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We consider the polynomial linear equivalence (PLE) problem arising from the multivariate public key cryptography, which is
defined as to find an invertible linear transformation L satisfying P = S ∘ L for given nonlinear polynomial maps P and S

over a finite field F
𝑞
. Some cryptographic and algebraic properties of PLE are discussed, and from the properties we derive three

sieves called multiplicative, differential, and additive sieves. By combining the three sieves, we propose a sieve method for the PLE
problem. As an application of our sieve method, we show that it is infeasible to construct public key encryption schemes from the
PLE problem.

1. Introduction

With the rapid development of information technology,
privacy and authentication have become two important issues
that we must resolve in communication networks. Public
key cryptography is undoubtedly one of the most important
tools to resolve both problems in the area of informa-
tion and network security engineering. Tremendous efforts
had been made to achieve more practical and efficient pub-
lic key ciphers in the cryptographic literature [1]. However,
we should note that only a small number of them survived
the serious security scrutiny, amongst which are the two
widelyused cryptosystems RSA based on the integer factor-
ization problem [1] and ECC based on the discrete logarithm
problem on elliptic curves over finite fields [1, 2]. However,
there exist polynomial-time algorithms for factoring large
integers and solving the discrete logarithm problems on any
finite cyclic group [3, 4]. Therefore, RSA and ECC are at
the risk of being totally broken by quantum algorithms if
practical quantum computing devices are available. Based
on the considerations, cryptographers began to construct
some alternative postquantum (i.e., quantum-resistant) pub-
lic key cryptosystems from other mathematically intractable

problems, especially those proven NP-complete or NP-hard
problems.

Multivariate public key cryptography (MPKC) is an
important kind of postquantum public key ciphers [5]. The
security of MPKC resides in the proven fact that it is NP-
hard to solve a random system of nonlinear equations over
finite fields [6]. MPKC was once considered very attractive
and interesting also due to its high speed in key generation,
encryption, and decryption, easy implementation on both
hardware and software, and its simple mathematical descrip-
tion [5]. In a multivariate public key cryptosystem, we first
define a nonlinear easy-to-invert map S called central map,
then we randomly choose two invertible affine transforma-
tions L1 and L2, and finally we publish the nonlinear map
P = L2 ∘ S ∘ L1 as the public key and keep L1, L2,
and S as the secret key. Sometimes the central map S may
have a very special structure, which makes it useless to keep
the central map S secret. One important problem in MPKC
is the problem of isomorphism of polynomials (IP) [7–15];
namely, given nonlinear maps S and P, find two invertible
linear transformations L1 and L2 such that P = L2 ∘
S ∘ L1. The IP problem lies at the core of MPKC in which
many multivariate cryptosystems were constructed based on
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the assumed intractability of IP problem [16–22]. The IP
problem is widely believed as an intractable problem, and
known algorithms for the IP problem achieve exponential
complexity [7–15].

In the IP problem, ifL2 is known or equal to the identity
transformation, the IP problem turns out to be the iso-
morphism of polynomials with one secret (IP1s) problem
[7, 8, 12, 13, 15, 23–25], which had been used in MPKC
[7, 17, 26–28]. The IP1s problem was shown to be at least
as difficult as the graph isomorphism problem [8, 29]. The
graph isomorphism problem had been extensively studied
for about half century, and no efficient algorithm was known
for it, so the IP1s problem was also widely believed to be
an intractability problem. When we restrict the invertible
affine transformation L1 to be a linear one, the special
IP1s problem was renamed as polynomial linear equivalence
(PLE) problem in [24]. In [24], it was shown that the PLE
problem is not a restriction on IP1s, and in fact PLE and IP1s
are polynomial-time equivalent. In [23], an algorithm was
developed to solve the IP1s problem used in the construction
of the identification scheme in [7], and the algorithm breaks
some challenges of the scheme in [7]. In [24], the differential
properties of PLE were fully explored to derive an algorithm
for PLE, which transforms the PLE problem into a linear
algebraic problem. Some other algorithms were also devel-
oped to solve the IP1s problem [12, 13, 15, 25]. These algo-
rithms perform efficiently in some special cases of the IP1s
problem.

