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This paper is concerned with the natural filtration of Lie superalgebra S(n, m) of special type over a field of prime characteristic.
We first construct the modular Lie superalgebra S(n, m). Then we prove that the natural filtration of S(n, m) is invariant under its

automorphisms.

1. Introduction

Although many structural features of nonmodular Lie
superalgebras (see [1-3]) are well understood, there seem to
be very few general results on modular Lie superalgebras. The
treatment of modular Lie superalgebras necessitates different
techniques which are set forth in [4, 5]. In [6], four series
of modular graded Lie superalgebras of Cartan type were
constructed, which are analogous to the finite dimensional
modular Lie algebras of Cartan type [7] or the four series of
infinite dimensional Lie superalgebras of Cartan type defined
by even differential forms over a field of characteristic zero
[8]. Recent works on the modular Lie superalgebras of Cartan
type can also be found in [9-13] and references therein.

It is well known that filtration techniques are of great
importance in the structure and the classification theories
of Lie (super)algebras (see [1, 2, 14, 15]). For some classes
of modular Lie (super)algebras, the filtrations have been
well investigated, for example, the natural filtrations of finite
dimensional modular Lie algebras of Cartan type [16,17] and
of finite dimensional simple modular Lie superalgebras W, S,
and H of Cartan type [18, 19].

The original motivation for this paper comes from the
researches of structures for the finite dimensional modular
Lie superalgebras W(n,m) and H(n,m), which were first
introduced in [20, 21], respectively. The starting point of our
studies is to construct a class of finite dimensional modular
Lie superalgebras of special type, which is denoted by S(n, m).

A brief summary of the relevant concepts and notations in
the finite dimensional modular Lie superalgebras S(n, m) is
presented in Section 2. In Section 3, by using the ad-nilpotent
elements of S(n,m), we show that the natural filtration of
S(n,m) is invariant under its automorphisms.

2. Preliminaries

Throughout this paper, F denotes an algebraic closed field of
characteristic p > 2, and # is an integer greater than 3. In
addition to the standard notation Z, we write N and N, to
denote the sets of positive integers and nonnegative integers,
respectively.
Let A(n) be the Grassmann algebra over [ in # variables
X1> X955 X%, Set B = {{i,ip..50) | 1 <4 < iy <
- < i < n}and B(n) = Ui, By, where B, = 0. For
u = (ij,iy.... 0 € By, set|u| =k, {u} = {i},i,,...,i;} and
x* = x; x; e (101 = 0,x” = 1). Then {x* | u € B(n)} is an
[F-basis of A(n).
LetITdenote the prime field of [F; thatis, IT = {0, 1,..., p—
1}. Suppose that the set {z,,z,,...,z,,} is a II-linearly inde-
pendent finite subset of F. Let G = {1, A;z; | A; € I}
Then G is an additive subgroup of F. Let F[y,, ¥,,..., ¥,,] be
the truncated polynomial algebra satisfying y/ = 1 for all
i=1,2,...,m. For every element A = Y", A;z; € G, define

Y= yf‘ygzmyﬁ[". Then y*y" = y*" forall A, € G. {Cet
T(m) denote F[y;, ¥5».-.» V). Then T(m) = (Y cary” |



ay € F}. Let Z = A(n) ® T(m). Then % is an associative
superalgebra with Z,-gradation induced by the trivial Z,-
gradation of T(mm) and the natural Z,-gradation of A(n); that
is, 4 = Uz ® Uy, where Uy = A(n)y ® T(m) and %7 =
A(n); ® T(m).

For f € A(n) and & € T(m), we abbreviate f ® « as fa.
Then the elements x" y’\ with u € B(n) and A € G form an
F-basis of %. It is easy to see that % = @] (%, is a Z-graded
superalgebra, where %; = spang{x“y" | u € B(n), [u| =i,\ €
G}. In particular, Z, = T(m) and %, = span[F{x"y’\ | A € G},
where 7 := (1,2,...,n) € B(n).

In this paper, if A = Ay ® A7 is a superalgebra (or Z,-
graded linear space), let DerA be the derivation superalgebra
of A (see [1] or [2] for the definition) and hg(A) = Az U Ay;
that is, hg(A) is the set of all Z,-homogeneous elements of
A. If deg x occurs in some expression, we regard x as a Z,-
homogeneous element and deg x as the Z,-degree of x. Let
A =@ _ A, beaZ-graded superalgebra. If x € A;, then we
call x a Z-homogeneous element and i the Z-degree of x and
set zd(x) =i.

