝑚, (70)

and in the last situation we assume that a nonempty subset 𝐽
of the set𝑀 = {1, . . . , 𝑚} exists such that

(C) ∀𝑖 ∈ 𝑀 − 𝐽;






𝑢
𝑖
− 𝑢
0

ℎ
𝑖





𝑖
< 𝐶ℎ
2 



log ℎ


<








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

,

∀𝑗 ∈ 𝐽.

(71)

To this end, we apply Proposition 6 and Theorem 1 for each
subdomain Ω

𝑖
as follows:






𝑢
𝑖
− 𝑢
𝑛+1

ℎ
𝑖





𝑖
≤






𝑢
𝑖
− 𝑤
ℎ
𝑖





𝑖
+






𝑤
ℎ
𝑖

− 𝑢
𝑛+1

ℎ
𝑖





𝑖

≤ 𝐶ℎ
2 



log ℎ


+






𝑤
ℎ
𝑖

− 𝑢
𝑛+1

ℎ
𝑖





𝑖

≤ 𝐶ℎ
2 



log ℎ



+max{( 1
𝛽

)






𝑓 (𝑢
𝑖
)−𝑓 (𝑢

𝑛+1

ℎ
𝑖

)





𝑖
,






𝑔
𝑖
−𝑔
𝑛+1

ℎ
𝑖





𝑖
}

≤ 𝐶ℎ
2 



log ℎ



+max{( 1
𝛽

)






𝑓 (𝑢
𝑖
) − 𝑓 (𝑢

𝑛+1

ℎ
𝑖

)





𝑖
,

max
𝑗<𝑖








𝑢
𝑗
− 𝑢
𝑛+1

ℎ
𝑗






𝑗

,max
𝑖<𝑗








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

} .

(72)

The last inequality implies that





𝑢
𝑖
− 𝑢
𝑛+1

ℎ
𝑖





𝑖
≤ 𝐶ℎ
2 



log ℎ



+max{𝜌

𝑢
𝑖
− 𝑢
𝑛+1

ℎ
𝑖





𝑖
,max
𝑗<𝑖








𝑢
𝑗
− 𝑢
𝑛+1

ℎ
𝑗






𝑗

,

max
𝑖<𝑗








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

} .

(73)

The interval ]0, 1[ which 𝜌 belongs to is divided into two
subintervals as follows:

]0, 1[ = ]0,

1

2

[ ∪ [

1

2

, 1[ , (74)

and in each situation (A), (B), or (C) we deal with each
subinterval separately.

Part 1. We consider situation (A). We begin the proof by the
first subinterval that is 𝜌 ∈]0, 1/2[, so

𝜌

1 − 𝜌

< 1. (75)

For 𝑛 = 0, applying (73) to subdomain one, we get





𝑢
1
− 𝑢
1

ℎ
1





1
≤ 𝐶ℎ
2 



log ℎ



+max{𝜌

𝑢
1
− 𝑢
1

ℎ
1





1
, max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

} .

(76)

We have to distinguish between two cases:

(1) max{𝜌

𝑢
1
− 𝑢
1

ℎ
1





1
, max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

} = 𝜌






𝑢
1
− 𝑢
1

ℎ
1





1

(77)
or

(2) max{𝜌

𝑢
1
− 𝑢
1

ℎ
1





1
, max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

}

= max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

(78)

Case 1 implies that





𝑢
1
− 𝑢
1

ℎ
1





1
≤ 𝐶ℎ
2 



log ℎ


+ 𝜌






𝑢
1
− 𝑢
1

ℎ
1





1
,

max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

≤ 𝜌






𝑢
1
− 𝑢
1

ℎ
1





1
.

(79)

Then,





𝑢
1
− 𝑢
1

ℎ
1





1
≤

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


,

max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

≤ 𝜌






𝑢
1
− 𝑢
1

ℎ
1





1

≤

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ



< 𝐶ℎ
2 



log ℎ


.

(80)
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Case 2 implies that





𝑢
1
− 𝑢
1

ℎ
1





1
≤ 𝐶ℎ
2 



log ℎ


+ max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

,

𝜌






𝑢
1
− 𝑢
1

ℎ
1





1
≤ max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

.

(81)

By multiplying (81) by 𝜌, we get

𝜌






𝑢
1
− 𝑢
1

ℎ
1





1
≤ 𝜌𝐶ℎ

2 



log ℎ


+ 𝜌max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

,

𝜌






𝑢
1
− 𝑢
1

ℎ
1





1
≤ max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

.

(82)

So 𝜌‖𝑢
1
− 𝑢
1

ℎ
1

‖
1

is bounded by both 𝜌𝐶ℎ2| log ℎ|+𝜌max
1<𝑗≤𝑚

‖𝑢
𝑗
− 𝑢
0

ℎ
𝑗

‖

𝑗

and max
1<𝑗≤𝑚

‖𝑢
𝑗
− 𝑢
0

ℎ
𝑗

‖

𝑗

, then

(a) max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

< 𝜌𝐶ℎ
2 



log ℎ


+ 𝜌max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

(83)

or

(b) 𝜌𝐶ℎ2 

log ℎ


+ 𝜌max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

< max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

.

(84)

That is,

max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

<

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ

 (85)

or
𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


< max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

, (86)

which implies that

max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

<

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


< 𝐶ℎ
2 



log ℎ


, (87)

or
𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


< max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

< 𝐶ℎ
2 



log ℎ


. (88)

It is clear that both cases (a) and (b) are true because both
coincide with (69). So for either of them there is a contradic-
tion, and thus case 2 is impossible or case 2 is possible only
if

max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

=

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


. (89)

Then case 2 implies that





𝑢
1
− 𝑢
1

ℎ
1





1
≤ 𝐶ℎ
2 



log ℎ


+ max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

= 𝐶ℎ
2 



log ℎ


+

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ



=

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


.

(90)

Hence in both cases 1 and 2, we obtain






𝑢
1
− 𝑢
1

ℎ
1





1
≤

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


. (91)

Similarly applying (73) to the second subdomain, we get






𝑢
2
− 𝑢
1

ℎ
2





2
≤ 𝐶ℎ
2 



log ℎ



+max {𝜌

𝑢
2
− 𝑢
1

ℎ
2





2
,






𝑢
1
− 𝑢
1

ℎ
1





1
,

max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

} .

(92)

We have to distinguish the three following cases

(1) max{𝜌

𝑢
2
− 𝑢
1

ℎ
2





2
,






𝑢
1
− 𝑢
1

ℎ
1





1
, max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

}

= 𝜌






𝑢
2
− 𝑢
1

ℎ
2





2

(93)

or

(2) max{𝜌

𝑢
2
− 𝑢
1

ℎ
2





2
,






𝑢
1
− 𝑢
1

ℎ
1





1
, max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

}

=






𝑢
1
− 𝑢
1

ℎ
1





1

(94)

or

(3) max{𝜌

𝑢
2
− 𝑢
1

ℎ
2





2
,






𝑢
1
− 𝑢
1

ℎ
1





1
, max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

}

= max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

.

(95)

Case 1 implies that






𝑢
2
− 𝑢
1

ℎ
2





2
≤ 𝐶ℎ
2 



log ℎ


+ 𝜌






𝑢
2
− 𝑢
1

ℎ
2





2
,






𝑢
1
− 𝑢
1

ℎ
1





1
≤ 𝜌






𝑢
2
− 𝑢
1

ℎ
2





2
,

max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

≤ 𝜌






𝑢
2
− 𝑢
1

ℎ
2





2
.

(96)

Then,






𝑢
2
− 𝑢
1

ℎ
2





2
≤

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


,






𝑢
1
− 𝑢
1

ℎ
1





1
≤ 𝜌






𝑢
2
− 𝑢
1

ℎ
2





1

≤

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


<

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


,

max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

≤ 𝜌






𝑢
2
− 𝑢
1

ℎ
2





1

≤

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


< 𝐶ℎ
2 



log ℎ


.

(97)
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We note that the two last inequalities coincide with (91) and
(69), respectively. Case 2 implies that






𝑢
2
− 𝑢
1

ℎ
2





2
≤ 𝐶ℎ
2 



log ℎ


+






𝑢
1
− 𝑢
1

ℎ
1





1
,

𝜌






𝑢
2
− 𝑢
1

ℎ
2





2
≤






𝑢
1
− 𝑢
1

ℎ
1





1
,

max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

≤






𝑢
1
− 𝑢
1

ℎ
1





1
.