Previous results about the IP and IP1s problems were
established by considering the underlying problems as math-
ematical problems. However, some cryptographic properties
of the cryptographic IP1s problem are maybe overlooked.
For example, the central map used in MPKC is required to
be easy-to-invertible, and the cryptographic property may
help us establish some other algorithms for solving the IP1s
problem. In this paper, we utilize the cryptographic property
to develop an algorithm for solving the PLE problem and
hence the IP1s problem. We fully explore the multiplicative,
differential, and additive cryptographic properties existing in
the PLE problem. Based on the three properties, we provide
a sieve algorithm for the PLE problem. Assume that the
central map only has polynomially bounded pre-images; the
proposed sieve algorithm is a polynomial-time algorithm.
Apart from previously known algorithms based on differ-
ential analysis, Gröbner basis, exhaustive search, and linear
algebraic methods, we provide a new type of algorithm.
The sieve method may be of independent interests and may
provide some new insights into the IP-like problems.

The rest of the paper is organized as follows. In Section 2,
we formalize the notations, review MPKC in a conceptual
level, and define IP-like problems. In Section 3, we elaborate
on the proposed sievemethod for the PLE problem. Section 4
provides some concluding remarks.

2. Preliminaries

2.1. Notations. Throughout this paper, the following nota-
tions will be used.We use F𝑞 to denote a finite field with order
𝑞 being a prime power. In this paper, we only consider the

PLE problem over F𝑞 with 𝑞 > 2. We use bold lowercase
letters for vectors and bold capital letters for matrices. The
generalized linear group over F𝑞 is denoted asGL(F𝑞, 𝑛)which
consists of all 𝑛-dimensional invertible matrices over F𝑞. For
two sets 𝐴 and 𝐵, we define 𝐴 + 𝐵 = {𝑎 + 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}

and 𝐴 − 𝐵 = {𝑎 − 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}. For a set 𝑆 ⊂ F𝑛
𝑞
and a

nonzero element 𝑎 ∈ F𝑞, we define 𝑎𝑆 = {𝑎s : s ∈ 𝑆} and
𝑆/𝑎 = {𝑎

−1s : s ∈ 𝑆}, where 𝑎−1 stands for the inverse of 𝑎
in F𝑞. For a map S : F𝑛

𝑞
→ F𝑚
𝑞
and a vector s ∈ F𝑚

𝑞
, we use

the symbol S−1(s) to denote the preimages set of s under the
map S; namely, S−1(s) = {x ∈ F𝑛

𝑞
: S(x) = s}.

2.2. Multivariate Public Key Cryptosystems. The multivariate
public key cryptosystems almost always follow the following
designs [5]; namely, first define an easy-to-invert central
map and then disguise the central map as a seeminglyhard
nonlinear map via two invertible affine transformations.

Key Generation. Let F𝑞 be a finite field with order 𝑞 being
a prime power. Firstly, define a nonlinear central map S :

F𝑛
𝑞
→ F𝑚
𝑞
; namely, for x ∈ F𝑛

𝑞
, S(x) = (𝑠1(x), . . . , 𝑠𝑚(x)). In

case of a public key encryption scheme, we require that for
any b ∈ F𝑚

𝑞
, all the solutions x ∈ F𝑛

𝑞
(if the solutions exist) to

the system of nonlinear equationsS(x) = b can be efficiently
determined; namely, S−1(b) = {x ∈ F𝑛

𝑞
: S(x) = b}. In

case of a digital signature scheme, we require that for any
b ∈ F𝑚

𝑞
, we can efficiently find one solution x ∈ S−1(b) (if

the solutions exist) to the system of nonlinear equations
S(x) = b. Secondly, randomly choose two invertible affine
transformationsL1 : F

𝑛

𝑞
→ F𝑛
𝑞
andL2 : F

𝑚

𝑞
→ F𝑚
𝑞
; namely,

choose invertible matrices M1 (M2, resp.) uniformly and at
random from GL(F𝑞, 𝑛) (GL(F𝑞, 𝑚), resp.) and two vectors
k1 (k2, resp.) uniformly and at random from F𝑛

𝑞
(F𝑚
𝑞
, resp.),

and define the two affine transformations L1 : F
𝑛

𝑞
→ F𝑛
𝑞

and L2 : F
𝑚

𝑞
→ F𝑚
𝑞

as for x ∈ F𝑛
𝑞
, L1(x) = xM1 + k1,

and for y ∈ F𝑚
𝑞
, L2(y) = yM2 + k2. Thirdly, compute the

inverses L−1
1

and L−1
2

of L1 and L2; namely, for x ∈ F𝑛
𝑞
,

L−1
1
(x) = (x−k1)M−11 , and for y ∈ F𝑚

𝑞
,L−1
2
(y) = (y−k2)M−12 .