SetY = {1,2,...,n}. Given that i € Y, let 0/0x; be the
partial derivative on A(n) with respect to x;. Fori € Y, let
D; be the linear transformation on % such that D;(x" y)‘ ) =
(ax”/axi)y" for all u € B(n) and A € G. Then D; € Dery%
forall i € Y since 9/0x; € Dery(A(n)).

Suppose that u € B, < B(n) andi € Y. When i € {u}, we
denote the uniquely determined element of B, _, satisfying
{u—(i)} = {u}\{i} by u— (i) and denote the number of integers
less than i in {u} by 7(u,i). When i ¢ {u}, we set 7(u,i) = 0
and x*~® = 0. Therefore, D;(x") = (=1)7 ) 4= for any

i€Y and u € B(n).
fD(g) for f, g € hg(%)

We define (fD)(g) =
and D € hg(Der?). Since the multiplication of % is

supercommutative, it follows that fD is a derivation of %. Let
W (n,m) = spang {x“y’\Di lueB(n),LeG,ic Y}. 1)

Then W (n,m) is a finite dimensional Lie superalgebra con-
tained in Der%. A direct computation shows that

— (_l)dengi degngng (f) D,
2)

[fDi’ ng] = fD;(9) D

where f, g € hg(%) and i, j €Y.
Let D, , : % — W(n,m) be the linear map such that for
every f € hg(%) and r,,r, €Y,

D, (f) =) f,D: (3)

i=1
where f, = =D, (f) and f, = -D, (f). It is easy to see
that D, , is an even linear map. Let S(n m) = {DU( )l

f e CZJ 1 j € Y}. Then S(n,m) is a finite dimensional Lie
superalgebra with a Z-gradation S(n,m) = erS (n,m),
where S,(n,m) = {Dij(x”yh) | u € Bn),lul = r+2,A €
G, i, j € Y}. Inthis paper, S(n, m) is called the Lie superalgebra
of special type.
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By the definition of linear map D,
equalities are easy to verify:

D;; (f) =-2D; (f) D;,
D; (f) =Dji (f), (4)
[Dk’Dij (f)] = _Dij (Dk (f))’

1= Y i, (fg,). ©

ij=1

the following

rry’

[I)sls2 (f) ’Drlrz (g

where f, g € hg(%); i, j, k € Y;and f, 9r, and as in (3).
The equality (5) shows that S(n, m) is a subalgebra of W (n, m).
Hereafter, S(n,m) and S;(n, m) will be simply denoted by S
and §;, respectively.

Put A = {D;(x"y") | i,j € V,A € G}and B =
{Dy;(x,y") 1, jk € Y, i € G}

Proposition 1. The Lie superalgebra S is generated by A U B.

Proof. Suppose that A U B generate the subalgebra Q of S.
Since A and B are subsets of S, it follows that Q C S.

Next we will consider the reverse inclusion.

It is easy to see that Dy, (x; y") = —y*D; for all distinct
elements i, k of Y and A € G. Therefore, zd(Dy;(x; ")) = -1
andS_; € Q.

A direct calculation shows that

[D,; ("), Dy (x9")]
= [-D;(x"y") D; - D; (x"y") D}, -y'D)] ©
= (-1)"(D,D, (x"y**") D; + D;D; (x"y**") D)
= ~(-1)"Dy (D; ("y"*")) €55,

for all distinct elements i, j, k, [ of Y and A, 7 € G. It follows
from zd(D;;(D(x"y**"))) = n— 3 that S, ; € Q.

For distinct elements i, j, k, I, gof Y and A, %, { € G, we
have

[D; (D1 (%)) Dig (x5°)]

7)
_ (_1)n+1Dij (DgD ( rty)Hrﬁ())
and zd(D,;(D,Dy(x" y**"*))) = n - 4. Thus S, , € Q.
By the same methods above, we may obtain D;;(x" y Yes
for u € B(n); thatis, S; € Qfor1 <i<n-5.
According to Dii(x,-xjxky’l) = —2xjxkyAD,~ € § and
x,y"D; € S,, we have
xy" D, = [xjxkyADi,y"Dj] €Q. (8)
Hence S, € Q.
In conclusion, S € Q. Therefore, the desired result follows
immediately. O
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3. The Natural Filtration of S(r,m)

Adopting the notion of [22], the element x of Lie super-
algebra S is called ad-nilpotent if adx is a nilpotent linear
transformation. The set of all ad-nilpotent elements of S is
denoted by nil(S). Let S; = &;,;S;. Then

S = S(—l) 2 S(O) 2 S(l) 202 S(n—Z) 2 S(n—l) =0 (9)
is a descending filtration of S, which is called the natural
filtration of S. We also call {S, | k € Z} a filtration of S for
short, where Sy = Sifk < -1 and Sy = 0if k > n — 2. Since
S is Z-graded and finite dimensional, we may easily obtain

€ nil(§) and S, € nil(S).