(98)

By multiplying (98) by 𝜌, we get

𝜌






𝑢
2
− 𝑢
1

ℎ
2





2
≤ 𝜌𝐶ℎ

2 



log ℎ


+ 𝜌






𝑢
1
− 𝑢
1

ℎ
1





1
,

𝜌






𝑢
2
− 𝑢
1

ℎ
2





2
≤






𝑢
1
− 𝑢
1

ℎ
1





1
,

max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

≤






𝑢
1
− 𝑢
1

ℎ
1





1
.

(99)

We remark that 𝜌‖𝑢
2
− 𝑢
1

ℎ
2

‖
2

is bounded by both 𝜌𝐶ℎ
2

|log ℎ| + 𝜌‖𝑢
1
− 𝑢
1

ℎ
1

‖
1

and ‖𝑢
1
− 𝑢
1

ℎ
1

‖
1

then

(a) 

𝑢
1
− 𝑢
1

ℎ
1





1
< 𝜌𝐶ℎ

2 



log ℎ


+ 𝜌






𝑢
1
− 𝑢
1

ℎ
1





1

(100)

or

(b) 𝜌𝐶ℎ2 

log ℎ


+ 𝜌






𝑢
1
− 𝑢
1

ℎ
1





1
<






𝑢
1
− 𝑢
1

ℎ
1





1
. (101)

Which implies that






𝑢
1
− 𝑢
1

ℎ
1





1
<

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ

 (102)

or
𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


<






𝑢
1
− 𝑢
1

ℎ
1





1
. (103)

That is





𝑢
1
− 𝑢
1

ℎ
1





1
<

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


<

1

1 − 𝜌

𝐶ℎ
2 



log ℎ

 (104)

or
𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


<






𝑢
1
− 𝑢
1

ℎ
1





1
≤

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


. (105)

It is clear that both cases (a) and (b) are true because they
coincide with (91). So there is either contradiction and case 2
is impossible or cases 2 is possible and we must have






𝑢
1
− 𝑢
1

ℎ
1





1
=

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


. (106)

Then case 2 implies





𝑢
2
− 𝑢
1

ℎ
2





2
≤ 𝐶ℎ
2 



log ℎ


+






𝑢
1
− 𝑢
1

ℎ
1





1

= 𝐶ℎ
2 



log ℎ


+

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ



=

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


.

(107)

With

max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

≤






𝑢
1
− 𝑢
1

ℎ
1





1

=

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ



< 𝐶ℎ
2 



log ℎ



(108)

which coincides with (69). Case 3 implies






𝑢
2
− 𝑢
1

ℎ
2





2
≤ 𝐶ℎ
2 



log ℎ


+ max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

,

𝜌






𝑢
2
− 𝑢
1

ℎ
2





2
≤ max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

,






𝑢
1
− 𝑢
1

ℎ
1





1
≤ max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

.

(109)

By multiplying (109) by 𝜌 we get

𝜌






𝑢
2
− 𝑢
1

ℎ
2





2
≤ 𝜌𝐶ℎ

2 



log ℎ


+ 𝜌max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

,

𝜌






𝑢
2
− 𝑢
1

ℎ
2





2
≤ max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

,






𝑢
1
− 𝑢
1

ℎ
1





1
≤ max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

.

(110)

So 𝜌‖𝑢
2
− 𝑢
1

ℎ
2

‖
2

is bounded by both 𝜌𝐶ℎ2|log ℎ|+𝜌max
2<𝑗≤𝑚

‖𝑢
𝑗
− 𝑢
0

ℎ
𝑗

‖

𝑗

and max
2<𝑗≤𝑚

‖𝑢
𝑗
− 𝑢
0

ℎ
𝑗

‖

𝑗

then w have

(c) max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

< 𝜌𝐶ℎ
2 



log ℎ


+ 𝜌max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

(111)

or

(d) 𝜌𝐶ℎ2 

log ℎ


+ 𝜌max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

< max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

.

(112)

Which implies

max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

<

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ

 (113)

or
𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


< max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

. (114)

That is,

max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

<

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


< 𝐶ℎ
2 



log ℎ

 (115)

or
𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


< max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

< 𝐶ℎ
2 



log ℎ


. (116)
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It is clear that both cases (c) and (d) are true because they
coincide with (69). So there is contradiction and case 3 is
impossible or case 3 is possible only if

max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

=

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


. (117)

Then case 3 implies that






𝑢
2
− 𝑢
1

ℎ
2





2
≤ 𝐶ℎ
2 



log ℎ


+ max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

= 𝐶ℎ
2 



log ℎ


+

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ



=

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


,

(118)

with





𝑢
1
− 𝑢
1

ℎ
1





1
≤ max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

=

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


. (119)

Hence, in the three cases 1, 2, and 3 we get






𝑢
2
− 𝑢
1

ℎ
2





2
≤

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


. (120)

Equations (91) and (120) imply

max
1≤𝑖<3






𝑢
𝑖
− 𝑢
1

ℎ
𝑖





𝑖
≤

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


. (121)

Similarly applying the same idea for the rest of subdomain
Ω
𝑖
, 𝑖 = 3, . . . , 𝑚, orderly, we get






𝑢
𝑖
− 𝑢
1

ℎ
𝑖





𝑖
≤

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


. (122)

Now, let us assume that






𝑢
𝑖
− 𝑢
𝑛

ℎ
𝑖





𝑖
≤

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


, 𝑖 = 1, . . . , 𝑚 (123)

and prove that






𝑢
𝑖
− 𝑢
𝑛+1

ℎ
𝑖





𝑖
≤

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


, 𝑖 = 1, . . . , 𝑚. (124)

Equation (124) is obtained sequentially in the order of the
numbering of subdomains.We begin by subdomain 1; indeed
applying (73) to subdomain one, for iteration 𝑛 + 1, we get





𝑢
1
− 𝑢
𝑛+1

ℎ
1





1
≤ 𝐶ℎ
2 



log ℎ



+max{𝜌

𝑢
1
− 𝑢
𝑛+1

ℎ
1





1
, max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

}

(125)

We have to distinguish the two following cases

(1) max{𝜌

𝑢
1
− 𝑢
𝑛+1

ℎ
1





1
, max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

} = 𝜌






𝑢
1
− 𝑢
𝑛+1

ℎ
1





1

(126)

or

(2) max{𝜌

𝑢
1
− 𝑢
𝑛+1

ℎ
1





1
, max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

}

= max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

.

(127)

Case 1 implies





𝑢
1
− 𝑢
𝑛+1

ℎ
1





1
≤ 𝐶ℎ
2 



log ℎ


+ 𝜌






𝑢
1
− 𝑢
𝑛+1

ℎ
1





1
,

max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

≤ 𝜌






𝑢
1
− 𝑢
𝑛+1

ℎ
1





1
.

(128)

Then






𝑢
1
− 𝑢
𝑛+1

ℎ
1





1
≤

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


,

max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

≤ 𝜌






𝑢
1
− 𝑢
𝑛+1

ℎ
1





1

≤

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


<

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


.

(129)

Case 2 implies






𝑢
1
− 𝑢
𝑛+1

ℎ
1





1
≤ 𝐶ℎ
2 



log ℎ


+ max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

,

𝜌






𝑢
1
− 𝑢
𝑛+1

ℎ
1





1
≤ max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

.

(130)

By multiplying (130) by 𝜌 we get

𝜌






𝑢
1
− 𝑢
𝑛+1

ℎ
1





1
≤ 𝜌𝐶ℎ

2 



log ℎ


+ 𝜌max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

,

𝜌






𝑢
1
− 𝑢
𝑛+1

ℎ
1





1
≤ max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

.

(131)

So 𝜌‖𝑢
1
− 𝑢
𝑛+1

ℎ
1

‖
1

is bounded by both 𝜌𝐶ℎ2|log ℎ|+𝜌max
1<𝑗≤𝑚

‖𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗

‖

𝑗

and max
1<𝑗≤𝑚

‖𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗

‖

𝑗

then

(a) max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

< 𝜌𝐶ℎ
2 



log ℎ


+ 𝜌max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

(132)

or

(b) 𝜌𝐶ℎ2 

log ℎ


+ 𝜌max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

< max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

.

(133)

That is

max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

<

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ

 (134)

or
𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


< max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

. (135)
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Which implies

max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

<

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


<

1

1 − 𝜌

𝐶ℎ
2 



log ℎ



(136)

or

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


< max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

<

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


.