Finally, computeP = L2 ∘ S ∘L1 : F
𝑛

𝑞
→ F𝑚
𝑞
; namely, for

x ∈ F𝑛
𝑞
,P(x) = L2 ∘ S ∘L1(x) = S(xM1 + k1)M2 + k2. The

public key is the nonlinearmapP, and the secret key consists
of S,L−1

1
, andL−1

2
.

Encryption. For a plaintextm ∈ F𝑛
𝑞
, the corresponding cipher-

text is computed via c = P(m) ∈ F𝑚
𝑞
.

Decryption. Given a ciphertext c ∈ F𝑚
𝑞
, we firstly compute y =

L−1
2
(c) = (c − k2)M−12 . Secondly, compute all the preimages

of y ∈ F𝑚
𝑞

under the nonlinear map S; namely, S−1(y) =
{x ∈ F𝑛

𝑞
: S(x) = y}. Thirdly, for all the vectors x ∈

S−1(y), we compute m = L−1
1
(x) = (x − k1)M−11 to obtain

a set of candidate plaintexts. Finally, we use some redundant
information to exactly pick out the plaintextm.
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The design also applies to digital signature schemes.

Signature. To sign a message m ∈ F𝑚
𝑞
, we firstly compute

z =L−1
2
(m) then invert S to get a pre-image y ∈ S−1(z) and

finally compute x =L−1
1
(y).The vector x ∈ F𝑛

𝑞
is the signature

on the messagem.

Verification.The verifier decides whetherm = P(x) or not. If
the equations are satisfied, the verifier accepts x as the valid
signature of m. Otherwise, the verifier refuses to accept x as
the valid signature ofm.

Remarks. The central map S always has a special structure
in that it allows us to efficiently find the pre-images. So in
some cases, it is useless to keep the central map secret. For
example, the MI [16] central map is S(𝑋) = 𝑋

𝑞
𝜃
+1, which

makes it meaningless to keepS secret. Several paddings were
suggested on the basic construction of MPKC in order to
obtain a higher level of security [30], for example, the plus
method [30], the minus method [30], and so on.

2.3. Definitions. The following definitions are closely related
to the key recovery attacks on multivariate public key cryp-
tosystems.

Definition 1 (IP [7]). Given two nonlinear polynomial maps
S : F𝑛
𝑞
→ F𝑚
𝑞
and P : F𝑛

𝑞
→ F𝑚
𝑞
, find two invertible affine

transformations L1 : F
𝑛

𝑞
→ F𝑛
𝑞
and L2 : F

𝑚

𝑞
→ F𝑚
𝑞
such

that P = L2 ∘ S ∘ L1. Equivalently, find two invertible
matricesM1 ∈ GL(F𝑞, 𝑛) andM2 ∈ GL(F𝑞, 𝑚) and two vectors
k1 ∈ F𝑛

𝑞
and k2 ∈ F𝑚

𝑞
such thatP(x) = S(xM1 + k1)M2 + k2.

When L2 is known or equal to the identity transforma-
tion, we get the definition of the IP1s problem [8, 23].

Definition 2 (IP1s). Given two nonlinear polynomial maps
S : F𝑛
𝑞
→ F𝑚
𝑞
and P : F𝑛

𝑞
→ F𝑚
𝑞
, find an invertible affine

transformationL : F𝑛
𝑞
→ F𝑛
𝑞
such thatP = S ∘L. Equiva-

lently, find an invertible matrix M ∈ GL(F𝑞, 𝑛) and a vector
k ∈ F𝑛
𝑞
such thatP(x) = S(xM + k).

It was shown in [24] that the IP1s problem and the PLE
problem are polynomial-time equivalent. So we only need to
discuss the following PLE problem in order to discuss the IP1s
problem.

Definition 3 (PLE). Given two nonlinear polynomial maps
S : F𝑛
𝑞
→ F𝑚
𝑞
and P : F𝑛

𝑞
→ F𝑚
𝑞
, find an invertible linear

transformationL : F𝑛
𝑞
→ F𝑛
𝑞
such thatP = S ∘L. Equiv-

alently, find an invertible matrix M ∈ GL(F𝑞, 𝑛) such that
P(x) = S(xM).

