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This paper is concerned with the natural filtration of Lie superalgebra 𝑆(𝑛,𝑚) of special type over a field of prime characteristic.
We first construct the modular Lie superalgebra 𝑆(𝑛,𝑚). Then we prove that the natural filtration of 𝑆(𝑛,𝑚) is invariant under its
automorphisms.

1. Introduction

Although many structural features of nonmodular Lie
superalgebras (see [1–3]) are well understood, there seem to
be very few general results onmodular Lie superalgebras.The
treatment of modular Lie superalgebras necessitates different
techniques which are set forth in [4, 5]. In [6], four series
of modular graded Lie superalgebras of Cartan type were
constructed, which are analogous to the finite dimensional
modular Lie algebras of Cartan type [7] or the four series of
infinite dimensional Lie superalgebras of Cartan type defined
by even differential forms over a field of characteristic zero
[8]. Recent works on themodular Lie superalgebras of Cartan
type can also be found in [9–13] and references therein.

It is well known that filtration techniques are of great
importance in the structure and the classification theories
of Lie (super)algebras (see [1, 2, 14, 15]). For some classes
of modular Lie (super)algebras, the filtrations have been
well investigated, for example, the natural filtrations of finite
dimensional modular Lie algebras of Cartan type [16, 17] and
of finite dimensional simple modular Lie superalgebras𝑊, 𝑆,
and𝐻 of Cartan type [18, 19].

The original motivation for this paper comes from the
researches of structures for the finite dimensional modular
Lie superalgebras 𝑊(𝑛,𝑚) and 𝐻(𝑛,𝑚), which were first
introduced in [20, 21], respectively. The starting point of our
studies is to construct a class of finite dimensional modular
Lie superalgebras of special type, which is denoted by 𝑆(𝑛,𝑚).

A brief summary of the relevant concepts and notations in
the finite dimensional modular Lie superalgebras 𝑆(𝑛,𝑚) is
presented in Section 2. In Section 3, by using the ad-nilpotent
elements of 𝑆(𝑛,𝑚), we show that the natural filtration of
𝑆(𝑛,𝑚) is invariant under its automorphisms.

2. Preliminaries

Throughout this paper, F denotes an algebraic closed field of
characteristic 𝑝 > 2, and 𝑛 is an integer greater than 3. In
addition to the standard notation Z, we write N and N

0
to

denote the sets of positive integers and nonnegative integers,
respectively.

Let Λ(𝑛) be the Grassmann algebra over F in 𝑛 variables
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
. Set B

𝑘
= {⟨𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑘
⟩ | 1 ≤ 𝑖

1
< 𝑖
2
<

⋅ ⋅ ⋅ < 𝑖
𝑘
≤ 𝑛} and B(𝑛) = ⋃

𝑛

𝑘=0
B
𝑘
, where B

0
= 0. For

𝑢 = ⟨𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑘
⟩ ∈ B

𝑘
, set |𝑢| = 𝑘, {𝑢} = {𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑘
} and

𝑥
𝑢
= 𝑥
𝑖
1

𝑥
𝑖
2

⋅ ⋅ ⋅ 𝑥
𝑖
𝑘

(|0| = 0, 𝑥
0
= 1). Then {𝑥𝑢 | 𝑢 ∈ B(𝑛)} is an

F-basis of Λ(𝑛).
LetΠdenote the primefield of F ; that is,Π = {0, 1, . . . , 𝑝−

1}. Suppose that the set {𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑚
} is a Π-linearly inde-

pendent finite subset of F . Let 𝐺 = {∑
𝑚

𝑖=1
𝜆
𝑖
𝑧
𝑖
| 𝜆
𝑖
∈ Π}.

Then 𝐺 is an additive subgroup of F . Let F[𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑚
] be

the truncated polynomial algebra satisfying 𝑦𝑝
𝑖
= 1 for all

𝑖 = 1, 2, . . . , 𝑚. For every element 𝜆 = ∑
𝑚

𝑖=1
𝜆
𝑖
𝑧
𝑖
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𝑚
. Then 𝑦𝜆𝑦𝜂 = 𝑦

𝜆+𝜂 for all 𝜆, 𝜂 ∈ 𝐺. Let
T(𝑚) denote F[𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑚
]. Then T(𝑚) = {∑

𝜆∈𝐺
𝑎
𝜆
𝑦
𝜆
|
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𝑎
𝜆
∈ F}. Let U = Λ(𝑛) ⊗ T(𝑚). Then U is an associative

superalgebra with Z
2
-gradation induced by the trivial Z

2
-

gradation of T(𝑚) and the naturalZ
2
-gradation of Λ(𝑛); that

is, U = U
0
⊕ U
1
, where U

0
= Λ(𝑛)

0
⊗ T(𝑚) and U

1
=

Λ(𝑛)
1
⊗ T(𝑚).

For 𝑓 ∈ Λ(𝑛) and 𝛼 ∈ T(𝑚), we abbreviate 𝑓 ⊗ 𝛼 as 𝑓𝛼.
Then the elements 𝑥𝑢𝑦𝜆 with 𝑢 ∈ B(𝑛) and 𝜆 ∈ 𝐺 form an
F-basis of U. It is easy to see that U = ⊕

𝑛

𝑖=0
U
𝑖
is a Z-graded

superalgebra, whereU
𝑖
= spanF {𝑥

𝑢
𝑦
𝜆
| 𝑢 ∈ B(𝑛), |𝑢| = 𝑖, 𝜆 ∈

𝐺}. In particular,U
0
= T(𝑚) andU

𝑛
= spanF {𝑥

𝜋
𝑦
𝜆
| 𝜆 ∈ 𝐺},

where 𝜋 := ⟨1, 2, . . . , 𝑛⟩ ∈ B(𝑛).
In this paper, if 𝐴 = 𝐴

0
⊕ 𝐴
1
is a superalgebra (or Z

2
-

graded linear space), let Der𝐴 be the derivation superalgebra
of 𝐴 (see [1] or [2] for the definition) and ℎ𝑔(𝐴) = 𝐴

0
∪ 𝐴
1
;

that is, ℎ𝑔(𝐴) is the set of all Z
2
-homogeneous elements of

𝐴. If deg𝑥 occurs in some expression, we regard 𝑥 as a Z
2
-

homogeneous element and deg 𝑥 as the Z
2
-degree of 𝑥. Let

𝐴 = ⊕
𝑛

𝑖=−𝑟
𝐴
𝑖
be a Z-graded superalgebra. If 𝑥 ∈ 𝐴

𝑖
, then we

call 𝑥 aZ-homogeneous element and 𝑖 theZ-degree of 𝑥 and
set 𝑧𝑑(𝑥) = 𝑖.

Set 𝑌 = {1, 2, . . . , 𝑛}. Given that 𝑖 ∈ 𝑌, let 𝜕/𝜕𝑥
𝑖
be the

partial derivative on Λ(𝑛) with respect to 𝑥
𝑖
. For 𝑖 ∈ 𝑌, let

𝐷
𝑖
be the linear transformation on U such that 𝐷

𝑖
(𝑥
𝑢
𝑦
𝜆
) =

(𝜕𝑥
𝑢
/𝜕𝑥
𝑖
)𝑦
𝜆 for all 𝑢 ∈ B(𝑛) and 𝜆 ∈ 𝐺. Then 𝐷

𝑖
∈ Der

1
U

for all 𝑖 ∈ 𝑌 since 𝜕/𝜕𝑥
𝑖
∈ Der

1
(Λ(𝑛)).