(137)

It is clear that both cases (a) and (b) are true because both
coincidewith (123). So either there is a contradiction and thus
case 2 is impossible or case 2 is possible only if

max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

=

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


. (138)

Then case 2 implies






𝑢
1
− 𝑢
𝑛+1

ℎ
1





1
≤ 𝐶ℎ
2 



log ℎ


+ max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

= 𝐶ℎ
2 



log ℎ


+

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ



=

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


.

(139)

Hence in both cases 1 and 2 we obtain






𝑢
1
− 𝑢
𝑛+1

ℎ
1





1
≤

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


. (140)

Similarly applying (73) to the second subdomain, for iteration
𝑛 + 1, we get






𝑢
1
− 𝑢
𝑛+1

ℎ
2





2
≤ 𝐶ℎ
2 



log ℎ



+max {𝜌

𝑢
2
− 𝑢
𝑛+1

ℎ
2





2
,






𝑢
1
− 𝑢
𝑛+

ℎ
1





1
,

max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

} .

(141)

We have to distinguish the three following cases

(1) max{𝜌

𝑢
2
− 𝑢
𝑛+1

ℎ
2





2
,






𝑢
1
− 𝑢
𝑛+1

ℎ
1





1
, max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

}

= 𝜌






𝑢
2
− 𝑢
𝑛+1

ℎ
2





2

(142)

or

(2) max{𝜌

𝑢
2
− 𝑢
𝑛+1

ℎ
2





2
,






𝑢
1
− 𝑢
𝑛+1

ℎ
1





1
, max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

}

=






𝑢
1
− 𝑢
𝑛+1

ℎ
1





1

(143)

or

(3) max{𝜌

𝑢
2
− 𝑢
𝑛+1

ℎ
2





2
,






𝑢
1
− 𝑢
𝑛+1

ℎ
1





1
, max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

}

= max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

.

(144)

Case 1 implies





𝑢
2
− 𝑢
𝑛+1

ℎ
2





2
≤ 𝐶ℎ
2 



log ℎ


+ 𝜌






𝑢
2
− 𝑢
𝑛+1

ℎ
2





2
,






𝑢
1
− 𝑢
𝑛+1

ℎ
1





1
≤ 𝜌






𝑢
2
− 𝑢
𝑛+1

ℎ
2





2
,

max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

≤ 𝜌






𝑢
2
− 𝑢
𝑛+1

ℎ
2





2
.

(145)

Then






𝑢
2
− 𝑢
𝑛+1

ℎ
2





2
≤

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


,






𝑢
1
− 𝑢
𝑛+1

ℎ
1





1
≤ 𝜌






𝑢
2
− 𝑢
𝑛+1

ℎ
2





2

≤

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


<

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


,

max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

≤ 𝜌






𝑢
2
− 𝑢
𝑛+1

ℎ
2





2

≤

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


<

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


.

(146)

We note that the two last inequalities coincide with (140) and
(123) respectively. Case 2 implies that






𝑢
2
− 𝑢
𝑛+1

ℎ
2





2
≤ 𝐶ℎ
2 



log ℎ


+






𝑢
1
− 𝑢
𝑛+1

ℎ
1





1
,

𝜌






𝑢
2
− 𝑢
𝑛+1

ℎ
2





2
≤






𝑢
1
− 𝑢
𝑛+1

ℎ
1





1
,

max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

≤






𝑢
1
− 𝑢
𝑛+1

ℎ
1





1
.

(147)

By multiplying (147) by 𝜌 we get

𝜌






𝑢
2
− 𝑢
𝑛+1

ℎ
2





2
≤ 𝜌𝐶ℎ

2 



log ℎ


+ 𝜌






𝑢
1
− 𝑢
𝑛+1

ℎ
1





1
,

𝜌






𝑢
2
− 𝑢
𝑛+1

ℎ
2





2
≤






𝑢
1
− 𝑢
𝑛+1

ℎ
1





1
,

max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

≤






𝑢
1
− 𝑢
𝑛+1

ℎ
1





1
.

(148)

We remark that 𝜌‖𝑢
2
− 𝑢
𝑛+1

ℎ
2

‖
2

is bounded by both 𝜌𝐶ℎ
2

|log ℎ| + 𝜌‖𝑢
1
− 𝑢
𝑛+1

ℎ
1

‖
1

and ‖𝑢
1
− 𝑢
𝑛+1

ℎ
1

‖
1

then

(a) 

𝑢
1
− 𝑢
𝑛+1

ℎ
1





1
< 𝜌𝐶ℎ

2 



log ℎ


+ 𝜌






𝑢
1
− 𝑢
𝑛+1

ℎ
1





1

(149)

or

(b) 𝜌𝐶ℎ2 

log ℎ


+ 𝜌






𝑢
1
− 𝑢
𝑛+1

ℎ
1





1
<






𝑢
1
− 𝑢
𝑛+1

ℎ
1





1
. (150)
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Which implies





𝑢
1
− 𝑢
𝑛+1

ℎ
1





1
<

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ

 (151)

or
𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


<






𝑢
1
− 𝑢
𝑛+1

ℎ
1





1
. (152)

That is





𝑢
1
− 𝑢
𝑛+1

ℎ
1





1
<

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


<

1

1 − 𝜌

𝐶ℎ
2 



log ℎ

 (153)

or
𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


<






𝑢
1
− 𝑢
𝑛+1

ℎ
1





1
≤

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


. (154)

It is clear that both cases are true because they both
coincide with (140). So there is either contradiction and case
2 is impossible or cases 2 is possible and we must have






𝑢
1
− 𝑢
𝑛+1

ℎ
1





1
=

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


. (155)

Case 2 implies that





𝑢
2
− 𝑢
𝑛+1

ℎ
2





2
≤ 𝐶ℎ
2 



log ℎ


+






𝑢
1
− 𝑢
𝑛+1

ℎ
1





1

= 𝐶ℎ
2 



log ℎ


+

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ



=

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


.

(156)

With

max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

≤






𝑢
1
− 𝑢
𝑛+1

ℎ
1





1

=

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ



<

1

1 − 𝜌

𝐶ℎ
2 



log ℎ



(157)

which coincides with (123). Case 3 implies





𝑢
2
− 𝑢
𝑛+1

ℎ
2





2
≤ 𝐶ℎ
2 



log ℎ


+ max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

,

𝜌






𝑢
2
− 𝑢
𝑛+1

ℎ
2





2
≤ max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

,






𝑢
1
− 𝑢
𝑛+1

ℎ
1





1
≤ max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

.

(158)

By multiplying (158) by 𝜌 we get

𝜌






𝑢
2
− 𝑢
𝑛+1

ℎ
2





2
≤ 𝜌𝐶ℎ

2 



log ℎ


+ 𝜌max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

,

𝜌






𝑢
2
− 𝑢
𝑛+1

ℎ
2





2
≤ max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

,






𝑢
1
− 𝑢
𝑛+1

ℎ
1





1
≤ max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

.

(159)

So 𝜌‖𝑢
2
− 𝑢
𝑛+1

ℎ
2

‖
2

is bounded by both 𝜌𝐶ℎ2|log ℎ|+𝜌max
2<𝑗≤𝑚

‖𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗

‖

𝑗

and max
2<𝑗≤𝑚

‖𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗

‖

𝑗

then

(c) max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

< 𝜌𝐶ℎ
2 



log ℎ


+ 𝜌max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

(160)

or

(d) 𝜌𝐶ℎ2 

log ℎ


+ 𝜌max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

< max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

.

(161)

Which implies

max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

<

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ

 (162)

or
𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


< max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

. (163)

That is

max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

<

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


<

1

1 − 𝜌

𝐶ℎ
2 



log ℎ



(164)

or
𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


< max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

≤

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


.

(165)

It is clear that both cases (c) and (d) are true because they
both coincide with (123). So there is contradiction and case 3
is impossible or case 3 is possible only if

max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

=

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


. (166)

Then case 3 implies





𝑢
2
− 𝑢
𝑛+1

ℎ
2





2
≤ 𝐶ℎ
2 



log ℎ


+ max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

= 𝐶ℎ
2 



log ℎ


+

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ



=

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


.