3. The Proposed Sieve Method for PLE

We pay our attention to a special case of the PLE problem:
the preimages of the central map S are easy to deter-
mine. Namely, we are given two nonlinear polynomial maps

S : F𝑛
𝑞
→ F𝑚
𝑞
andP : F𝑛

𝑞
→ F𝑚
𝑞
and an efficient algorithm

A to solve the preimages of the central map S. We want to
find an invertible matrixM ∈ GL(F𝑞, 𝑛) such that

(𝑝1 (x) , . . . , 𝑝𝑚 (x)) = P (x) = S (xM)

= (𝑠1 (xM) , . . . , 𝑠𝑚 (xM)) .
(1)

3.1. Case of S Being Injective. If S is an easy-to-invert
injective polynomial map, the PLE problem turns out to be
very easy. We randomly choose 𝑛 linearly dependent row
vectors x1, . . . , x𝑛 ∈ F𝑛

𝑞
and denote the matrix consisting of

the 𝑛 vectors as

X = (

x1
...
x𝑛
). (2)

For 𝑖 = 1, . . . , 𝑛, we compute P(x𝑖) = (𝑝1(x𝑖), . . . , 𝑝𝑚(x𝑖)).
Note that P(x𝑖) = S(x𝑖M) = (𝑠1(x𝑖M), . . . , 𝑠𝑚(x𝑖M)), so
y𝑖 = x𝑖M is a solution to the system of equations S(y) =
P(x𝑖). Further noting that S is an easy-to-invert injective
polynomial map, we conclude that y𝑖 = x𝑖M is the unique
solution to the system of equations S(y) = P(x𝑖). So we can
apply the algorithmA to determine the unique solution y𝑖 to
the system of equations S(y) = P(x𝑖). We denote the matrix
consisting of the 𝑛 row vectors y1, . . . , y𝑛 ∈ F𝑛

𝑞
as

Y = (

y1
...
y𝑛
). (3)

We rewrite the equations y𝑖 = x𝑖M for 𝑖 = 1, . . . , 𝑛 in terms of
matrix, so we have Y = XM, from which we immediately get
M = X−1Y.

3.2. General Case. We consider a more general case; namely,
S is an easy-to-invertible noninjective polynomial map.

3.2.1. Basic Idea. The basic idea for the sieve method to solve
the PLE problem is to firstly randomly choose 𝑛 linearly
dependent row vectors x1, . . . , x𝑛 ∈ F𝑛

𝑞
, and then for 𝑖 =

1, . . . , 𝑛, compute P(x𝑖). Note that the system of nonlinear
equations S(y) = P(x𝑖) must have at least a solution y𝑖 =
x𝑖M in that S(y𝑖) = S(x𝑖M) = P(x𝑖). Secondly, we apply
the algorithm A to get the nonempty set of the solutions to
S(y) = P(x𝑖); namely,

S
−1
(P (x𝑖)) = {y ∈ F

𝑛

𝑞
: S (y) = P (x𝑖)} . (4)

However, the noninjectivity of the central polynomial map
S says that the solutions set S−1(P(x𝑖)) may include some
other solutions except y𝑖 = x𝑖M. We are only interested
in the targeted solution y𝑖 = x𝑖M and want to develop a
method to pick out the vector y𝑖 = x𝑖M from all the solutions
in S−1(P(x𝑖)). If for 𝑖 = 1, . . . , 𝑛 we can determine the
corresponding y𝑖 = x𝑖M, we just denote the matrices
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consisting of the row vectors x𝑖 and y𝑖 asX andY, respectively.
Similarly to the discussions in Section 3.1, we can solve the
PLE problem just by computingM = X−1Y.

In what follows, we will design three types of sieves called
multiplicative sieve, differential sieve, and additive sieve,
respectively. When we apply the three sieves to S−1(P(x𝑖)),
we hope that the targeted solution y𝑖=x𝑖M can pass the sieves,
and other useless solutions in S−1(P(x𝑖)) are distilled out as
many as possible. Nowwe discuss some properties of the PLE
problem.

3.2.2. Sieve Strategies. Let x1, . . . , x𝑛 ∈ F𝑛
𝑞
be 𝑛 linearly

dependent row vectors, the set of solutions to the equations
S(y) = P(x𝑖) be S−1(P(x𝑖)), and y𝑖 = x𝑖M ∈ S−1(P(x𝑖)).
We have the following results.

Theorem 4 (multiplicative strategy). For any 𝑎 ̸= 0, 1 in F𝑞,
𝑎y𝑖 is also a solution to the system of nonlinear equations
S(y) = P(𝑎x𝑖); namely, 𝑎y𝑖 ∈ S−1(P(𝑎x𝑖)), or equivalently,
y𝑖 ∈ S−1(P(x𝑖)) ∩ (S−1(P(𝑎x𝑖))/𝑎).