Suppose that 𝑢 ∈ B
𝑘
⊆ B(𝑛) and 𝑖 ∈ 𝑌. When 𝑖 ∈ {𝑢}, we

denote the uniquely determined element of B
𝑘−1

satisfying
{𝑢−⟨𝑖⟩} = {𝑢}\{𝑖} by 𝑢−⟨𝑖⟩ and denote the number of integers
less than 𝑖 in {𝑢} by 𝜏(𝑢, 𝑖). When 𝑖 ∉ {𝑢}, we set 𝜏(𝑢, 𝑖) = 0

and 𝑥𝑢−⟨𝑖⟩ = 0. Therefore, 𝐷
𝑖
(𝑥
𝑢
) = (−1)

𝜏(𝑢,𝑖)
𝑥
𝑢−⟨𝑖⟩ for any

𝑖 ∈ 𝑌 and 𝑢 ∈ B(𝑛).
We define (𝑓𝐷)(𝑔) = 𝑓𝐷(𝑔) for 𝑓, 𝑔 ∈ ℎ𝑔(U)

and 𝐷 ∈ ℎ𝑔(DerU). Since the multiplication of U is
supercommutative, it follows that𝑓𝐷 is a derivation ofU. Let

𝑊(𝑛,𝑚) = spanF {𝑥
𝑢
𝑦
𝜆
𝐷
𝑖
| 𝑢 ∈ B (𝑛) , 𝜆 ∈ 𝐺, 𝑖 ∈ 𝑌} . (1)

Then 𝑊(𝑛,𝑚) is a finite dimensional Lie superalgebra con-
tained in DerU. A direct computation shows that

[𝑓𝐷
𝑖
, 𝑔𝐷
𝑗
] = 𝑓𝐷

𝑖
(𝑔)𝐷

𝑗
− (−1)
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𝑖
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𝑗𝑔𝐷
𝑗
(𝑓)𝐷

𝑖
,

(2)

where 𝑓, 𝑔 ∈ ℎ𝑔(U) and 𝑖, 𝑗 ∈ 𝑌.
Let𝐷

𝑟
1
𝑟
2

: U → 𝑊(𝑛,𝑚) be the linear map such that for
every 𝑓 ∈ ℎ𝑔(U) and 𝑟

1
, 𝑟
2
∈ 𝑌,

𝐷
𝑟
1
𝑟
2

(𝑓) =

2

∑

𝑖=1

𝑓
𝑟
𝑖

𝐷
𝑟
𝑖

, (3)

where 𝑓
𝑟
1

= −𝐷
𝑟
2

(𝑓) and 𝑓
𝑟
2

= −𝐷
𝑟
1

(𝑓). It is easy to see
that 𝐷

𝑟
1
𝑟
2

is an even linear map. Let 𝑆(𝑛,𝑚) = {𝐷
𝑖𝑗
(𝑓) |

𝑓 ∈ U, 𝑖, 𝑗 ∈ 𝑌}. Then 𝑆(𝑛,𝑚) is a finite dimensional Lie
superalgebra with a Z-gradation 𝑆(𝑛,𝑚) = ⊕

𝑛−2

𝑟=−1
𝑆
𝑟
(𝑛,𝑚),

where 𝑆
𝑟
(𝑛,𝑚) = {𝐷

𝑖𝑗
(𝑥
𝑢
𝑦
𝜆
) | 𝑢 ∈ B(𝑛), |𝑢| = 𝑟 + 2, 𝜆 ∈

𝐺, 𝑖, 𝑗 ∈ 𝑌}. In this paper, 𝑆(𝑛,𝑚) is called the Lie superalgebra
of special type.

By the definition of linear map 𝐷
𝑟
1
𝑟
2

, the following
equalities are easy to verify:

𝐷
𝑖𝑖
(𝑓) = −2𝐷

𝑖
(𝑓)𝐷

𝑖
,

𝐷
𝑖𝑗
(𝑓) = 𝐷

𝑗𝑖
(𝑓) ,

[𝐷
𝑘
, 𝐷
𝑖𝑗
(𝑓)] = −𝐷

𝑖𝑗
(𝐷
𝑘
(𝑓)) ,

(4)

[𝐷
𝑠
1
𝑠
2

(𝑓) , 𝐷
𝑟
1
𝑟
2

(𝑔)] =

2

∑

𝑖,𝑗=1

(−1)
deg𝑓

𝐷
𝑠
𝑖
𝑟
𝑗

(𝑓
𝑠
𝑖

𝑔
𝑟
𝑗

) , (5)

where 𝑓, 𝑔 ∈ ℎ𝑔(U); 𝑖, 𝑗, 𝑘 ∈ 𝑌; and 𝑓
𝑠
𝑖

, 𝑔
𝑟
𝑗

and as in (3).
The equality (5) shows that 𝑆(𝑛,𝑚) is a subalgebra of𝑊(𝑛,𝑚).
Hereafter, 𝑆(𝑛,𝑚) and 𝑆

𝑖
(𝑛,𝑚) will be simply denoted by 𝑆

and 𝑆
𝑖
, respectively.

Put 𝐴 = {𝐷
𝑖𝑗
(𝑥
𝜋
𝑦
𝜆
) | 𝑖, 𝑗 ∈ 𝑌, 𝜆 ∈ 𝐺} and 𝐵 =

{𝐷
𝑖𝑗
(𝑥
𝑘
𝑦
𝜂
) | 𝑖, 𝑗, 𝑘 ∈ 𝑌, 𝜂 ∈ 𝐺}.

Proposition 1. The Lie superalgebra 𝑆 is generated by 𝐴 ∪ 𝐵.

Proof. Suppose that 𝐴 ∪ 𝐵 generate the subalgebra 𝑄 of 𝑆.
Since 𝐴 and 𝐵 are subsets of 𝑆, it follows that 𝑄 ⊆ 𝑆.

Next we will consider the reverse inclusion.
It is easy to see that 𝐷

𝑘𝑖
(𝑥
𝑘
𝑦
𝜆
) = −𝑦

𝜆
𝐷
𝑖
for all distinct

elements 𝑖, 𝑘 of 𝑌 and 𝜆 ∈ 𝐺. Therefore, 𝑧𝑑(𝐷
𝑘𝑖
(𝑥
𝑘
𝑦
𝜆
)) = −1

and 𝑆
−1
⊆ 𝑄.

A direct calculation shows that

[𝐷
𝑖𝑗
(𝑥
𝜋
𝑦
𝜆
) , 𝐷
𝑘𝑙
(𝑥
𝑘
𝑦
𝜂
)]

= [−𝐷
𝑖
(𝑥
𝜋
𝑦
𝜆
)𝐷
𝑗
− 𝐷
𝑖
(𝑥
𝜋
𝑦
𝜆
)𝐷
𝑗
, −𝑦
𝜂
𝐷
𝑙
]

= (−1)
𝑛
(𝐷
𝑖
𝐷
𝑙
(𝑥
𝜋
𝑦
𝜆+𝜂

)𝐷
𝑗
+ 𝐷
𝑗
𝐷
𝑙
(𝑥
𝜋
𝑦
𝜆+𝜂

)𝐷
𝑖
)