Let M, (F) denote the set of all # x n matrices over [F.
Notice that dim T(m) = p™. Without loss of generality, we

may suppose that {y,,..., y,»} is a standard F-basis of T(m).
iiq € I then let

p(z) = < b . ) , where A, = () pxn € M, (F).
™/ np™xnp™

Ifz = Zz] 12,1 | GijgXi Y Dj € Sy, where a

Lemma 2. Suppose that z = Zl] lzq 1 GijgXi YD € So- If 2
is ad-nilpotent, then p(z) is a nilpotent matrix.

Proof. Let T be the representation of S, with values in
S_;. Then T'(z) = adz and the matrix of I'(z) over the
basis {y;Dy,.... ¥1 Dy s yynDysoos ypmDy} of Sy is A =

(A)
( t) , Where A, = (aijq)nxn € M, (F).
—(Apm) npMxnp

Since z is ad-nilpotent, the representation I'(z) is a nilpotent
linear transformation. It implies that A is nilpotent. There-
fore, p(z) = —A'" is a nilpotent matrix. O

Lemma 3. Letz = Y z;, where z; € S;and k < n— 1. If
z € nil (S) and k > 0, then z;. € nil (S).

Proof. Suppose that z = z, + z', where z;, € S, and z' ¢
@f’;,jﬂsi S Sgs1)- Since z € nil(S), we may assume that

(adz)' = 0. Let x be a Z-homogeneous element of S with Z-
degree i. Then (adz)f(x) = 0. On the other hand,

(ad2)’ (x) = (ad (2, +2')) (%) = (adz,)' (x) +h, (1)

which implies (adzk)t(x) + h = 0.1t is easy to see that
(adzk)t(x) € Spespy and b € Sppipyy = Djoktiv1S)- Thus
(adzk)t(x) = 0. Since x is an arbitrary Z-homogeneous
element of S, we have (adzk)t(S) = 0. Then (adzk)t = 0; that
is, z;. € nil(S). O

Suppose that E;; denotes the n x n matrix whose (i, )
element is 1 and otherwise is zero. Obviously,
E;iExq = 83 Eq, (11)

where § ;. is the Kronecker delta.

3
Ifz = 21] 1 Zq 1 GijgXi¥qD; € So» where g, € I, then
2n
P(Z) Z 1]1 ij + Z aijZEij

i,j=1 i,j=n+1

" (12)

np
+o z jjpm Ej.
ij=n(p"-1)+1

Let A = {z € nil(S) | adz(S) < nil(S)}.

Lemma 4. Suppose thatz = Y17, z
thenz_; = 0.

» wherez; € S If z € A,

Proof. Suppose that 0#2z_, = Y1, q 1 lquD where g;, €
F.Leta;, #0and j, k, I € Y such that i, j, k are distinct. We
may assume that d = [z_;, Dy (x;x;x;)]. A direct calculation

shows that

m
n
ZZaiquDi, —xlijl + xkijk
i=1g=1

a~

" (13)
(“lq % ¥qD1 = ajgx174 Dy

BN
I
—

g X ;YD + ajququk) .

By equalities (11) and (12), we have
(p (@)

= (' (1) (a) By + (a1) B
+ (_l)t_lall(ajl)t_lEjl - akl(ajl)t_lEjk
+ (_l)t(a(j+n)2)tE(l+n)(l+n)
+ (a( j+n)2)tE(k+n)(k+n)

t-1 t-1
+(-1) a(l+n)2(a( j+n)1) E(iimyaim)
k+n)2( (j+n)2 )t 1E(j+n)(k+n) o

+(-1) (a(Jer —n)p )E(l+p ) (14 p™ 1)
+ (@gaprnpn) B prntiornn)
+ (_1)t_1a(1+pm—n)pm (a(j+p"’—n)pm)t_l
X E iy p_n)(1sp™—n)

t—1
~aesprnpr (e prompn)  Eiapr —n><k+pm—n>) :
(14)