Proof. We first note that y𝑖 = x𝑖M, so 𝑎y𝑖 = 𝑎x𝑖M. Therefore,
we have S(𝑎y𝑖) = S(𝑎x𝑖M) = P(𝑎x𝑖), namely, 𝑎y𝑖 ∈
S−1(P(𝑎x𝑖)); or equivalently, y𝑖 ∈ S−1(P(𝑎x𝑖))/𝑎. Note
that y𝑖 ∈ S−1(P(x𝑖)), so we have y𝑖 ∈ S−1(P(x𝑖)) ∩
(S−1(P(𝑎x𝑖))/𝑎).

The theorem of Multiplicative Strategy implies a method
to sieve out some useless vectors from a set of vectors contain-
ing the targeted vector y𝑖 = x𝑖M. More precisely, we let 𝑆𝑖 ⊂
S−1(P(x𝑖)) such that the targeted vector y𝑖 = x𝑖M ∈ 𝑆𝑖. The
multiplicative sieve algorithm MulSieve given in Algorithm
1 takes input as (F𝑞,S,P, x𝑖, 𝑆𝑖) and outputs a subset 𝑆×

𝑖
of

𝑆𝑖; namely, 𝑆×
𝑖
= MulSieve (F𝑞,S,P, x𝑖, 𝑆𝑖). From the proof

ofMultiplicative Strategy theorem, we know that the targeted
vector y𝑖 = x𝑖M can pass the multiplicative sieve. So the set
𝑆

×

𝑖
output by MulSieve is not empty.
We note that ifS and henceP are homogeneous polyno-

mials, all the preimages in 𝑆𝑖 can pass the multiplicative sieve.
So in this case, we must have 𝑆×

𝑖
= 𝑆𝑖. In general cases, S is

not homogeneous, and the multiplicative sieve method can
sieve out some preimages of 𝑆𝑖.

Theorem 5 (additive strategy). For 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, one must
have that y𝑖 + y𝑗 is a solution to the system of equationsS(y) =
P(x𝑖+x𝑗). That is, if one denotes the solutions set to the system
of nonlinear equations S(y) = P(x𝑖 + x𝑗) as S−1(P(x𝑖 + x𝑗)),
one must have

y𝑖 + y𝑗 ∈ S
−1
(P (x𝑖 + x𝑗))

∩ (S
−1
(P (x𝑖)) +S

−1
(P (x𝑗))) .

(5)

Proof. It is obvious that y𝑖 + y𝑗 ∈ S−1(P(x𝑖)) + S−1(P(x𝑗)).
So we just need to verify y𝑖 + y𝑗 ∈ S−1(P(x𝑖 + x𝑗)); namely,
P(x𝑖 + x𝑗) = S(y𝑖 + y𝑗). Recalling y𝑖 = x𝑖M, y𝑗 = x𝑗M, and
P(x) = S(xM), we immediately have S(y𝑖 + y𝑗) = S((x𝑖 +
x𝑗)M) = P(x𝑖 + x𝑗).

The theorem of Additive Strategy implies another
sieve method called additive sieve method AddSieve in
Algorithm 2. The input of the additive sieve algorithm
AddSieve consists of (F𝑞,S,P, x𝑖, x𝑗, 𝑆𝑖, 𝑆𝑗), where 1 ≤ 𝑖 <

𝑗 ≤ 𝑛, 𝑆𝑖 (𝑆𝑗, resp.) is a subset of S−1(P(x𝑖)) (S−1(P(x𝑗)),
resp.), and y𝑖 ∈ 𝑆𝑖 (y𝑗 ∈ 𝑆𝑗, resp.). The output of AddSieve is
two nonempty sets 𝑆+

𝑖
⊂ 𝑆𝑖 and 𝑆

+

𝑗
⊂ 𝑆𝑗; namely,

(𝑆

+

𝑖
, 𝑆

+

𝑗
) = AddSieve (F𝑞,S,P, x𝑖, x𝑗, 𝑆𝑖, 𝑆𝑗) . (6)

From the proof of Multiplicative Strategy theorem, we know
that the targeted vectors y𝑖 = x𝑖M and y𝑗 = x𝑗M can pass the
additive sieve. So the sets 𝑆+

𝑖
and 𝑆+
𝑗
output by AddSieve are

not empty.
In lines 6–8 of Algorithm 2, if y(𝑖) or y(𝑗) had been put into

𝑆

+

𝑖
or 𝑆+
𝑗
, the algorithm does nothing.