= −(−1)
𝑛
𝐷
𝑖𝑗
(𝐷
𝑙
(𝑥
𝜋
𝑦
𝜆+𝜂

)) ∈ 𝑆,

(6)

for all distinct elements 𝑖, 𝑗, 𝑘, 𝑙 of 𝑌 and 𝜆, 𝜂 ∈ 𝐺. It follows
from 𝑧𝑑(𝐷

𝑖𝑗
(𝐷
𝑙
(𝑥
𝜋
𝑦
𝜆+𝜂

))) = 𝑛 − 3 that 𝑆
𝑛−3

⊆ 𝑄.
For distinct elements 𝑖, 𝑗, 𝑘, 𝑙, 𝑔 of 𝑌 and 𝜆, 𝜂, 𝜁 ∈ 𝐺, we

have

[𝐷
𝑖𝑗
(𝐷
𝑙
(𝑥
𝜋
𝑦
𝜆+𝜂

)) , 𝐷
𝑘𝑔
(𝑥
𝑘
𝑦
𝜁
)]

= (−1)
𝑛+1
𝐷
𝑖𝑗
(𝐷
𝑔
𝐷
𝑙
(𝑥
𝜋
𝑦
𝜆+𝜂+𝜁

))

(7)

and 𝑧𝑑(𝐷
𝑖𝑗
(𝐷
𝑔
𝐷
𝑙
(𝑥
𝜋
𝑦
𝜆+𝜂+𝜁

))) = 𝑛 − 4. Thus 𝑆
𝑛−4

⊆ 𝑄.
By the samemethods above, wemay obtain𝐷

𝑖𝑗
(𝑥
𝑢
𝑦
𝜆
) ∈ 𝑆

for 𝑢 ∈ B(𝑛); that is, 𝑆
𝑖
⊆ 𝑄 for 1 ≤ 𝑖 ≤ 𝑛 − 5.

According to 𝐷
𝑖𝑖
(𝑥
𝑖
𝑥
𝑗
𝑥
𝑘
𝑦
𝜆
) = −2𝑥

𝑗
𝑥
𝑘
𝑦
𝜆
𝐷
𝑖
∈ 𝑆
1
and

𝑥
𝑘
𝑦
𝜆+𝜂

𝐷
𝑖
∈ 𝑆
0
, we have

𝑥
𝑘
𝑦
𝜆+𝜂

𝐷
𝑖
= [𝑥
𝑗
𝑥
𝑘
𝑦
𝜆
𝐷
𝑖
, 𝑦
𝜂
𝐷
𝑗
] ∈ 𝑄. (8)

Hence 𝑆
0
⊆ 𝑄.

In conclusion, 𝑆 ⊆ 𝑄.Therefore, the desired result follows
immediately.
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3. The Natural Filtration of 𝑆(𝑛,𝑚)

Adopting the notion of [22], the element 𝑥 of Lie super-
algebra 𝑆 is called ad-nilpotent if ad𝑥 is a nilpotent linear
transformation. The set of all ad-nilpotent elements of 𝑆 is
denoted by nil(𝑆). Let 𝑆

(𝑗)
= ⊕
𝑖≥𝑗
𝑆
𝑖
. Then

𝑆 = 𝑆
(−1)

⊇ 𝑆
(0)
⊇ 𝑆
(1)
⊇ ⋅ ⋅ ⋅ ⊇ 𝑆

(𝑛−2)
⊇ 𝑆
(𝑛−1)

= 0 (9)

is a descending filtration of 𝑆, which is called the natural
filtration of 𝑆. We also call {𝑆

(𝑘)
| 𝑘 ∈ Z} a filtration of 𝑆 for

short, where 𝑆
(𝑘)

= 𝑆 if 𝑘 ≤ −1 and 𝑆
(𝑘)

= 0 if 𝑘 ≥ 𝑛 − 2. Since
𝑆 is Z-graded and finite dimensional, we may easily obtain
𝑆
−1
⊆ nil(𝑆) and 𝑆

(1)
⊆ nil(𝑆).

Let 𝑀
𝑛
(F) denote the set of all 𝑛 × 𝑛 matrices over F .

Notice that dim T(𝑚) = 𝑝
𝑚. Without loss of generality, we

may suppose that {𝑦
1
, . . . , 𝑦

𝑝
𝑚} is a standard F-basis of T(𝑚).

If 𝑧 = ∑
𝑛

𝑖,𝑗=1
∑
𝑝
𝑚

𝑞=1
𝑎
𝑖𝑗𝑞
𝑥
𝑖
𝑦
𝑞
𝐷
𝑗
∈ 𝑆
0
, where 𝑎

𝑖𝑗𝑞
∈ F , then let

𝜌(𝑧) = (

𝐴
1

d
𝐴
𝑝
𝑚

)

𝑛𝑝
𝑚
×𝑛𝑝
𝑚

, where 𝐴
𝑞
= (𝑎
𝑖𝑗𝑞
)
𝑛×𝑛

∈ 𝑀
𝑛
(F).

Lemma 2. Suppose that 𝑧 = ∑
𝑛

𝑖,𝑗=1
∑
𝑝
𝑚

𝑞=1
𝑎
𝑖𝑗𝑞
𝑥
𝑖
𝑦
𝑞
𝐷
𝑗
∈ 𝑆
0
. If 𝑧

is ad-nilpotent, then 𝜌(𝑧) is a nilpotent matrix.

Proof. Let Γ be the representation of 𝑆
0
with values in

𝑆
−1
. Then Γ(𝑧) = ad𝑧 and the matrix of Γ(𝑧) over the

basis {𝑦
1
𝐷
1
, . . . , 𝑦

1
𝐷
𝑛
, . . . , 𝑦

𝑝
𝑚𝐷
1
, . . . , 𝑦

𝑝
𝑚𝐷
𝑛
} of 𝑆

−1
is 𝐴 =

(

−(𝐴
1
)
𝑡

d
−(𝐴
𝑝
𝑚 )
𝑡
)

𝑛𝑝
𝑚
×𝑛𝑝
𝑚

, where 𝐴
𝑞
= (𝑎
𝑖𝑗𝑞
)
𝑛×𝑛

∈ 𝑀
𝑛
(F).

Since 𝑧 is ad-nilpotent, the representation Γ(𝑧) is a nilpotent
linear transformation. It implies that 𝐴 is nilpotent. There-
fore, 𝜌(𝑧) = −𝐴𝑡 is a nilpotent matrix.

Lemma 3. Let 𝑧 = ∑
𝑛−1

𝑖=𝑘
𝑧
𝑖
, where 𝑧

𝑖
∈ 𝑆
𝑖
and 𝑘 ≤ 𝑛 − 1. If

𝑧 ∈ nil (𝑆) and 𝑘 ≥ 0, then 𝑧
𝑘
∈ nil (𝑆).

Proof. Suppose that 𝑧 = 𝑧
𝑘
+ 𝑧
󸀠, where 𝑧

𝑘
∈ 𝑆
𝑘
and 𝑧󸀠 ∈

⊕
𝑛−1

𝑖=𝑘+1
𝑆
𝑖
⊆ 𝑆
(𝑘+1)

. Since 𝑧 ∈ nil(𝑆), we may assume that
(ad𝑧)𝑡 = 0. Let 𝑥 be a Z-homogeneous element of 𝑆 with Z-
degree 𝑖. Then (ad𝑧)𝑡(𝑥) = 0. On the other hand,

(ad𝑧)𝑡 (𝑥) = (ad (𝑧𝑘 + 𝑧
󸀠
))
𝑡

(𝑥) = (ad𝑧𝑘)
𝑡

(𝑥) + ℎ, (10)

which implies (ad𝑧
𝑘
)
𝑡
(𝑥) + ℎ = 0. It is easy to see that

(ad𝑧
𝑘
)
𝑡
(𝑥) ∈ 𝑆

(𝑘𝑡+𝑖)
and ℎ ∈ 𝑆

(𝑘𝑡+𝑖+1)
= ⊕
𝑗≥𝑘𝑡+𝑖+1

𝑆
𝑗
. Thus

(ad𝑧
𝑘
)
𝑡
(𝑥) = 0. Since 𝑥 is an arbitrary Z-homogeneous

element of 𝑆, we have (ad𝑧
𝑘
)
𝑡
(𝑆) = 0. Then (ad𝑧

𝑘
)
𝑡
= 0; that

is, 𝑧
𝑘
∈ nil(𝑆).