Since (ajl)t # 0, we have (p(d))t #0. So p(d) is not a nilpotent
matrix. By Lemma 2, it follows that d ¢ nil(S). By Lemma 3,



we have [z, Dkl(xkxlxj)] ¢ nil(S). Then z ¢ A. It contradicts
z € A. This proves our assertion. O

n-2

Lemma 5. Letz = )

zy = 0.

z;, where z; € S, If z € A, then

_ "
Proof. Assume that z,#0. Let 2y = Y. ) Yo ) G;jgXi¥,D;s
a4 € F,and

I=min{i| a0, jeY},

(15)
t= min{j | aij)Lio,i,j € Y}.
(i) Suppose that [ < t. Let
k=max{j|a#0,jeY}. (16)

Then ay, #0. It is easy to see that £ < k. Since | < t, we have
I < k. Therefore,

k p" n np"
2y = Zzaquxlquj + Z ZzaijqxiJ’qu- 17)
j=tq=1 i=l+1j=t g=1

Assume that [ = k. It follows from ¢ < k that ¢ < [. Then we
have t =  which implies that

" n np"
Zy = Zalqulqul + Z ZZaijqxiquj. (18)
gq=1

i=l+1j=tq=1
Therefore,
n n
p(z0) = ay By + Z Zaileij
i=l+1j=t
2n 2n
+ A0 em2Eaimain + Z Z a;, Eij
i=l+1+n j=t+n

+ o A1) Lan(p-1) p E ) (em)

np™ np™ (19)
D) Y By
i=l+1+n(p™-1) j=t+n(p™-1)

A,
B, C
Apm

Byn Cym

np" xnp™

where Ay = A, -1y i+ (- Dmg E s (- Dmy 1+ (k-1ymy 18 a0 L+ (k=
1)n) x (I + (k- 1)n) matrixand g € {1,..., p™}. Since ay; #0,
we have A, not being a nilpotent matrix. Then p(z,) is not
a nilpotent matrix and z,, ¢ nil(S). Lemma 3 shows that z ¢
nil(S). It is a contradiction of to z € A; thatis, I < k.

Suppose that b € Y and h#1, k. Let d = [zy, x;.D;]. By
equality (2), we obtain

d= Z <alkqxlqul + Z UikgXi VD1 = Zaquxkquj> :
9=1 /

i=l+1 Jj=t
(20)
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Since I < k, p(d) also has the matrix form as p(z,), it follows
from ay, #0 that A, is not a nilpotent matrix. Then p(d) is
not nilpotent. So z ¢ nil(S) and [z, x, D;] ¢ nil(S). It is a
contradiction of z € A.

(ii) Suppose that t < I. Let k = max{i | a;, #0} and d’ =
[z, x,Dy]. Imitating (i), we may prove that p(d') is also not
nilpotent. Then the desired result follows. O

Lemma 6. (i) Ifz € Sy N nil (S) and h € Sy, then z + h €
nil ().

(ii) Suppose that i, j are distinct elements of Y; then
x,-y’\Dj € nil (S) forall A € G.

(iii) Suppose that i, j, k are distinct elements of Y; then
axijDk +bx;y"'D;, € nil(S), where a, b € F and A, n are
arbitrary elements of G.

Proof. (i) A direct verification shows that {adz} U {adS}
is a weakly closed subset of nilpotent elements of pI(S),
where pl(S) is the general linear Lie superalgebra of S. It was
shown in [23, Theorem 1 of Chapter II] that each element of
spang({adz} U {adS;)}) is a nilpotent linear transformation of
S. Then adz + adh is nilpotent. So z + h is ad-nilpotent.

(ii) To prove (adx; y’\D j)17 = 0, we may assume without
loss of generality that i < j. Set # to be an arbitrary element
of G. If k #1, then

(adxiy)”D]-)2 (x*y"Dy)
- [xiyADj, [xiy’\Dj,x”y"Dk” o
= (-1)®) [xiy’\Dj,x,-xW(j)yM”Dk]

=0.
In the case of k = i, we have

(adx;y'D;)’ (x*yD)
=[x Djs[xy"Dj [y Dy <D} ]
= [x,-yADj, [xiyADj, (-1 )Py p, - x“y)””Dj”
= (-1)"®7 [xiyAD]-, —xl-x”_(j)yAD]- - xl-x”_(j)yuij]

= 0.
(22)

For p > 2 we obtain (adxiyADj)p(x”y"Dk) = 0.
Therefore (adx; yADj)P (S) = 0. This yields (adx; yADj)P =0.
Thus xiy)”Dj € nil(S).