(167)

With





𝑢
1
− 𝑢
𝑛+1

ℎ
1





1
≤ max
2<𝑗≤𝑚








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

=

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


. (168)

Hence in three cases 1, 2, and 3 we get






𝑢
2
− 𝑢
𝑛+1

ℎ
2





2
≤

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


. (169)

Equations (140) and (169) imply

max
1≤𝑗<3








𝑢
𝑗
− 𝑢
𝑛+1

ℎ
𝑗






𝑗

≤

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


. (170)
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Similarly applying the same idea for the rest of subdomains
Ω
𝑖
, 𝑖 = 3, . . . , 𝑚, orderly we get






𝑢
𝑖
− 𝑢
𝑛+1

ℎ
𝑖





𝑖
≤

1

1 − 𝜌

𝐶ℎ
2 



log ℎ

 (171)

which is the desired result. In the sequel we deal with the
second subinterval [1/2, 1[, indeed 𝜌 ∈ [1/2, 1[ so

𝜌

1 − 𝜌

≥ 1. (172)

For 𝑛 = 0, applying (73) to subdomain one we get





𝑢
1
− 𝑢
1

ℎ
1





1
≤ 𝐶ℎ
2 



log ℎ



+max{𝜌

𝑢
1
− 𝑢
1

ℎ
1





1
, max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

} .

(173)

We have to distinguish the two following cases

(1) max{𝜌

𝑢
1
− 𝑢
1

ℎ
1





1
, max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

} = 𝜌






𝑢
1
− 𝑢
1

ℎ
1





1

(174)

or

(2) max{𝜌

𝑢
1
− 𝑢
1

ℎ
1





1
, max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

}

= max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

.

(175)

Case 1 implies





𝑢
1
− 𝑢
1

ℎ
1





1
≤ 𝐶ℎ
2 



log ℎ


+ 𝜌






𝑢
1
− 𝑢
1

ℎ
1





1
,

max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

≤ 𝜌






𝑢
1
− 𝑢
1

ℎ
1





1
.

(176)

Then






𝑢
1
− 𝑢
1

ℎ
1





1
≤

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


,

max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

≤ 𝜌






𝑢
1
− 𝑢
1

ℎ
1





1
≤

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


.

(177)

Case 2 implies






𝑢
1
− 𝑢
1

ℎ
1





1
≤ 𝐶ℎ
2 



log ℎ


+ max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

,

𝜌






𝑢
1
− 𝑢
1

ℎ
1





1
≤ max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

.

(178)

By multiplying (178) by 𝜌 we get

𝜌






𝑢
1
− 𝑢
1

ℎ
1





1
≤ 𝜌𝐶ℎ

2 



log ℎ


+ 𝜌max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

,

𝜌






𝑢
1
− 𝑢
1

ℎ
1





1
≤ max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

.

(179)

So 𝜌‖𝑢
1
− 𝑢
1

ℎ
1

‖
1

is bounded by both 𝜌𝐶ℎ2|log ℎ| + 𝜌max
1<𝑗≤𝑚

‖𝑢
𝑗
− 𝑢
0

ℎ
𝑗

‖

𝑗

and max
1<𝑗≤𝑚

‖𝑢
𝑗
− 𝑢
0

ℎ
𝑗

‖

𝑗

then

(a) max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

< 𝜌𝐶ℎ
2 



log ℎ


+ 𝜌max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

(180)
or

(b) 𝜌𝐶ℎ2 

log ℎ


+ 𝜌max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

< max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

.

(181)

That is

max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

<

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ

 (182)

or
𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


< max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

. (183)

Which implies

max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎj






𝑗

< 𝐶ℎ
2 



log ℎ


≤

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ

 (184)

or
𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


< max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

< 𝐶ℎ
2 



log ℎ


. (185)

It is clear that only the case (a) is true because it coincideswith
(69) whereas (b) contradicts (172). Then case (a) with case 2
imply






𝑢
1
− 𝑢
1

ℎ
1





1
≤ 𝐶ℎ
2 



log ℎ


+ max
1<𝑗≤𝑚








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

< 𝐶ℎ
2 



log ℎ


+

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ



=

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


.

(186)

Hence in both cases 1 and 2 we get






𝑢
1
− 𝑢
1

ℎ
1





1
≤

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


. (187)

By the same way we can obtain orderly






𝑢
𝑖
− 𝑢
1

ℎ
𝑖





𝑖
≤

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


, 𝑖 = 2, . . . , 𝑚. (188)

The remainder of the proof is also by induction by addopting
the same idea applied in iteration one.

Part 2. We deal with situation (B). We begin by the first
subinterval that is 𝜌 ∈]0, 1/2[; Indeed for 𝑛 = 0, (73) implies
for subdomain 1,






𝑢
1
− 𝑢
1

ℎ
1





1
≤ 𝐶ℎ
2 



log ℎ



+max{𝜌

𝑢
1
− 𝑢
1

ℎ
1





1
,max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

} .

(189)
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We have to distinguish the two following cases

(1) max{𝜌

𝑢
1
− 𝑢
1

ℎ
1





1
,max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

} = 𝜌






𝑢
1
− 𝑢
1

ℎ
1





1

(190)

or

(2) max{𝜌

𝑢
1
− 𝑢
1

ℎ
1





1
,max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

} = max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

.

(191)

Case 1 implies





𝑢
1
− 𝑢
1

ℎ
1





1
≤ 𝐶ℎ
2 



log ℎ


+ 𝜌






𝑢
1
− 𝑢
1

ℎ
1





1
,

max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

≤ 𝜌






𝑢
1
− 𝑢
1

ℎ
1





1
.

(192)

So





𝑢
1
− 𝑢
1

ℎ
1





1
≤

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


,

max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

≤ 𝜌






𝑢
1
− 𝑢
1

ℎ
1





1

≤

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ



< 𝐶ℎ
2 



log ℎ


.

(193)

We remark that (193) contradicts (70) so case 1 is impossible.
Case 2 implies






𝑢
1
− 𝑢
1

ℎ
1





1
≤ 𝐶ℎ
2 



log ℎ


+max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

,

𝜌






𝑢
1
− 𝑢
1

ℎ
1





1
≤ max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

.

(194)

By multiplying (194) by 𝜌 we get

𝜌






𝑢
1
− 𝑢
1

ℎ
1





1
≤ 𝜌𝐶ℎ

2 



log ℎ


+ 𝜌max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

,

𝜌






𝑢
1
− 𝑢
1

ℎ
1





1
≤ max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

.

(195)

It is clear that 𝜌‖𝑢
1
− 𝑢
1

ℎ
1

‖
1

is bounded by both 𝜌𝐶ℎ2|log ℎ| +
𝜌max

1<𝑗
‖𝑢
𝑗
− 𝑢
0

ℎ
𝑗

‖

𝑗

and max
1<𝑗
‖𝑢
𝑗
− 𝑢
0

ℎ
𝑗

‖

𝑗

, so

(a) max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

< 𝜌𝐶ℎ
2 



log ℎ


+ 𝜌max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

(196)

or

(b) 𝜌𝐶ℎ2 

log ℎ


+ 𝜌max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

< max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

.

(197)

Which implies

max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

<

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ

 (198)

or
𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


< max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

. (199)

Then

𝐶ℎ
2 



log ℎ


≤ max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

<

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ

 (200)

or
𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


< 𝐶ℎ
2 



log ℎ


≤ max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

. (201)

We can see that only case (b) is possible and by adding
𝐶ℎ
2

|log ℎ| in (199) we get

𝐶ℎ
2 



log ℎ


+

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ



< 𝐶ℎ
2 



log ℎ


+max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

(202)

thus
1

1 − 𝜌

𝐶ℎ
2 



log ℎ


< 𝐶ℎ
2 



log ℎ


+max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

(203)

comparing this last inequalty (203) with (194), we deduce the
two following possibilities






𝑢
1
− 𝑢
1

ℎ
1





1
<

1

1 − 𝜌

𝐶ℎ
2 



log ℎ

 (204)

or
1

1 − 𝜌

𝐶ℎ
2 



log ℎ


<






𝑢
1
− 𝑢
1

ℎ
1





1

(205)

which implies





𝑢
1
− 𝑢
1

ℎ
1





1
<

1

1 − 𝜌

𝐶ℎ
2 



log ℎ



< 𝐶ℎ
2 



log ℎ


+max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

(206)

or
1

1 − 𝜌

𝐶ℎ
2 



log ℎ


<






𝑢
1
− 𝑢
1

ℎ
1





1

≤ 𝐶ℎ
2 



log ℎ


+max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

.