Suppose that 𝐸
𝑖𝑗
denotes the 𝑛 × 𝑛 matrix whose (𝑖, 𝑗)

element is 1 and otherwise is zero. Obviously,

𝐸
𝑖𝑗
𝐸
𝑘𝑙
= 𝛿
𝑗𝑘
𝐸
𝑖𝑙
, (11)

where 𝛿
𝑗𝑘
is the Kronecker delta.

If 𝑧 = ∑𝑛
𝑖,𝑗=1

∑
𝑝
𝑚

𝑞=1
𝑎
𝑖𝑗𝑞
𝑥
𝑖
𝑦
𝑞
𝐷
𝑗
∈ 𝑆
0
, where 𝑎

𝑖𝑗𝑞
∈ F , then

𝜌 (𝑧) =

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖𝑗1
𝐸
𝑖𝑗
+

2𝑛

∑

𝑖,𝑗=𝑛+1

𝑎
𝑖𝑗2
𝐸
𝑖𝑗

+ ⋅ ⋅ ⋅ +

𝑛𝑝
𝑚

∑

𝑖,𝑗=𝑛(𝑝𝑚−1)+1

𝑎
𝑖𝑗𝑝
𝑚𝐸
𝑖𝑗
.

(12)

Let Δ = {𝑧 ∈ nil(𝑆) | ad𝑧(𝑆) ⊆ nil(𝑆)}.

Lemma 4. Suppose that 𝑧 = ∑
𝑛−2

𝑖=−1
𝑧
𝑖
, where 𝑧

𝑖
∈ 𝑆
𝑖
. If 𝑧 ∈ Δ,

then 𝑧
−1
= 0.

Proof. Suppose that 0 ̸= 𝑧
−1
= ∑
𝑛

𝑖=1
∑
𝑝
𝑚

𝑞=1
𝑎
𝑖𝑞
𝑦
𝑞
𝐷
𝑖
, where 𝑎

𝑖𝑞
∈

F . Let 𝑎
𝑗𝑞

̸= 0 and 𝑗, 𝑘, 𝑙 ∈ 𝑌 such that 𝑖, 𝑗, 𝑘 are distinct. We
may assume that 𝑑 = [𝑧

−1
, 𝐷
𝑘𝑙
(𝑥
𝑘
𝑥
𝑙
𝑥
𝑗
)]. A direct calculation

shows that

𝑑 = [

[

𝑛

∑

𝑖=1

𝑝
𝑚

∑

𝑞=1

𝑎
𝑖𝑞
𝑦
𝑞
𝐷
𝑖
, −𝑥
𝑙
𝑥
𝑗
𝐷
𝑙
+ 𝑥
𝑘
𝑥
𝑗
𝐷
𝑘
]

]

= −

𝑝
𝑚

∑

𝑞=1

(𝑎
𝑙𝑞
𝑥
𝑗
𝑦
𝑞
𝐷
𝑙
− 𝑎
𝑗𝑞
𝑥
𝑙
𝑦
𝑞
𝐷
𝑙

−𝑎
𝑘𝑞
𝑥
𝑗
𝑦
𝑞
𝐷
𝑘
+ 𝑎
𝑗𝑞
𝑥
𝑘
𝑦
𝑞
𝐷
𝑘
) .

(13)

By equalities (11) and (12), we have

(𝜌 (𝑑))
𝑡

= (−1)
𝑡
((−1)

𝑡
(𝑎
𝑗1
)
𝑡

𝐸
𝑙𝑙
+ (𝑎
𝑗1
)
𝑡

𝐸
𝑘𝑘

+ (−1)
𝑡−1
𝑎
𝑙1
(𝑎
𝑗1
)
𝑡−1

𝐸
𝑗𝑙
− 𝑎
𝑘1
(𝑎
𝑗1
)
𝑡−1

𝐸
𝑗𝑘

+ (−1)
𝑡
(𝑎
(𝑗+𝑛)2

)
𝑡

𝐸
(𝑙+𝑛)(𝑙+𝑛)

+ (𝑎
(𝑗+𝑛)2

)
𝑡

𝐸
(𝑘+𝑛)(𝑘+𝑛)

+ (−1)
𝑡−1
𝑎
(𝑙+𝑛)2

(𝑎
(𝑗+𝑛)1

)
𝑡−1

𝐸
(𝑗+𝑛)(𝑙+𝑛)

− 𝑎
(𝑘+𝑛)2

(𝑎
(𝑗+𝑛)2

)
𝑡−1

𝐸
(𝑗+𝑛)(𝑘+𝑛)

+ ⋅ ⋅ ⋅

+ (−1)
𝑡
(𝑎
(𝑗+𝑝
𝑚
−𝑛)𝑝
𝑚)
𝑡

𝐸
(𝑙+𝑝
𝑚
−𝑛)(𝑙+𝑝

𝑚
−𝑛)

+ (𝑎
(𝑗+𝑝
𝑚
−𝑛)𝑝
𝑚)
𝑡

𝐸
(𝑘+𝑝
𝑚
−𝑛)(𝑘+𝑝

𝑚
−𝑛)

+ (−1)
𝑡−1
𝑎
(𝑙+𝑝
𝑚
−𝑛)𝑝
𝑚(𝑎
(𝑗+𝑝
𝑚
−𝑛)𝑝
𝑚)
𝑡−1

× 𝐸
(𝑗+𝑝
𝑚
−𝑛)(𝑙+𝑝

𝑚
−𝑛)

−𝑎
(𝑘+𝑝
𝑚
−𝑛)𝑝
𝑚(𝑎
(𝑗+𝑝
𝑚
−𝑛)𝑝
𝑚)
𝑡−1

𝐸
(𝑗+𝑝
𝑚
−𝑛)(𝑘+𝑝

𝑚
−𝑛)
) .

(14)

Since (𝑎
𝑗1
)
𝑡
̸= 0, we have (𝜌(𝑑))𝑡 ̸= 0. So 𝜌(𝑑) is not a nilpotent

matrix. By Lemma 2, it follows that 𝑑 ∉ nil(𝑆). By Lemma 3,
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we have [𝑧, 𝐷
𝑘𝑙
(𝑥
𝑘
𝑥
𝑙
𝑥
𝑗
)] ∉ nil(𝑆). Then 𝑧 ∉ Δ. It contradicts

𝑧 ∈ Δ. This proves our assertion.

Lemma 5. Let 𝑧 = ∑
𝑛−2

𝑖=−1
𝑧
𝑖
, where 𝑧

𝑖
∈ 𝑆
𝑖
. If 𝑧 ∈ Δ, then

𝑧
0
= 0.