(iii) According to (ii) and [xjy’\Dk,x,»y"Dk] = 0,
{adx; y*Dy,adx;y"D,} is a weakly closed subset of nilpotent

elements of pl(S). So ax; y’\Dk + bx;y" Dy, € nil(S), where a,
bel. ]
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Lemma 7. If i, j, k are distinct elements of Y, then
x,-xijDk € AforallA € G.

Proof. Suppose that I € Y \ {j, j,k}. Then x,»xjy’le €
Sy € nil(S). Let z = Y2 z;, where z; € S;. Assume that
[xl-xjy’\Dk,z] = fo + f1» where f; = [x,-xijDk,z,l] €S,
and f; € Syy. Letz_; = YL, ¥, @,y"D;. Then

I=1neG

fo= |:xixijDk> Z Zalny"Dl

(23)

= 2 (ayx;y"""Di ~ ajyxiy" "Dy
neG
By (iii) of Lemma 6, we have f;, € S, N nil(S). By (i) of
Lemma 6, it follows that f, + f; € nil(S). We finally obtain
xixijDk e Aforall A € G. O
Let Q = {z € nil(S) | adz(A) € A}

Lemma38. Q = §).

Proof. By the definition of A, we have S(,) € A. Lemmas 4 and
5 show that A C S(l) Then [S(l),A] < [S(l)’ S(l)] C S(Z) c A.
Thus S(l) C Q

Next we will prove Q € S;). Letz € Qand z = Z:’:l Z;
where z; € S;. Assume thatz_, = Y7 ¥\ cany'D;#0,a, €
. Without loss of generality, we may suppose that g; # 0. Let
d = x;x;y"Dy, where i, j, k are distinct elements of Y and #
is an arbitrary element of G. By Lemma 7, we have d € A. Let
[2,d] = hy + hy, where hy = [z_;,d] € Sy and h; € ;). Since
a;#0, we have h, = ZAGG(aijyM”Dk - aijiy)””Dk) #0.
Lemma 5 implies that by, + h; ¢ A. It is a contradiction of
z € Q. Hencez_; = 0.

Assume that 0 # z, = Zijl Z§=1 aipx;y D> 4y € F,and
suppose that [ and t are as the definitions in (15). We may
suppose that I < ¢ (the proof is similar to the case t < [) and
let k be as the definition in (16). In a similar way to the first
part of the proof in Lemma 5, we have I < k. Suppose that
h e Y\{Lk,t} andd, = x;x;,D;. Lemma 7 shows thatd; € A.
Let [z,d,] = g, + g,, where g, = [2(,d,] € S; and g, € S).
Using equality (2), we have

" n
91 = Z (alkqxlxhqul - Z AipgXiXi VgD

q=1 i=l+1

(24)
k
—Za,jquxhquj .
j=t

It h < t, then ay,, = 0 in the above equality, where i € Y\
{1,...,1—1}. Thus

" n
(D, gi] = - Z <’11kqxl)’qDl + Z AingXi YDy
q=1 i=l+1

(25)

+ahhququl - aquxkquj) .

By equality (12), the matrix p([Dj, g;]) has the matrix form
as in Lemma 5. Since gy, #0, A, is not a nilpotent matrix.
It implies that p([Dy,, g,]) is not nilpotent. Hence [D, g,] ¢
nil(S). Lemma 3 shows that [Dy,, g, + g,] ¢ nil(S); that is,
[Dy, g, +9,] ¢ A.Ttcontradicts z € Q. Thus z, = 0. Therefore,
z€SypandQ € §y). O

According to the fact that A and Q are invariant subspaces
under the automorphisms of S and Lemma 8, S, is also
invariant under the automorphisms of S. Since

S(O) = {x € S | [x, S(l)] C S(l)} >
(26)
S(,) = {x € Si—l | [x, S] Cc s(i—l)} N i> 1,
we may easily obtain the following theorem.

Theorem 9. The natural filtration of S is invariant under the
automorphisms of S.

Let ©; = S(;)/S(sy) for -1 < i < n—2. Then &, is a
Z-graded space. Suppose that & := EB::_ZI ©;; then & is also
a Z-graded space. Let x + ;1) € &; and y + §(j,1) € ©;.