(207)

It is clear that the two possibilities are true so either there is
a contradiction and case 2 is impossible or case 2 is possible
only if






𝑢
1
− 𝑢
1

ℎ
1





1
=

1

1 − 𝜌

𝐶ℎ
2 



log ℎ

 (208)

Similarly applying (73) to subdomain 2 we get





𝑢
2
− 𝑢
1

ℎ
2





2
≤ 𝐶ℎ
2 



log ℎ



+max {𝜌

𝑢
2
− 𝑢
1

ℎ
2





2
,






𝑢
1
− 𝑢
1

ℎ
1





1
,

max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

} .

(209)
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So we have to distinguish between the three following cases

(1) max{𝜌

𝑢
2
− 𝑢
1

ℎ
2





2
,






𝑢
1
− 𝑢
1

ℎ
1





1
,max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

}

= 𝜌






𝑢
2
− 𝑢
1

ℎ
2





2

(210)

or

(2) max{𝜌

𝑢
2
− 𝑢
1

ℎ
2





2
,






𝑢
1
− 𝑢
1

ℎ
1





1
,max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

}

=






𝑢
1
− 𝑢
1

ℎ
1





1

(211)

or

(3) max{𝜌

𝑢
2
− 𝑢
1

ℎ
2





2
,






𝑢
1
− 𝑢
1

ℎ
1





1
,max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

}

= max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

.

(212)

Case 1 implies





𝑢
2
− 𝑢
1

ℎ
2





2
≤ 𝐶ℎ
2 



log ℎ


+ 𝜌






𝑢
2
− 𝑢
1

ℎ
2





2
,






𝑢
1
− 𝑢
1

ℎ
1





1
≤ 𝜌






𝑢
2
− 𝑢
1

ℎ
2





2
,

max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

≤ 𝜌






𝑢
2
− 𝑢
1

ℎ
2





2
.

(213)

Then





𝑢
2
− 𝑢
1

ℎ
2





2
≤

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


,

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


=






𝑢
1
− 𝑢
1

ℎ
1





1
≤ 𝜌






𝑢
2
− 𝑢
1

ℎ
2





2

≤

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


,

max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

≤ 𝜌






𝑢
2
− 𝑢
1

ℎ
2





2

≤

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


< 𝐶ℎ
2 



log ℎ


.

(214)

Equations (214) contradicts (70) so case 1 is impossible.
Case 2 implies






𝑢
2
− 𝑢
1

ℎ
2





2
≤ 𝐶ℎ
2 



log ℎ


+






𝑢
1
− 𝑢
1

ℎ
1





1
,

𝜌






𝑢
2
− 𝑢
1

ℎ
2





2
≤






𝑢
1
− 𝑢
1

ℎ
1





1
,

max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

≤






𝑢
1
− 𝑢
1

ℎ
1





1
.

(215)

By multiplying (215) by 𝜌 we get

𝜌






𝑢
2
− 𝑢
1

ℎ
2





2
≤ 𝜌𝐶ℎ

2 



log ℎ


+ 𝜌






𝑢
1
− 𝑢
1

ℎ
1





1
,

𝜌






𝑢
2
− 𝑢
1

ℎ
2





2
≤






𝑢
1
− 𝑢
1

ℎ
1





1
,

max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

≤






𝑢
1
− 𝑢
1

ℎ
1





1
.

(216)

It is clear that 𝜌‖𝑢
2
− 𝑢
1

ℎ
2

‖
2

is bounded by both 𝜌𝐶ℎ2|log ℎ| +
𝜌‖𝑢
1
− 𝑢
1

ℎ
1

‖
1

and ‖𝑢
1
− 𝑢
1

ℎ
1

‖
1

so

(a) 

𝑢
1
− 𝑢
1

ℎ
1





1
< 𝜌𝐶ℎ

2 



log ℎ


+ 𝜌






𝑢
1
− 𝑢
1

ℎ
1





1

(217)

or

(b) 𝜌𝐶ℎ2 

log ℎ


+ 𝜌






𝑢
1
− 𝑢
1

ℎ
1





1
<






𝑢
1
− 𝑢
1

ℎ
1





1
. (218)

That is





𝑢
1
− 𝑢
1

ℎ
1





1
<

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ

 (219)

or
𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


<






𝑢
1
− 𝑢
1

ℎ
1





1
. (220)

It is clear that only case (b) is true because it coincides with
(208) and by adding 𝐶ℎ2|log ℎ| in (220) we get

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


= 𝐶ℎ
2 



log ℎ


+

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ



< 𝐶ℎ
2 



log ℎ


+






𝑢
1
− 𝑢
1

ℎ
1





1

(221)

comparing this last inequalty with (215), we distingush the
two following possibilities






𝑢
2
− 𝑢
1

ℎ
2





2
<

1

1 − 𝜌

𝐶ℎ
2 



log ℎ

 (222)

or
1

1 − 𝜌

𝐶ℎ
2 



log ℎ


<






𝑢
2
− 𝑢
1

ℎ
2





2

(223)

which imply






𝑢
2
− 𝑢
1

ℎ
2





2
<

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


< 𝐶ℎ
2 



log ℎ


+






𝑢
1
− 𝑢
1

ℎ
1





1

(224)

or
1

1 − 𝜌

𝐶ℎ
2 



log ℎ


<






𝑢
2
− 𝑢
1

ℎ
2





2
≤ 𝐶ℎ
2 



log ℎ


+






𝑢
1
− 𝑢
1

ℎ
1





1
.

(225)

It is clear that the two possibilities are true so either there is
a contradiction and case 2 is impossible or case 2 is possible
only if






𝑢
2
− 𝑢
1

ℎ
2





2
=

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


. (226)

Case 3 implies





𝑢
2
− 𝑢
1

ℎ
2





2
≤ 𝐶ℎ
2 



log ℎ


+max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

,

𝜌






𝑢
2
− 𝑢
1

ℎ
2





2
≤ max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

,






𝑢
1
− 𝑢
1

ℎ
1





1
≤ max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

.

(227)
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By multiplying (227) by 𝜌 we get

𝜌






𝑢
2
− 𝑢
1

ℎ
2





2
≤ 𝜌𝐶ℎ

2 



log ℎ


+ 𝜌max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

,

𝜌






𝑢
2
− 𝑢
1

ℎ
2





2
≤ max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

,






𝑢
1
− 𝑢
1

ℎ
1





1
≤ max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

.

(228)

We remark that 𝜌‖𝑢
2
− 𝑢
1

ℎ
2

‖
2

is bounded by both 𝜌𝐶ℎ
2

|log ℎ| + 𝜌max
2<𝑗
‖𝑢
𝑗
− 𝑢
0

ℎ
𝑗

‖

𝑗

and max
2<𝑗
‖𝑢
𝑗
− 𝑢
0

ℎ
𝑗

‖

𝑗

then

(c) max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

< 𝜌𝐶ℎ
2 



log ℎ


+ 𝜌max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

(229)

or

(d) 𝜌𝐶ℎ2 

log ℎ


+ 𝜌max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

< max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

.

(230)

That is

max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

<

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ

 (231)

or
𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


< max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

. (232)

Which implies

max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

<

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


< 𝐶ℎ
2 



log ℎ

 (233)

or
𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


< 𝐶ℎ
2 



log ℎ


≤ max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

. (234)

It is clear that only case (d) is possible. By adding 𝐶ℎ2|log ℎ|
in (232) we get

𝐶ℎ
2 



log ℎ


+

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


<𝐶ℎ
2 



log ℎ


+max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

(235)

so

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


< 𝐶ℎ
2 



log ℎ


+max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

(236)

comparing the last inequality with (227), we consider the two
following possibilties






𝑢
2
− 𝑢
1

ℎ
2





2
<

1

1 − 𝜌

𝐶ℎ
2 



log ℎ

 (237)

or

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


<






𝑢
2
− 𝑢
1

ℎ
2





2

(238)

that is





𝑢
2
− 𝑢
1

ℎ
2





2
<

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


<𝐶ℎ
2 



log ℎ


+max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

(239)

or
1

1 − 𝜌

𝐶ℎ
2 



log ℎ


<






𝑢
2
− 𝑢
1

ℎ
2





2
≤𝐶ℎ
2 



log ℎ


+max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

.