Proof. Assume that 𝑧
0
̸= 0. Let 𝑧

0
= ∑
𝑛

𝑖,𝑗=1
∑
𝑝
𝑚

𝑞=1
𝑎
𝑖𝑗𝑞
𝑥
𝑖
𝑦
𝑞
𝐷
𝑗
,

𝑎
𝑖𝑗𝑞
∈ F , and

𝑙 = min {𝑖 | 𝑎
𝑖𝑗𝜆

̸= 0, 𝑖, 𝑗 ∈ 𝑌} ,

𝑡 = min {𝑗 | 𝑎
𝑖𝑗𝜆

̸= 0, 𝑖, 𝑗 ∈ 𝑌} .

(15)

(i) Suppose that 𝑙 ≤ 𝑡. Let

𝑘 = max {𝑗 | 𝑎
𝑙𝑗𝜆

̸= 0, 𝑗 ∈ 𝑌} . (16)

Then 𝑎
𝑙𝑘𝑞

̸= 0. It is easy to see that 𝑡 ≤ 𝑘. Since 𝑙 ≤ 𝑡, we have
𝑙 ≤ 𝑘. Therefore,

𝑧
0
=

𝑘

∑

𝑗=𝑡

𝑝
𝑚

∑

𝑞=1

𝑎
𝑙𝑗𝑞
𝑥
𝑙
𝑦
𝑞
𝐷
𝑗
+

𝑛

∑

𝑖=𝑙+1

𝑛

∑

𝑗=𝑡

𝑝
𝑚

∑

𝑞=1

𝑎
𝑖𝑗𝑞
𝑥
𝑖
𝑦
𝑞
𝐷
𝑗
. (17)

Assume that 𝑙 = 𝑘. It follows from 𝑡 ≤ 𝑘 that 𝑡 ≤ 𝑙. Then we
have 𝑡 = 𝑙 which implies that

𝑧
0
=

𝑝
𝑚

∑

𝑞=1

𝑎
𝑙𝑙𝑞
𝑥
𝑙
𝑦
𝑞
𝐷
𝑙
+

𝑛

∑

𝑖=𝑙+1

𝑛

∑

𝑗=𝑡

𝑝
𝑚

∑

𝑞=1

𝑎
𝑖𝑗𝑞
𝑥
𝑖
𝑦
𝑞
𝐷
𝑗
. (18)

Therefore,

𝜌 (𝑧
0
) = 𝑎
𝑙𝑙1
𝐸
𝑙𝑙
+

𝑛

∑

𝑖=𝑙+1

𝑛

∑

𝑗=𝑡

𝑎
𝑖𝑗1
𝐸
𝑖𝑗

+ 𝑎
(𝑙+𝑛)(𝑙+𝑛)2

𝐸
(𝑙+𝑛)(𝑙+𝑛)

+

2𝑛

∑

𝑖=𝑙+1+𝑛

2𝑛

∑

𝑗=𝑡+𝑛

𝑎
𝑖𝑗2
𝐸
𝑖𝑗

+ ⋅ ⋅ ⋅ + 𝑎
(𝑙+𝑛(𝑝

𝑚
−1))(𝑙+𝑛(𝑝

𝑚
−1))𝑝

𝑚𝐸
(𝑙+𝑛)(𝑙+𝑛)

+

𝑛𝑝
𝑚

∑

𝑖=𝑙+1+𝑛(𝑝𝑚−1)

𝑛𝑝
𝑚

∑

𝑗=𝑡+𝑛(𝑝𝑚−1)

𝑎
𝑖𝑗𝑝
𝑚𝐸
𝑖𝑗

= (

𝐴
1

𝐵
1
𝐶
1

d
𝐴
𝑝
𝑚

𝐵
𝑝
𝑚 𝐶
𝑝
𝑚

)

𝑛𝑝
𝑚
×𝑛𝑝
𝑚

,

(19)

where𝐴
𝑘
= 𝑎
(𝑙+(𝑘−1)𝑛)(𝑙+(𝑘−1)𝑛)𝑞

𝐸
(𝑙+(𝑘−1)𝑛)(𝑙+(𝑘−1)𝑛)

is an (𝑙+ (𝑘−
1)𝑛) × (𝑙 + (𝑘 − 1)𝑛)matrix and 𝑞 ∈ {1, . . . , 𝑝𝑚}. Since 𝑎

𝑙𝑙1
̸= 0,

we have 𝐴
1
not being a nilpotent matrix. Then 𝜌(𝑧

0
) is not

a nilpotent matrix and 𝑧
0
∉ nil(𝑆). Lemma 3 shows that 𝑧 ∉

nil(𝑆). It is a contradiction of to 𝑧 ∈ Δ; that is, 𝑙 < 𝑘.
Suppose that ℎ ∈ 𝑌 and ℎ ̸= 𝑙, 𝑘. Let 𝑑 = [𝑧

0
, 𝑥
𝑘
𝐷
𝑙
]. By

equality (2), we obtain

𝑑 =

𝑝
𝑚

∑

𝑞=1

(𝑎
𝑙𝑘𝑞
𝑥
𝑙
𝑦
𝑞
𝐷
𝑙
+

𝑛

∑

𝑖=𝑙+1

𝑎
𝑖𝑘𝑞
𝑥
𝑖
𝑦
𝑞
𝐷
𝑙
−

𝑘

∑

𝑗=𝑡

𝑎
𝑙𝑗𝑞
𝑥
𝑘
𝑦
𝑞
𝐷
𝑗
) .

(20)

Since 𝑙 < 𝑘, 𝜌(𝑑) also has the matrix form as 𝜌(𝑧
0
), it follows

from 𝑎
𝑙𝑘1

̸= 0 that 𝐴
1
is not a nilpotent matrix. Then 𝜌(𝑑) is

not nilpotent. So 𝑧 ∉ nil(𝑆) and [𝑧, 𝑥
𝑘
𝐷
𝑙
] ∉ nil(𝑆). It is a

contradiction of 𝑧 ∈ Δ.
(ii) Suppose that 𝑡 < 𝑙. Let 𝑘 = max{𝑖 | 𝑎

𝑖𝑡𝜆
̸= 0} and 𝑑󸀠 =

[𝑧, 𝑥
𝑡
𝐷
𝑘
]. Imitating (i), we may prove that 𝜌(𝑑󸀠) is also not

nilpotent. Then the desired result follows.

Lemma 6. (i) If 𝑧 ∈ 𝑆
0
∩ nil (𝑆) and ℎ ∈ 𝑆

(1)
, then 𝑧 + ℎ ∈

nil (𝑆).
(ii) Suppose that 𝑖, 𝑗 are distinct elements of 𝑌; then

𝑥
𝑖
𝑦
𝜆
𝐷
𝑗
∈ nil (𝑆) for all 𝜆 ∈ 𝐺.

(iii) Suppose that 𝑖, 𝑗, 𝑘 are distinct elements of 𝑌; then
𝑎𝑥
𝑗
𝑦
𝜆
𝐷
𝑘
+ 𝑏𝑥
𝑖
𝑦
𝜂
𝐷
𝑘
∈ nil (𝑆), where 𝑎, 𝑏 ∈ F and 𝜆, 𝜂 are

arbitrary elements of 𝐺.

Proof. (i) A direct verification shows that {ad𝑧} ∪ {ad𝑆
(1)
}

is a weakly closed subset of nilpotent elements of 𝑝𝑙(𝑆),
where 𝑝𝑙(𝑆) is the general linear Lie superalgebra of 𝑆. It was
shown in [23, Theorem 1 of Chapter II] that each element of
spanF ({ad𝑧}∪ {ad𝑆(1)}) is a nilpotent linear transformation of
𝑆. Then ad𝑧 + adℎ is nilpotent. So 𝑧 + ℎ is ad-nilpotent.