Theorem 6 (differential strategy). For any nonzero vector z ∈
F𝑛
𝑞
and any element 𝑎 ̸= 0, 1 in F𝑞, let the set of the solutions

to the system of nonlinear equations S(y) = P(x𝑖 + z) and
S(y) = P(x𝑖 + 𝑎z) be S−1(P(x𝑖 + z)) and S−1(P(x𝑖 + 𝑎z)),
respectively. One must have

(𝑎 − 1) y𝑖 ∈ 𝑎S
−1
(P (x𝑖 + z)) −S

−1
(P (x𝑖 + 𝑎z)) . (7)

Proof. Note that y𝑖 = x𝑖M, so we have (x𝑖 + z)M = y𝑖 + zM.
From P(x) = S(xM), we get P(x𝑖 + z) = S((x𝑖 + z)M) =
S(y𝑖 + zM). So we have y𝑖 + zM ∈ S−1(P(x𝑖 + z)); namely,

𝑎 (y𝑖 + zM) ∈ 𝑎S−1 (P (x𝑖 + z)) . (8)

We further notice thatP(x𝑖 + 𝑎z) = S((x𝑖 + 𝑎z)M) = S(y𝑖 +
𝑎zM), so we conclude that

y𝑖 + 𝑎zM ∈ S
−1
(P (x𝑖 + 𝑎z)) . (9)

Combining (8) and (9) implies

(𝑎 − 1) y𝑖 = 𝑎 (y𝑖 + zM) − (y𝑖 + 𝑎zM)

∈ 𝑎S
−1
(P (x𝑖 + z)) −S

−1
(P (x𝑖 + 𝑎z)) ,

(10)

from which we complete the proof.

The theorem of Differential Strategy implies another
sieve method called differential sieve method DifSieve in
Algorithm 3. The input of the differential sieve algorithm
DifSieve consists of (F𝑞,S,P, x𝑖, 𝑆𝑖), where 𝑆𝑖 is a subset
of S−1(P(x𝑖)) and y𝑖 ∈ 𝑆𝑖. The output of DifSieve is a
nonempty set 𝑆−

𝑖
⊂ 𝑆𝑖; namely, 𝑆−

𝑖
= DifSieve (F𝑞,S,P,

x𝑖, 𝑆𝑖). From the proof of Differential Strategy theorem, we
know that the targeted vectors y𝑖 = x𝑖M can pass the differ-
ential sieve. So the set 𝑆−

𝑖
output by the DifSieve algorithm

is nonempty.

3.3. The Sieve Method. We elaborate on the novel sieve algo-
rithm SieAlg for solving the PLE problem as in Algorithm 4.
The input for the sieve algorithm contains the description of
the finite field F𝑞 and two multivariate nonlinear polynomial
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(1) Set the set 𝑆×
𝑖
= Φ. //Φ denotes an empty set.

(2) Choose an element 𝑎
𝑖
̸= 0, 1 uniformly and randomly from F

𝑞
and computeP(𝑎

𝑖
x
𝑖
).

(3) for each vector y ∈ 𝑆
𝑖
do

(4) Compute S(𝑎
𝑖
y).

(5) if S(𝑎
𝑖
y) = P(𝑎

𝑖
x
𝑖
) then

(6) Add y to the set 𝑆×
𝑖
.

(7) end if
(8) end for
(9) return 𝑆×

𝑖
.

Algorithm 1: Multiplicative sieve: MulSieve (F
𝑞
,S,P, x

𝑖
, 𝑆
𝑖
).

(1) Set the two sets 𝑆+
𝑖
= Φ and 𝑆+

𝑗
= Φ.

(2) ComputeP (x
𝑖
+ x
𝑗
).

(3) for each y(𝑖) ∈ 𝑆
𝑖
do

(4) for each y(𝑗) ∈ 𝑆
𝑗
do

(5) Compute S (y(𝑖) + y(𝑗)).
(6) if P (x

𝑖
+ x
𝑗
) = 𝑆 (y(𝑖) + y(𝑗)) then

(7) Add y(𝑖) to 𝑆+
𝑖
, and y(𝑗) to 𝑆+

𝑗
, respectively.

(8) end if
(9) end for
(10) end for
(11) return (𝑆+

𝑖
, 𝑆

+

𝑗
).