(240)

It is clear that the two possibilities are true so either there is
a contradiction and case 3 is impossible or case 3 is possible
only if






𝑢
2
− 𝑢
1

ℎ
2





2
=

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


. (241)

So case 1 is impossible and in both cases 2 and 3 we obtain






𝑢
2
− 𝑢
1

ℎ
2





2
=

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


. (242)

Equations (208) and (242) imply

max
1≤𝑖<3






𝑢
𝑖
− 𝑢
1

ℎ
𝑖





𝑖
=

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


. (243)

We adopt the same approach for the other subdomains Ω
𝑖
,

𝑖 = 3, . . . , 𝑚 in order, we get






𝑢
𝑖
− 𝑢
1

ℎ
𝑖





𝑖
=

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


, 𝑖 = 1, . . . , 𝑚. (244)

The remainder of the proof is by induction and is by adopting
the same approach used in iteration one. The last step of the
proof of this Part 2 is devoted to the subinterval 𝜌 ∈ [1/2, 1[
and is also by induction. Indeed for subdomain 1 and 𝑛 = 0,
(73) implies






𝑢
1
− 𝑢
1

ℎ
1





1
≤ 𝐶ℎ
2 



log ℎ



+max{𝜌

𝑢
1
− 𝑢
1

ℎ
1





1
,max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

} .

(245)

We have to distinguish the two following cases

(1) max{𝜌

𝑢
1
− 𝑢
1

ℎ
1





1
,max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

} = 𝜌






𝑢
1
− 𝑢
1

ℎ
1





1

(246)

or

(2) max{𝜌

𝑢
1
− 𝑢
1

ℎ
1





1
,max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

} = max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

.

(247)

Case 1 implies





𝑢
1
− 𝑢
1

ℎ
1





1
≤ 𝐶ℎ
2 



log ℎ


+ 𝜌






𝑢
1
− 𝑢
1

ℎ
1





1
,

max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

≤ 𝜌






𝑢
1
− 𝑢
1

ℎ
1





1
.

(248)
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So





𝑢
1
− 𝑢
1

ℎ
1





1
≤

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


,

𝐶ℎ
2 



log ℎ


< max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

≤ 𝜌






𝑢
1
− 𝑢
1

ℎ
1





1

≤

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


.

(249)

We remark that (249) coincides with (70). Case 2 implies





𝑢
1
− 𝑢
1

ℎ
1





1
≤ 𝐶ℎ
2 



log ℎ


+max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

,

𝜌






𝑢
1
− 𝑢
1

ℎ
1





1
≤ max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

.

(250)

By multiplying (250) by 𝜌 we get

𝜌






𝑢
1
− 𝑢
1

ℎ
1





1
≤ 𝜌𝐶ℎ

2 



log ℎ


+ 𝜌max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

,

𝜌






𝑢
1
− 𝑢
1

ℎ
1





1
≤ max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

.

(251)

It is clear that 𝜌‖𝑢
1
− 𝑢
1

ℎ
1

‖
1

is bounded by both 𝜌𝐶ℎ2|log ℎ| +
𝜌max

1<𝑗
‖𝑢
𝑗
− 𝑢
0

ℎ
𝑗

‖

𝑗

and max
1<𝑗
‖𝑢
𝑗
− 𝑢
0

ℎ
𝑗

‖

𝑗

, so

(a) max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

< 𝜌𝐶ℎ
2 



log ℎ


+ 𝜌max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

(252)

or

(b) 𝜌𝐶ℎ2 

log ℎ


+ 𝜌max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

< max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

.

(253)

Which implies

max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

<

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ

 (254)

or
𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


< max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

. (255)

Then

𝐶ℎ
2 



log ℎ


< max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

<

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ

 (256)

or

𝐶ℎ
2 



log ℎ


≤

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


< max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

. (257)

It is clear that both cases (a) and (b) are true. So either there
is contradiction and case 2 is impossible or case 2 is possible
and we must have

max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

=

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


. (258)

Then case 2 implies






𝑢
1
− 𝑢
1

ℎ
1





1
≤ 𝐶ℎ
2 



log ℎ


+max
1<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

= 𝐶ℎ
2 



log ℎ


+

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ



=

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


.

(259)

So in both cases 1 and 2 we get






𝑢
1
− 𝑢
1

ℎ
1





1
≤

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


. (260)

Similarly applying (73) to subdomain 2we get in this situation
(B)






𝑢
2
− 𝑢
1

ℎ
2





2
≤ 𝐶ℎ
2 



log ℎ



+max {𝜌

𝑢
2
− 𝑢
1

ℎ
2





2
,






𝑢
1
− 𝑢
1

ℎ
1





1
,max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

} .

(261)

So we have to distinguish between the three following cases

(1) max{𝜌

𝑢
2
− 𝑢
1

ℎ
2





2
,






𝑢
1
− 𝑢
1

ℎ
1





1
,max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

}

= 𝜌






𝑢
2
− 𝑢
1

ℎ
2





2

(262)

or

(2) max{𝜌

𝑢
2
− 𝑢
1

ℎ
2





2
,






𝑢
1
− 𝑢
1

ℎ
1





1
,max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

}

=






𝑢
1
− 𝑢
1

ℎ
1





1

(263)

or

(3) max{𝜌

𝑢
2
− 𝑢
1

ℎ
2





2
,






𝑢
1
− 𝑢
1

ℎ
1





1
,max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

}

= max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

.

(264)

Case 1 implies






𝑢
1
− 𝑢
1

ℎ
2





2
≤ 𝐶ℎ
2 



log ℎ


+ 𝜌






𝑢
2
− 𝑢
1

ℎ
2





2
,






𝑢
1
− 𝑢
1

ℎ
1





1
≤ 𝜌






𝑢
2
− 𝑢
1

ℎ
2





2
,

max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

≤ 𝜌






𝑢
2
− 𝑢
1

ℎ
2





2
.

(265)
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Then






𝑢
1
− 𝑢
1

ℎ
2





2
≤

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


,






𝑢
1
− 𝑢
1

ℎ
1





1
≤ 𝜌






𝑢
2
− 𝑢
1

ℎ
2





2
≤

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ



≤

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


,

𝐶ℎ
2 



log ℎ


< max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

≤ 𝜌






𝑢
2
− 𝑢
1

ℎ
2





2

≤

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


.

(266)

Case 2 implies





𝑢
2
− 𝑢
1

ℎ
2





2
≤ 𝐶ℎ
2 



log ℎ


+






𝑢
1
− 𝑢
1

ℎ
1





1
,

𝜌






𝑢
2
− 𝑢
1

ℎ
2





2
≤






𝑢
1
− 𝑢
1

ℎ
1





1
,

max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

≤






𝑢
1
− 𝑢
1

ℎ
1





1
.

(267)

By multiplying (267) by 𝜌 we get

𝜌






𝑢
2
− 𝑢
1

ℎ
2





2
≤ 𝜌𝐶ℎ

2 



log ℎ


+ 𝜌






𝑢
1
− 𝑢
1

ℎ
1





1
,

𝜌






𝑢
2
− 𝑢
1

ℎ
2





2
≤






𝑢
1
− 𝑢
1

ℎ
1





1
,

max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

≤






𝑢
1
− 𝑢
1

ℎ
1





1
.

(268)

It is clear that 𝜌‖𝑢
2
− 𝑢
1

ℎ
2

‖
2

is bounded by both 𝜌𝐶ℎ2|log ℎ| +
𝜌‖𝑢
1
− 𝑢
1

ℎ
1

‖
1

and ‖𝑢
1
− 𝑢
1

ℎ
1

‖
1

so

(a) 

𝑢
1
− 𝑢
1

ℎ
1





1
< 𝜌𝐶ℎ

2 



log ℎ


+ 𝜌






𝑢
1
− 𝑢
1

ℎ
1





1

(269)

or

(b) 𝜌𝐶ℎ2 

log ℎ


+ 𝜌






𝑢
1
− 𝑢
1

ℎ
1





1
<






𝑢
1
− 𝑢
1

ℎ
1





1
. (270)

That is





𝑢
1
− 𝑢
1

ℎ
1





1
<

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ

 (271)

or
𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


<






𝑢
1
− 𝑢
1

ℎ
1





1
. (272)

Thus






𝑢
1
− 𝑢
1

ℎ
1





1
<

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


<

1

1 − 𝜌

𝐶ℎ
2 



log ℎ

 (273)

or

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


<






𝑢
1
− 𝑢
1

ℎ
1





1
≤

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


. (274)

It is clear that both cases (a) and (b) are true because they both
coincide with (208). So either there is contradiction and case
2 is impossible or case 2 is possible and we must have






𝑢
1
− 𝑢
1

ℎ
1





1
=

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


. (275)

With

𝐶ℎ
2 



log ℎ


< max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

≤






𝑢
1
− 𝑢
1

ℎ
1





1

=

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


,

(276)

So case 2 implies





𝑢
2
− 𝑢
1

ℎ
2





2
≤ 𝐶ℎ
2 



log ℎ


+






𝑢
1
− 𝑢
1

ℎ
1





1

= 𝐶ℎ
2 



log ℎ


+

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ



(277)

Then





𝑢
2
− 𝑢
1

ℎ
2





2
≤

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


. (278)

Case 3 implies






𝑢
2
− 𝑢
1

ℎ
2





2
≤ 𝐶ℎ
2 



log ℎ


+max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

,

𝜌






𝑢
2
− 𝑢
1

ℎ
2





2
≤ max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

,






𝑢
1
− 𝑢
1

ℎ
1





1
≤ max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

.