(ii) To prove (ad𝑥
𝑖
𝑦
𝜆
𝐷
𝑗
)
𝑝
= 0, we may assume without

loss of generality that 𝑖 < 𝑗. Set 𝜂 to be an arbitrary element
of 𝐺. If 𝑘 ̸= 𝑖, then

(ad𝑥
𝑖
𝑦
𝜆
𝐷
𝑗
)
2

(𝑥
𝑢
𝑦
𝜂
𝐷
𝑘
)

= [𝑥
𝑖
𝑦
𝜆
𝐷
𝑗
, [𝑥
𝑖
𝑦
𝜆
𝐷
𝑗
, 𝑥
𝑢
𝑦
𝜂
𝐷
𝑘
]]

= (−1)
𝜏(𝑢,𝑗)

[𝑥
𝑖
𝑦
𝜆
𝐷
𝑗
, 𝑥
𝑖
𝑥
𝑢−⟨𝑗⟩

𝑦
𝜆+𝜂

𝐷
𝑘
]

= 0.

(21)

In the case of 𝑘 = 𝑖, we have

(ad𝑥
𝑖
𝑦
𝜆
𝐷
𝑗
)
3

(𝑥
𝑢
𝑦
𝜂
𝐷
𝑘
)

= [𝑥
𝑖
𝑦
𝜆
𝐷
𝑗
, [𝑥
𝑖
𝑦
𝜆
𝐷
𝑗
, [𝑥
𝑖
𝑦
𝜆
𝐷
𝑗
, 𝑥
𝑢
𝑦
𝜂
𝐷
𝑖
]]]

= [𝑥
𝑖
𝑦
𝜆
𝐷
𝑗
, [𝑥
𝑖
𝑦
𝜆
𝐷
𝑗
, (−1)
𝜏(𝑢,𝑗)

𝑥
𝑖
𝑥
𝑢−⟨𝑗⟩

𝑦
𝜆
𝐷
𝑖
− 𝑥
𝑢
𝑦
𝜆+𝜂

𝐷
𝑗
]]

= (−1)
𝜏(𝑢,𝑗)

[𝑥
𝑖
𝑦
𝜆
𝐷
𝑗
, −𝑥
𝑖
𝑥
𝑢−⟨𝑗⟩

𝑦
𝜆
𝐷
𝑗
− 𝑥
𝑖
𝑥
𝑢−⟨𝑗⟩

𝑦
2𝜆+𝜂

𝐷
𝑗
]

= 0.

(22)

For 𝑝 > 2 we obtain (ad𝑥
𝑖
𝑦
𝜆
𝐷
𝑗
)
𝑝
(𝑥
𝑢
𝑦
𝜂
𝐷
𝑘
) = 0.

Therefore (ad𝑥
𝑖
𝑦
𝜆
𝐷
𝑗
)
𝑝
(𝑆) = 0. This yields (ad𝑥

𝑖
𝑦
𝜆
𝐷
𝑗
)
𝑝
= 0.

Thus 𝑥
𝑖
𝑦
𝜆
𝐷
𝑗
∈ nil(𝑆).

(iii) According to (ii) and [𝑥
𝑗
𝑦
𝜆
𝐷
𝑘
, 𝑥
𝑖
𝑦
𝜂
𝐷
𝑘
] = 0,

{ad𝑥
𝑗
𝑦
𝜆
𝐷
𝑘
, ad𝑥
𝑖
𝑦
𝜂
𝐷
𝑘
} is a weakly closed subset of nilpotent

elements of 𝑝𝑙(𝑆). So 𝑎𝑥
𝑗
𝑦
𝜆
𝐷
𝑘
+ 𝑏𝑥
𝑖
𝑦
𝜂
𝐷
𝑘
∈ nil(𝑆), where 𝑎,

𝑏 ∈ F .
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Lemma 7. If 𝑖, 𝑗, 𝑘 are distinct elements of 𝑌, then
𝑥
𝑖
𝑥
𝑗
𝑦
𝜆
𝐷
𝑘
∈ Δ for all 𝜆 ∈ 𝐺.

Proof. Suppose that 𝑙 ∈ 𝑌 \ {𝑖, 𝑗, 𝑘}. Then 𝑥
𝑖
𝑥
𝑗
𝑦
𝜆
𝐷
𝑘

∈

𝑆
(1)

⊆ nil(𝑆). Let 𝑧 = ∑
𝑛−2

𝑖=−1
𝑧
𝑖
, where 𝑧

𝑖
∈ 𝑆
𝑖
. Assume that

[𝑥
𝑖
𝑥
𝑗
𝑦
𝜆
𝐷
𝑘
, 𝑧] = 𝑓

0
+ 𝑓
1
, where 𝑓

0
= [𝑥
𝑖
𝑥
𝑗
𝑦
𝜆
𝐷
𝑘
, 𝑧
−1
] ∈ 𝑆
0

and 𝑓
1
∈ 𝑆
(1)
. Let 𝑧

−1
= ∑
𝑛

𝑙=1
∑
𝜂∈𝐺

𝑎
𝑙𝜂
𝑦
𝜂
𝐷
𝑙
. Then

𝑓
0
= [

[

𝑥
𝑖
𝑥
𝑗
𝑦
𝜆
𝐷
𝑘
,

𝑛

∑

𝑙=1

∑

𝜂∈𝐺

𝑎
𝑙𝜂
𝑦
𝜂
𝐷
𝑙
]

]

= ∑

𝜂∈𝐺

(𝑎
𝑖𝜂
𝑥
𝑗
𝑦
𝜆+𝜂

𝐷
𝑘
− 𝑎
𝑗𝜂
𝑥
𝑖
𝑦
𝜆+𝜂

𝐷
𝑘
) .

(23)

By (iii) of Lemma 6, we have 𝑓
0
∈ 𝑆
0
∩ nil(𝑆). By (i) of

Lemma 6, it follows that 𝑓
0
+ 𝑓
1
∈ nil(𝑆). We finally obtain

𝑥
𝑖
𝑥
𝑗
𝑦
𝜆
𝐷
𝑘
∈ Δ for all 𝜆 ∈ 𝐺.

Let 𝑄 = {𝑧 ∈ nil(𝑆) | ad𝑧(Δ) ⊆ Δ}.

Lemma 8. 𝑄 = 𝑆
(1)
.

Proof. By the definition ofΔ, we have 𝑆
(2)
⊆ Δ. Lemmas 4 and

5 show that Δ ⊆ 𝑆
(1)
. Then [𝑆

(1)
, Δ] ⊆ [𝑆

(1)
, 𝑆
(1)
] ⊆ 𝑆
(2)

⊆ Δ.
Thus 𝑆

(1)
⊆ 𝑄.

Next we will prove 𝑄 ⊆ 𝑆
(1)
. Let 𝑧 ∈ 𝑄 and 𝑧 = ∑

𝑛−2

𝑖=−1
𝑧
𝑖
,

where 𝑧
𝑖
∈ 𝑆
𝑖
. Assume that 𝑧

−1
= ∑
𝑛

𝑙=1
∑
𝜆∈𝐺

𝑎
𝑙𝜆
𝑦
𝜆
𝐷
𝑙
̸= 0, 𝑎
𝑙𝜆
∈

F . Without loss of generality, we may suppose that 𝑎
𝑖
̸= 0. Let

𝑑 = 𝑥
𝑖
𝑥
𝑗
𝑦
𝜂
𝐷
𝑘
, where 𝑖, 𝑗, 𝑘 are distinct elements of 𝑌 and 𝜂

is an arbitrary element of 𝐺. By Lemma 7, we have 𝑑 ∈ Δ. Let
[𝑧, 𝑑] = ℎ

0
+ ℎ
1
, where ℎ

0
= [𝑧
−1
, 𝑑] ∈ 𝑆

0
and ℎ

1
∈ 𝑆
(1)
. Since

𝑎
𝑖
̸= 0, we have ℎ

0
= ∑
𝜆∈𝐺

(𝑎
𝑖𝜆
𝑥
𝑗
𝑦
𝜆+𝜂

𝐷
𝑘
− 𝑎
𝑗𝜆
𝑥
𝑖
𝑦
𝜆+𝜂

𝐷
𝑘
) ̸= 0.