Algorithm 2: Additive sieve: AddSieve (F
𝑞
,S,P, x

𝑖
, x
𝑗
, 𝑆
𝑖
, 𝑆
𝑗
).

maps S : F𝑛
𝑞
→ F𝑚
𝑞
and P : F𝑛

𝑞
→ F𝑚
𝑞
. The output of the

sieve algorithm is either an invertible matrix M ∈ GL(F𝑞, 𝑛)
such that P(x) = S(xM) or a failure symbol ⊥. We assume
that the central map S is easy to invert; namely, there exists
an efficient algorithm A to compute all the preimages of S.
The proposed sieve algorithm runs as in Algorithm 4.

3.4. Analysis. We analyze the computational complexity of
the proposed sieve algorithm for the PLE problem.We denote
the computational costs for determining the preimages set
of the polynomial central map S as Δ. Note that we assume
that the central map S is easy to invert, so Δ is upper-
bounded by a polynomial about the number 𝑛 of the variables
and the number 𝑚 of the involved equations. We let the
computational costs for computing S(x) for any x ∈ F𝑛

𝑞
as 𝛿.

Note thatP(x) = S(xM), so for any x ∈ F𝑛
𝑞
, it requires about

the same computational costs 𝛿 to computeP(x). We denote
the upper bound for the number of preimages of a vector b ∈
F𝑚
𝑞

under the central map S as 𝑙; namely, the preimages set
S−1(b) has at most 𝑙 vectors. Note that we assume that A is
a polynomial-time algorithm to find all the preimages for the
central map S, so 𝑙 is also polynomially bounded.

In the algorithm initialization phase of the sieve algo-
rithm SieAlg for the PLE problem, we need to compute
P(x𝑖) and the pre-image setS−1(P(x𝑖)) for each 𝑖 = 1, . . . , 𝑛.
So in the algorithm initialization phase, the computational
costs are measured as O(𝑛(Δ + 𝛿)).

In the multiplicative sieve phase, for each 𝑖 = 1, . . . , 𝑛,
we need to compute P(𝑎𝑖x𝑖), which costs O(𝑛𝛿). Then for
each y ∈ S−1(P(x𝑖)), we need to compute S(𝑎𝑖y), so the
computational costs are O(𝑛𝑙𝛿). So the total costs in the
multiplicative sieve phase are O(𝑛𝛿 + 𝑛𝑙𝛿) = O(𝑛𝑙𝛿).

In the additive sieve phase, for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, we need to
compute P(x𝑖 + x𝑗), which costs O(𝑛2𝛿). For 1 ≤ 𝑖 < 𝑗 ≤ 𝑛,
for each y(𝑖) ∈ 𝑆×

𝑖
and for each y(𝑗) ∈ 𝑆×

𝑗
, we need to compute

S(y(𝑖)+y(𝑗)), which costO(𝑛2𝑙2𝛿). So the computational costs
in the additive sieve phase are O(𝑛2𝑙2𝛿).

In the differential sieve phase, for each 𝑖 = 1, . . . , 𝑛, we
need to computeP(x𝑖 + z𝑖),P(x𝑖 + 𝑎𝑖z𝑖), and the preimages
sets S−1(P(x𝑖 + z𝑖)) and S−1(P(x𝑖 + 𝑎𝑖z𝑖)). In this step, the
computational costs are O(𝑛𝛿 + 𝑛Δ). We also need to do
exhaustive search for y ∈ 𝑆

+

𝑖
, which costs O(𝑙). So during

the differential sieve phase, we need to do O(𝑛𝛿 + 𝑛Δ + 𝑙)

computations.
Finally, the sieve method needs to compute M = X−1Y,

which costs O(𝑛3).
To summarize, the computational costs for the sieve

algorithm are the sum of the aforementioned computational
costs. So the computational complexity of the sieve algorithm
is O(𝑛2𝑙2𝛿 + 𝑛Δ + 𝑙 + 𝑛3). Therefore, the proposed sieve algo-
rithm is polynomial-time if there exists a polynomial-time
algorithm A to determine the preimages set of the central
map S.

We remark on the sieve algorithm as follows. In the sieve
algorithm, we assume that the order of the underlying finite
field F𝑞 is 𝑞 > 2. If the PLE problem is defined over F2, we can
consider the PLE problem over some extension field of F2 in
order to make the proposed sieve algorithm applicable. The
proposed sieve algorithm does not sieve out the y𝑖 satisfying
y𝑖 = x𝑖M. In other words, the proposed sieve algorithm does
not sieve out the right answer for the PLE problem. When
the algorithm quits and fails to output the right answer, we
can reimplement the sieve algorithm one more time in order
to increase the probability that we can solve the PLE problem.