(279)

By multiplying (279) by 𝜌 we get

𝜌






𝑢
2
− 𝑢
1

ℎ
2





2
≤ 𝜌𝐶ℎ

2 



log ℎ


+ 𝜌max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

,

𝜌






𝑢
2
− 𝑢
1

ℎ
2





2
≤ max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

,






𝑢
1
− 𝑢
1

ℎ
1





1
≤ max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

.

(280)

We remark that 𝜌‖𝑢
2
− 𝑢
1

ℎ
2

‖
2

is bounded by both
𝜌𝐶ℎ
2

|log ℎ|+𝜌max
2<𝑗
‖𝑢
𝑗
− 𝑢
0

ℎ
𝑗

‖

𝑗

andmax
2<𝑗
‖𝑢
𝑗
− 𝑢
0

ℎ
𝑗

‖

𝑗

then

(c) max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

< 𝜌𝐶ℎ
2 



log ℎ


+ 𝜌max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

(281)

or

(d) 𝜌𝐶ℎ2 

log ℎ


+ 𝜌max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

< max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

.

(282)

That is

max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

<

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ

 (283)
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or
𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


< max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

. (284)

Which implies

𝐶ℎ
2 



log ℎ


≤ max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

<

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ

 (285)

or

𝐶ℎ
2 



log ℎ


≤

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


< max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

. (286)

It is clear that both cases (c) and (d) are true. So either there
is contradiction and case 3 is impossible or case 3 is possible
only if.

max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

=

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ

 (287)

Then in case 3 we obtain





𝑢
2
− 𝑢
1

ℎ
2





2
≤ 𝐶ℎ
2 



log ℎ


+max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

= 𝐶ℎ
2 



log ℎ


+

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ



(288)

Thus





𝑢
2
− 𝑢
1

ℎ
2





2
≤

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


. (289)

With





𝑢
1
− 𝑢
1

ℎ
1





1
≤ max
2<𝑗








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

=

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


. (290)

We adopt the same approach for the other subdomains Ω
𝑖
,

𝑖 = 2, . . . , 𝑚 in order, we get






𝑢
𝑖
− 𝑢
1

ℎ
𝑖





𝑖
≤

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


, 𝑖 = 1, . . . , 𝑚. (291)

The remainder of the proof related to iterations 𝑛 ≥ 2 is by
induction by adopting the same idea used in iteration one.

Part 3. We deal with situation (C). The proof related to this
part 3 is also by induction and is so similar to the part 2 one.
So we give it for the first subinterval ]0, 1/2[. The one for the
second subinterval [1/2, 1[ will be omitted. Indeed for 𝑛 = 0
and 𝑖 = 1 we use (73) in conjunction with (71) we get





𝑢
1
− 𝑢
1

ℎ
1





1
≤ 𝐶ℎ
2 



log ℎ



+max{𝜌

𝑢
1
− 𝑢
𝑛+1

ℎ
1





1
, max
1<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
𝑛

ℎ
𝑗






𝑗

}

(292)

We have to distinguish the two following cases

(1) max{𝜌

𝑢
1
− 𝑢
1

ℎ
1





1
, max
1<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

}

= 𝜌






𝑢
1
− 𝑢
1

ℎ
1





1

(293)

or

(2) max{𝜌

𝑢
1
− 𝑢
1

ℎ
1





1
, max
1<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

}

= max
1<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

.

(294)

Case 1 implies






𝑢
1
− 𝑢
1

ℎ
1





1
≤

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


,

max
1<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

≤ 𝜌






𝑢
1
− 𝑢
1

ℎ
1





1

≤

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


< 𝐶ℎ
2 



log ℎ


.

(295)

We remark that (295) contradicts (71) so case 1 is impossible.
Case 2 implies






𝑢
1
− 𝑢
1

ℎ
1





1
≤ 𝐶ℎ
2 



log ℎ


+ max
1<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

,

𝜌






𝑢
1
− 𝑢
1

ℎ
1





1
≤ max
1<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

.

(296)

By multiplying (296) by 𝜌 we get

𝜌






𝑢
1
− 𝑢
1

ℎ
1





1
≤ 𝜌𝐶ℎ

2 



log ℎ


+ 𝜌 max
1<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

,

𝜌






𝑢
1
− 𝑢
1

ℎ
1





1
≤ max
1<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

.

(297)

It is clear that 𝜌‖𝑢
1
− 𝑢
1

ℎ
1

‖
1

is bounded by both 𝜌𝐶ℎ2|log ℎ| +
𝜌max

1<𝑗,𝑗∈𝐽
‖𝑢
𝑗
− 𝑢
0

ℎ
𝑗

‖

𝑗

and max
1<𝑗,𝑗∈𝐽

‖𝑢
𝑗
− 𝑢
0

ℎ
𝑗

‖

𝑗

, so

(a) max
1<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

< 𝜌𝐶ℎ
2 



log ℎ


+ 𝜌 max
1<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

(298)

or

(b) 𝜌𝐶ℎ2 

log ℎ


+ 𝜌 max
1<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

< max
1<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

.

(299)

Which implies

max
1<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

<

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ

 (300)

or
𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


< max
1<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

. (301)

Then

𝐶ℎ
2 



log ℎ


≤ max
1<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

<

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ

 (302)
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or
𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


< 𝐶ℎ
2 



log ℎ


≤ max
1<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

. (303)

We can see that only case (b) is possible and by adding
𝐶ℎ
2

|log ℎ| in (301) we get

𝐶ℎ
2 



log ℎ


+

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ



< 𝐶ℎ
2 



log ℎ


+ max
1<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

(304)

thus

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


< 𝐶ℎ
2 



log ℎ


+ max
1<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

(305)

comparing this last inequalty (305) with (296), we deduce the
two following possibilities






𝑢
1
− 𝑢
1

ℎ
1





1
<

1

1 − 𝜌

𝐶ℎ
2 



log ℎ

 (306)

or

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


<






𝑢
1
− 𝑢
1

ℎ
1





1
, (307)

which implies






𝑢
1
− 𝑢
1

ℎ
1





1
<

1

1 − 𝜌

𝐶ℎ
2 



log ℎ



< 𝐶ℎ
2 



log ℎ


+ max
1<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

(308)

or

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


<






𝑢
1
− 𝑢
1

ℎ
1





1

≤ 𝐶ℎ
2 



log ℎ


+ max
1<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

.

(309)

It is clear that the two possibilities are true so either there is
a contradiction and case 2 is impossible or case 2 is possible
only if






𝑢
1
− 𝑢
1

ℎ
1





1
=

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


. (310)

Similarly applying (73) to subdomain 2 in conjunction with
(71) we get






𝑢
2
− 𝑢
1

ℎ
2





2
≤ 𝐶ℎ
2 



log ℎ



+max {𝜌

𝑢
2
− 𝑢
1

ℎ
2





2
,






𝑢
1
− 𝑢
1

ℎ
1





1
,

max
2<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

} .

(311)

So we have to distinguish between the three following cases

(1) max{𝜌

𝑢
2
− 𝑢
1

ℎ
2





2
,






𝑢
1
− 𝑢
1

ℎ
1





1
, max
2<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

}

= 𝜌






𝑢
2
− 𝑢
1

ℎ
2





2

(312)
or

(2) max{𝜌

𝑢
2
− 𝑢
1

ℎ
2





2
,






𝑢
1
− 𝑢
1

ℎ
1





1
, max
2<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

}

=






𝑢
1
− 𝑢
1

ℎ
1





1

(313)
or

(3) max{𝜌

𝑢
2
− 𝑢
1

ℎ
2





2
,






𝑢
1
− 𝑢
1

ℎ
1





1
, max
2<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

}

= max
2<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

.