Lemma 5 implies that ℎ
0
+ ℎ
1
∉ Δ. It is a contradiction of

𝑧 ∈ 𝑄. Hence 𝑧
−1
= 0.

Assume that 0 ̸= 𝑧
0
= ∑
𝑛

𝑖,𝑗=1
∑
𝑝
𝑚

𝑞=1
𝑎
𝑖𝑗𝜆
𝑥
𝑖
𝑦
𝑞
𝐷
𝑗
, 𝑎
𝑖𝑗𝑞
∈ F , and

suppose that 𝑙 and 𝑡 are as the definitions in (15). We may
suppose that 𝑙 ≤ 𝑡 (the proof is similar to the case 𝑡 < 𝑙) and
let 𝑘 be as the definition in (16). In a similar way to the first
part of the proof in Lemma 5, we have 𝑙 < 𝑘. Suppose that
ℎ ∈ 𝑌\ {𝑙, 𝑘, 𝑡} and 𝑑

1
= 𝑥
𝑘
𝑥
ℎ
𝐷
𝑙
. Lemma 7 shows that 𝑑

1
∈ Δ.

Let [𝑧, 𝑑
1
] = 𝑔
1
+ 𝑔
2
, where 𝑔

1
= [𝑧
0
, 𝑑
1
] ∈ 𝑆
1
and 𝑔

2
∈ 𝑆
(2)
.

Using equality (2), we have

𝑔
1
=

𝑝
𝑚

∑

𝑞=1

(𝑎
𝑙𝑘𝑞
𝑥
𝑙
𝑥
ℎ
𝑦
𝑞
𝐷
𝑙
−

𝑛

∑

𝑖=𝑙+1

𝑎
𝑖ℎ𝑞
𝑥
𝑖
𝑥
𝑘
𝑦
𝑞
𝐷
𝑙

−

𝑘

∑

𝑗=𝑡

𝑎
𝑙𝑗𝑞
𝑥
𝑘
𝑥
ℎ
𝑦
𝑞
𝐷
𝑗
) .

(24)

If ℎ < 𝑡, then 𝑎
𝑖ℎ𝑞

= 0 in the above equality, where 𝑖 ∈ 𝑌 \

{1, . . . , 𝑙 − 1}. Thus

[𝐷
ℎ
, 𝑔
1
] = −

𝑝
𝑚

∑

𝑞=1

(𝑎
𝑙𝑘𝑞
𝑥
𝑙
𝑦
𝑞
𝐷
𝑙
+

𝑛

∑

𝑖=𝑙+1

𝑎
𝑖ℎ𝑞
𝑥
𝑖
𝑦
𝑞
𝐷
𝑙

+𝑎
ℎℎ𝑞
𝑥
𝑘
𝑦
𝑞
𝐷
𝑙
− 𝑎
𝑙𝑗𝑞
𝑥
𝑘
𝑦
𝑞
𝐷
𝑗
) .

(25)

By equality (12), the matrix 𝜌([𝐷
ℎ
, 𝑔
1
]) has the matrix form

as in Lemma 5. Since 𝑎
𝑙𝑘𝑞

̸= 0, 𝐴
1
is not a nilpotent matrix.

It implies that 𝜌([𝐷
ℎ
, 𝑔
1
]) is not nilpotent. Hence [𝐷

ℎ
, 𝑔
1
] ∉

nil(𝑆). Lemma 3 shows that [𝐷
ℎ
, 𝑔
1
+ 𝑔
2
] ∉ nil(𝑆); that is,

[𝐷
ℎ
, 𝑔
1
+𝑔
2
] ∉ Δ. It contradicts 𝑧 ∈ 𝑄.Thus 𝑧

0
= 0.Therefore,

𝑧 ∈ 𝑆
(1)

and 𝑄 ⊆ 𝑆
(1)
.

According to the fact thatΔ and𝑄 are invariant subspaces
under the automorphisms of 𝑆 and Lemma 8, 𝑆

(1)
is also

invariant under the automorphisms of 𝑆. Since

𝑆
(0)
= {𝑥 ∈ 𝑆 | [𝑥, 𝑆

(1)
] ⊆ 𝑆
(1)
} ,

𝑆
(𝑖)
= {𝑥 ∈ 𝑆

𝑖−1
| [𝑥, 𝑆] ⊆ 𝑆(𝑖−1)} , 𝑖 ≥ 1,

(26)

we may easily obtain the following theorem.

Theorem 9. The natural filtration of 𝑆 is invariant under the
automorphisms of 𝑆.

Let S
𝑖
= 𝑆
(𝑖)
/𝑆
(𝑖+1)

for −1 ≤ 𝑖 ≤ 𝑛 − 2. Then S
𝑖
is a

Z-graded space. Suppose that S := ⊕
𝑛−2

𝑖=−1
S
𝑖
; then S is also

a Z-graded space. Let 𝑥 + 𝑆
(𝑖+1)

∈ S
𝑖
and 𝑦 + 𝑆

(𝑗+1)
∈ S
𝑗
.

Define

[𝑥 + 𝑆
(𝑖+1)

, 𝑦 + 𝑆
(𝑗+1)

] := [𝑥, 𝑦] + 𝑆
(𝑖+𝑗+1)

. (27)

It is easy to see that the definition above is reasonable. There
exists a linear expansion such that S has an operator [, ]. A
direct verification shows that S is a Lie superalgebra with
respect to the operator [, ]. The Lie superalgebrasS is called
a Lie superalgebra induced by the natural filtration of 𝑆.

Lemma 10. S ≅ 𝑆.

Proof. Let 𝜙 : 𝑆 → S be a linear map such that 𝜙(𝑥) =

𝑥 + 𝑆
(𝑖+1)

, where 𝑥 ∈ 𝑆
(𝑖)
\ 𝑆
(𝑖+1)

. A direct verification shows
that 𝜙 is a homomorphism of Lie superalgebras. Suppose
that 𝑦 ∈ ker𝜙. If 𝑦 ̸= 0, then there exists 𝑖 ≥ −1 such that
𝑦 ∈ 𝑆

(𝑖)
\ 𝑆
(𝑖+1)

. Since 𝜙(𝑦) = 0, we have 𝑦 + 𝑆
(𝑖+1)

= 0.
Hence 𝑦 ∈ 𝑆

(𝑖+1)
. That shows that 𝑦 = 0. Thus, ker𝜙 = 0.

Therefore, 𝜙 is a monomorphism. It follows from the fact 𝑆 is
finite dimensional that 𝜙 is an isomorphism.

The definition of 𝜙 shows that

𝜙 (𝑆
𝑖
) = {𝑥 + 𝑆

(𝑖+1)
| 𝑥 ∈ 𝑆

𝑖
} = {𝑥 + 𝑆

(𝑖+1)
| 𝑥 ∈ 𝑆

(𝑖)
}

= 𝑆
(𝑖)
/𝑆
(𝑖+1)

= S
𝑖
, 𝑖 ≥ −1.