4. Conclusions

In this paper, we developed a newmethod for solving the IP1s
problem. It is shown that if there exists a polynomial-time
algorithm for determining all the preimages of the central
map S, the proposed sieve algorithm for the PLE problem is
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(1) Set the set 𝑆−
𝑖
= Φ.

(2) Randomly choose an element 𝑎
𝑖
̸= 0, 1 from F

𝑞
and a nonzero vector

z
𝑖
∈ F𝑛
𝑞
.

(3) ComputeP (x
𝑖
+ z
𝑖
) andP (x

𝑖
+ 𝑎
𝑖
z
𝑖
).

(4) Compute the pre-images sets S−1 (P (x
𝑖
+ z
𝑖
)) and S−1 (P (x

𝑖
+ 𝑎
𝑖
z
𝑖
)).

(5) for each y ∈ 𝑆
𝑖
do

(6) if (𝑎
𝑖
− 1) y ∈ 𝑎

𝑖
S−1 (P (x

𝑖
+ z
𝑖
)) − S−1 (P (x

𝑖
+ 𝑎
𝑖
z
𝑖
)) then

(7) Add y to 𝑆−
𝑖
.

(8) end if
(9) end for
(10) return 𝑆−

𝑖

Algorithm 3: Differential sieve: DifSieve (F
𝑞
,S,P, x

𝑖
, 𝑆
𝑖
).

(1) Randomly choose n linearly independent vectors x
1
, . . . , x

𝑛
∈ F𝑛
𝑞
. Store

the n row vectors x
𝑖
as an invertible n-dimensional matrix X.

(2) for 𝑖 = 1, . . . , 𝑛 do
(3) ComputeP(x

𝑖
) and the pre-image set S−1 (P (x

𝑖
)).

(4) Store the set 𝑆
𝑖
= S−1 (P (x

𝑖
)).

(5) end for //Algorithm Initialization.
(6) for 𝑖 = 1, . . . , 𝑛 do
(7) Run MulSieve(F

𝑞
,S,P, x

𝑖
, 𝑆
𝑖
) and assign the output to 𝑆

𝑖
.

(8) end for //Multiplicative Sieve.
(9) for 𝑖 = 1, . . . , 𝑛 − 1 do
(10) for 𝑗 = 𝑖 + 1, . . . , 𝑛 do
(11) Run AddSieve(F

𝑞
,S,P, x

𝑖
, x
𝑗
, 𝑆
𝑖
, 𝑆
𝑗
) and assign the output to 𝑆

𝑖

and 𝑆
𝑗
.

(12) end for
(13) end for //Additive Sieve.
(14) for 𝑖 = 1, . . . , 𝑛 do
(15) Run DifSieve(F

𝑞
,S,P, x

𝑖
, 𝑆
𝑖
) and assign the output to 𝑆

𝑖
.

(16) end for //Differential Sieve.
(17) for 𝑖 = 1, . . . , 𝑛 do
(18) Randomly choose a vector from 𝑆

𝑖
and assign the vector to y

𝑖
.

(19) end for
(20) Denote the set of vectors y

1
, . . . , y

𝑛
as a matrix Y.

(21) ComputeM = X−1Y.
(22) if P (x) = S (xM) then
(23) return M.
(24) else
(25) return ⊥.
(26) end if

Algorithm 4: The sieve algorithm for PLE: SieAlg (F
𝑞
,S,P).

efficient. As an application of the proposed sieve algorithm for
the IP1s problem, we can show that it is infeasible to construct
multivariate public key encryption schemes from the IP1s
problem due to the following reasons.

(i) Multivariate public key encryption schemes require
that the central map must be easy-to-invert.

(ii) Multivariate public key encryption schemes require
that ciphertext must be decipherable. So for any
vector b ∈ F𝑛

𝑞
, it must be computationally feasible

to determine all the preimages of b under the central
mapS. This means that the number of the preimages
of the central mapSmust be polynomially bounded.

The above both things demonstrate that the proposed sieve
algorithm is applicable to the IP1s problem used in multivari-
ate public key encryption schemes.

As a new method for solving the IP-like problems,
the proposed sieve method is far from perfect. So further
discussions on the new method belong to our future work.
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