(314)

Case 1 implies





𝑢
2
− 𝑢
1

ℎ
2





2
≤ 𝐶ℎ
2 



log ℎ


+ 𝜌






𝑢
2
− 𝑢
1

ℎ
2





2
,






𝑢
1
− 𝑢
1

ℎ
1





1
≤ 𝜌






𝑢
2
− 𝑢
1

ℎ
2





2
,

max
2<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

≤ 𝜌






𝑢
2
− 𝑢
1

ℎ
2





2
.

(315)

Then





𝑢
2
− 𝑢
1

ℎ
2





2
≤

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


,

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


=






𝑢
1
− 𝑢
1

ℎ
1





1

≤ 𝜌






𝑢
2
− 𝑢
1

ℎ
2





2
≤

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


,

max
2<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

≤ 𝜌






𝑢
2
− 𝑢
1

ℎ
2





2
≤

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ



< 𝐶ℎ
2 



log ℎ


.

(316)

Equation (316) contradicts (71) so case 1 is impossible. Case 2
implies






𝑢
2
− 𝑢
1

ℎ
2





2
≤ 𝐶ℎ
2 



log ℎ


+






𝑢
1
− 𝑢
1

ℎ
1





1
,

𝜌






𝑢
2
− 𝑢
1

ℎ
2





2
≤






𝑢
1
− 𝑢
1

ℎ
1





1
,

max
2<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

≤






𝑢
1
− 𝑢
1

ℎ
1





1
.

(317)

By multiplying (317) by 𝜌 we get

𝜌






𝑢
2
− 𝑢
1

ℎ
2





2
≤ 𝜌𝐶ℎ

2 



log ℎ


+ 𝜌






𝑢
1
− 𝑢
1

ℎ
1





1
,

𝜌






𝑢
2
− 𝑢
1

ℎ
2





2
≤






𝑢
1
− 𝑢
1

ℎ
1





1
,

max
2<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

≤






𝑢
1
− 𝑢
1

ℎ
1





1
.

(318)
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It is clear that 𝜌‖𝑢
2
− 𝑢
1

ℎ
2

‖
2

is bounded by both 𝜌𝐶ℎ2|log ℎ| +
𝜌‖𝑢
1
− 𝑢
1

ℎ
1

‖
1

and ‖𝑢
1
− 𝑢
1

ℎ
1

‖
1

so

(a) 

𝑢
1
− 𝑢
1

ℎ
1





1
< 𝜌𝐶ℎ

2 



log ℎ


+ 𝜌






𝑢
1
− 𝑢
1

ℎ
1





1

(319)

or

(b) 𝜌𝐶ℎ2 

log ℎ


+ 𝜌






𝑢
1
− 𝑢
1

ℎ
1





1
<






𝑢
1
− 𝑢
1

ℎ
1





1
. (320)

That is





𝑢
1
− 𝑢
1

ℎ
1





1
<

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ

 (321)

or
𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


<






𝑢
1
− 𝑢
1

ℎ
1





1
. (322)

It is clear that only case (b) is true because it coincides with
(310) and by adding 𝐶ℎ2|log ℎ| in (322) we get

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


= 𝐶ℎ
2 



log ℎ


+

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ



< 𝐶ℎ
2 



log ℎ


+






𝑢
1
− 𝑢
1

ℎ
1





1

(323)

comparing this last inequalty with (317), we distingush the
two following possibilities






𝑢
2
− 𝑢
1

ℎ
2





2
<

1

1 − 𝜌

𝐶ℎ
2 



log ℎ

 (324)

or
1

1 − 𝜌

𝐶ℎ
2 



log ℎ


<






𝑢
2
− 𝑢
1

ℎ
2





2

(325)

which imply






𝑢
2
− 𝑢
1

ℎ
2





2
<

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


< 𝐶ℎ
2 



log ℎ


+






𝑢
1
− 𝑢
1

ℎ
1





1

(326)

or
1

1 − 𝜌

𝐶ℎ
2 



log ℎ


<






𝑢
2
− 𝑢
1

ℎ
2





2
≤ 𝐶ℎ
2 



log ℎ


+






𝑢
1
− 𝑢
1

ℎ
1





1
.

(327)

It is clear that the two possibilities are true so either there
is a contradiction and case 2 is impossible or case 2 is possible
only if






𝑢
2
− 𝑢
1

ℎ
2





2
=

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


. (328)

Case 3 implies





𝑢
2
− 𝑢
1

ℎ
2





2
≤ 𝐶ℎ
2 



log ℎ


+ max
2<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

,

𝜌






𝑢
2
− 𝑢
1

ℎ
2





2
≤ max
2<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

,






𝑢
1
− 𝑢
1

ℎ
1





1
≤ max
2<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

.

(329)

By multiplying (329) by 𝜌 we get

𝜌






𝑢
2
− 𝑢
1

ℎ
2





2
≤ 𝜌𝐶ℎ

2 



log ℎ


+ 𝜌 max
2<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

,

𝜌






𝑢
2
− 𝑢
1

ℎ
2





2
≤ max
2<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

,






𝑢
1
− 𝑢
1

ℎ
1





1
≤ max
2<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

.

(330)

We remark that𝜌‖𝑢
2
− 𝑢
1

ℎ
2

‖
2

is bounded by both𝜌𝐶ℎ2|log ℎ|+
𝜌max

2<𝑗,𝑗∈𝐽
‖𝑢
𝑗
− 𝑢
0

ℎ
𝑗

‖

𝑗

and max
2<𝑗,𝑗∈𝐽

‖𝑢
𝑗
− 𝑢
0

ℎ
𝑗

‖

𝑗

then

(c) max
2<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

< 𝜌𝐶ℎ
2 



log ℎ


+ 𝜌 max
2<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

(331)

or

(d) 𝜌𝐶ℎ2 

log ℎ


+ 𝜌 max
2<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

< max
2<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

.

(332)

That is

max
2<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

<

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ

 (333)

or

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


< max
2<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

. (334)

Which implies

max
2<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

<

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


< 𝐶ℎ
2 



log ℎ

 (335)

or

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ


< 𝐶ℎ
2 



log ℎ


≤ max
2<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

. (336)

It is clear that only case (d) is possible. By adding 𝐶ℎ2|log ℎ|
in (334) we get

𝐶ℎ
2 



log ℎ


+

𝜌

1 − 𝜌

𝐶ℎ
2 



log ℎ



< 𝐶ℎ
2 



log ℎ


+ max
2<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

(337)

so

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


< 𝐶ℎ
2 



log ℎ


+ max
2<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

(338)
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comparing the last inequality with (329), we consider the two
following possibilties






𝑢
2
− 𝑢
1

ℎ
2





2
<

1

1 − 𝜌

𝐶ℎ
2 



log ℎ

 (339)

or
1

1 − 𝜌

𝐶ℎ
2 



log ℎ


<






𝑢
2
− 𝑢
1

ℎ
2





2

(340)

that is





𝑢
2
− 𝑢
1

ℎ
2





2
<

1

1 − 𝜌

𝐶ℎ
2 



log ℎ



< 𝐶ℎ
2 



log ℎ


+ max
2<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

(341)

or
1

1 − 𝜌

𝐶ℎ
2 



log ℎ


<






𝑢
2
− 𝑢
1

ℎ
2





2

≤ 𝐶ℎ
2 



log ℎ


+ max
2<𝑗,𝑗∈𝐽








𝑢
𝑗
− 𝑢
0

ℎ
𝑗






𝑗

.

(342)

It is clear that the two possibilities are true so either there is
a contradiction and case 3 is impossible or case 3 is possible
only if
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1

ℎ
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log ℎ


. (343)

So case 1 is impossible and in both cases 2 and 3 we obtain
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1

ℎ
2





2
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log ℎ


. (344)

Equations (310) and (344) imply

max
1≤𝑖<3






𝑢
𝑖
− 𝑢
1

ℎ
𝑖





𝑖
=

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


. (345)

We adopt the same approach for the other subdomains Ω
𝑖
,

𝑖 = 3, . . . , 𝑚 in order, we get






𝑢
𝑖
− 𝑢
1

ℎ
𝑖





𝑖
=

1

1 − 𝜌

𝐶ℎ
2 



log ℎ


, 𝑖 = 1, . . . , 𝑚. (346)

The remainder of the proof is by induction and is by adopting
the same approach used in iteration one.
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