(28)

Suppose that 𝑚, 𝑛, 𝑚󸀠, 𝑛󸀠 are elements of N
0
and 𝑛, 𝑛󸀠

are greater than 3. In a similar way to 𝑆, the Lie superalgebra
𝑆(𝑛
󸀠
, 𝑚
󸀠
) will be simply denoted by 𝑆

󸀠. According to the
definitions of Δ, 𝑄, and S in 𝑆, the Δ󸀠, 𝑄󸀠, and S󸀠 in 𝑆󸀠 are
also defined by the same method, respectively.

Proposition 11. Suppose that 𝑆 ≅ 𝑆󸀠 and 𝜎 is an isomorphism
from 𝑆 to 𝑆󸀠; then 𝜎(𝑆

(𝑖)
) = 𝑆
󸀠

(𝑖)
for all 𝑖 ≥ −1.

Proof. It is clear that 𝜎(𝑆
(−1)

) = 𝑆
󸀠

(−1)
and 𝜎(nil(𝑆)) = nil(𝑆󸀠).

A direct verification shows that 𝜎(Δ) = Δ󸀠. Hence 𝜎(𝑄) = 𝑄󸀠.
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By virtue of Lemma 8, we have 𝑄 = 𝑆
(1)

and 𝑄󸀠 = 𝑆
󸀠

(1)
. Thus

𝜎(𝑆
(1)
) = 𝑆
󸀠

(1)
. By equalities (26), the desired result 𝜎(𝑆

(𝑖)
) =

𝑆
󸀠

(𝑖)
for all 𝑖 ≥ −1 is obtained.

Lemma 12. Suppose that 𝑆 ≅ 𝑆󸀠 and 𝜎 is an isomorphism from
𝑆 to 𝑆󸀠; then 𝜎 induces an isomorphism 𝜎̃ from S to S󸀠 such
that 𝜎̃(S

𝑖
) = S󸀠

𝑖
for all 𝑖 ≥ −1.

Proof. Define a linear map 𝜎̃ : S → S󸀠 such that

𝜎̃ (𝑥 + 𝑆
(𝑖+1)

) = 𝜎 (𝑥) + 𝑆
󸀠

(𝑖+1)
, (29)

where 𝑥 + 𝑆
(𝑖+1)

∈ S
𝑖
. Using Proposition 11, the definition of

𝜎̃ is reasonable and

𝜎̃ ([𝑥 + 𝑆
(𝑖+1)

, 𝑦 + 𝑆
(𝑗+1)

])

= 𝜎 ([𝑥, 𝑦]) + 𝑆
󸀠

(𝑖+𝑗+1)

= [𝜎 (𝑥) + 𝑆
󸀠

(𝑖+1)
, 𝜎 (𝑦) + 𝑆

󸀠

(𝑗+1)
]

= [𝜎̃ (𝑥 + 𝑆
󸀠

(𝑖+1)
) , 𝜎̃ (𝑦 + 𝑆

󸀠

(𝑗+1)
)] .

(30)

Thus 𝜎̃ is a homomorphism from S to S󸀠. Clearly, 𝜎̃(S
𝑖
) =

S󸀠
𝑖
for all 𝑖 ≥ −1. It follows that 𝜎̃ is an epimorphism.
Suppose that 𝑦 ∈ ker 𝜎̃; then 𝑦 ∈ S. So we may suppose

that 𝑦 = ∑
𝑛−2

𝑖=−1
𝑦
𝑖
and 𝑦

𝑖
∈ S
𝑖
. SinceS

𝑖
= 𝑆
(𝑖)
/𝑆
(𝑖+1)

, let 𝑦
𝑖
=

𝑧
𝑖
+ 𝑆
(𝑖+1)

, where 𝑧
𝑖
∈ 𝑆
(𝑖)
. Hence 𝜎̃(𝑦

𝑖
) = 𝜎(𝑧

𝑖
) + 𝑆
󸀠

(𝑖+1)
. It

follows from 𝜎̃(𝑦) = 0 that ∑𝑛−2
𝑖=−1

𝜎̃(𝑦
𝑖
) = 0. Thus 𝜎̃(𝑦

𝑖
) = 0;

that is, 𝜎(𝑧
𝑖
) + 𝑆
󸀠

(𝑖+1)
= 0. It follows that 𝜎(𝑧

𝑖
) ∈ 𝑆

󸀠

(𝑖+1)
. By

Proposition 11, we have 𝑧
𝑖
∈ 𝜎
−1
(𝑆
󸀠

(𝑖+1)
) = 𝑆

(𝑖+1)
. Then 𝑦

𝑖
=

𝑧
𝑖
+ 𝑆
(𝑖+1)

= 0 for −1 ≤ 𝑖 ≤ 𝑛 − 2. Therefore, 𝑦 = 0 and
ker 𝜎̃ = 0. Consequently, 𝜎̃ is an isomorphism induced by 𝜎
such that 𝜎̃(S

𝑖
) = S󸀠

𝑖
for all 𝑖 ≥ −1.

Theorem 13. 𝑆 ≅ 𝑆󸀠 if and only if𝑚 = 𝑚
󸀠 and 𝑛 = 𝑛󸀠.

Proof. Because the sufficiency is obvious, it suffices to prove
the necessity. Suppose that 𝜙 : 𝑆 → S is the isomorphism
given in the proof of Lemma 10. Similarly, there also exists the
𝜙
󸀠
: 𝑆
󸀠
→ S󸀠. According to the equality (28) and Lemma 12,

we have

𝜙 (𝑆
𝑖
) = S

𝑖
, 𝜙

󸀠
(𝑆
󸀠

𝑖
) = S

󸀠

𝑖
, 𝜎̃ (S

𝑖
) = S

󸀠

𝑖
(31)

for −1 ≤ 𝑖 ≤ 𝑛 − 2. Let 𝜓 = (𝜙
󸀠
)
−1
𝜎̃𝜙. Then

𝜓 (𝑆
𝑖
) = (𝜙

󸀠
)
−1

𝜎̃𝜙 (𝑆
𝑖
) = (𝜙

󸀠
)
−1

𝜎̃ (S
𝑖
) = (𝜙

󸀠
)
−1

(S
󸀠

𝑖
) = 𝑆
󸀠

𝑖
.

(32)

In particular,𝜓(𝑆
−1
) = 𝑆
󸀠

−1
. It follows from dim 𝑆

−1
= dim 𝑆

󸀠

−1

that 𝑛𝑝𝑚 = 𝑛󸀠𝑝𝑚
󸀠

. By virtue of the definition of 𝑆
𝑖
, we have

𝑆
0
= spanF {𝐷𝑖𝑗 (𝑥𝑘𝑥𝑙𝑦

𝜆
) ∈ 𝑆 | 𝑖, 𝑗, 𝑘, 𝑙 ∈ 𝑌, 𝜆 ∈ 𝐺} . (33)

Thus dim 𝑆
0
= (𝑛
2
− 1)𝑝

𝑚. Similarly, dim 𝑆
󸀠

0
= (𝑛
󸀠2
− 1)𝑝

𝑚
󸀠

.
According to dim 𝑆

0
= dim 𝑆

󸀠

0
and 𝑛𝑝𝑚 = 𝑛

󸀠
𝑝
𝑚
󸀠

, we have
𝑛 = 𝑛
󸀠. In conclusion, the proof is completed.
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