Define

[x + S(i+1)’ y+ S(j+1)] = [x’ ,V] + S(i+j+1)' (27)

It is easy to see that the definition above is reasonable. There
exists a linear expansion such that @ has an operator [,]. A
direct verification shows that @ is a Lie superalgebra with
respect to the operator [, ]. The Lie superalgebras @ is called
a Lie superalgebra induced by the natural filtration of S.

Lemmal0. © = S.

Proof. Let ¢ : S — & be a linear map such that ¢(x) =
x + 8,1y, where x € S \ S(;,1y. A direct verification shows
that ¢ is a homomorphism of Lie superalgebras. Suppose
that y € ker¢. If y #0, then there exists i > —1 such that
¥y € Si \ Sgspy- Since ¢(y) = 0, we have y + S;,q) = 0.
Hence y € S, ;). That shows that y = 0. Thus, ker¢ = 0.
Therefore, ¢ is a monomorphism. It follows from the fact S is
finite dimensional that ¢ is an isomorphism. O

The definition of ¢ shows that

(p(sl) = {x +S(i+1) | X € Sl} = {x+ S(i+l) | x € S(,)}
(28)
=84/Siy =G iz-L

Suppose that m, n, m', n' are elements of N, and n, n'
are greater than 3. In a similar way to S, the Lie superalgebra
S(r',m') will be simply denoted by S'. According to the
definitions of A, Q, and & in S, the A’, Q, and &' in S are
also defined by the same method, respectively.

Proposition 11. Suppose that S = S and o is an isomorphism
from StoS'; then a(S;)) = Séi) foralli>-1.

Proof. 1t is clear that (S_;)) = Sé_l) and o(nil(S)) = nil(S).
A direct verification shows that 0(A) = A’. Hence 0(Q) = Q'.



By virtue of Lemma 8, we have Q = §;, and Q = S(l). Thus
a(Sy)) = SEI). By equalities (26), the desired result o(S;)) =
SE:’) for all i > —1 is obtained. O

Lemma 12. Suppose thatS = S' and o is an isomorphism from
S to S'; then o induces an isomorphism G from © to &' such
that 5(;) = &, foralli > —1.

Proof. Define a linear map & : @ — &' such that
& (x +S(41)) = 0 () + Sty (29)

where x + S,y € ©,. Using Proposition 11, the definition of
G is reasonable and

& ([ + S ¥ + S

=0 ([x’y]) + Szi+j+1)
, , (30)
= [0 (%) + 811y 0 (y)+ S(j+1)]

- [a(x + sgm)),&(y + sbﬂ))] .

Thus & is a homomorphism from & to &'. Clearly, 7(&,) =
@) foralli > —1. It follows that & is an epimorphism.
Suppose that y € ker&; then y € ©. So we may suppose
that y = Y72 y, and y; € ©;. Since &; = S)/S(i11), let y; =
z; + Sy, where z; € S, Hence 6(y;) = o(z;) + S,y It
follows from G(y) = 0 that Z:’:__Zl a(y;) = 0. Thus 6(y;) = 0;
that is, o(z;) + S£i+1) = 0. It follows that o(z;) € SZM). By
Proposition 11, we have z; € U_I(Sfm)) = S(1)- Then y; =
z; + Sy = 0for =1 < i < n— 2. Therefore, y = 0 and
ker & = 0. Consequently, & is an isomorphism induced by o
such that 6(&;) = @l' foralli> —1. O

Theorem 13. S = S’ ifand only if m = m' andn =n'.

Proof. Because the sufficiency is obvious, it suffices to prove
the necessity. Suppose that ¢ : S — & is the isomorphism
given in the proof of Lemma 10. Similarly, there also exists the
¢' :S' — &'. According to the equality (28) and Lemma 12,
we have

¢(Si) =

for -1 <i<n-2 Lety = (¢')" 5. Then

v(s)=(¢)'a¢(s)=(¢) 5(®)=(¢) " (&) =5
(32)

e, ¢ (s)=6@.,

i(©)=© (31

In particular, w(S_;) = S/-1- It follows from dim S_; = dim S'_1
that np™ = n' pm’. By virtue of the definition of S;, we have

So = spang {Dij (xkxly’\) €eSlijkleY,Ae G}. (33)
Thus dim S, = (n* — 1)p". Similarly, dim S, = (n'* - 1) pml.

According to dimS, = dim S, and np™ = n' pml, we have
n = n'. In conclusion, the proof is completed. O
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