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A differential invariant is a function defined on the jet space of functions that remains the same under a group action. It is an
important concept to solve the equivalence problem. This paper presents an effective method to derive a special type of affine
differential invariants. Given some functions defined on the plane and an affine group acting on the plane, there are induced actions
of the group on the functions and on the derivative functions of the functions. Affine differential invariants of these functions are
useful in many applications. However, there has been little systematic study of this problem at present. No clear and simple results
are available for application users to use directly. We propose a direct and simple method to construct affine differential invariants
in this situation. Some useful explicit formulas of affine differential invariants of 2D functions are presented.

1. Introduction

The concept of an invariant is ubiquitous in science. It is
crucial to solve the equivalence problem. The fundamental
equivalence problem is to determine whether two objects of
a set of objects are equivalent with respect to a given equiv-
alence relation. An invariant with respect to the equivalence
relation is a function defined on the set of objects that is con-
stant on the equivalence classes. Two objects are not equiv-
alent if they have different invariants. The classification
problem can be solved by deriving a system of invariants that
separates any two equivalence classes. When a set of objects
is acted on by a group, invariants can be used to classify the
set of objects under the action of the group. In this case the
equivalence classes are the orbits of the group.

Classical invariant theory originated in the 19th century
with the study of constructing (relative) invariants of a system
of forms [1–4]. In this case, the invariants are polynomial
functions on the coefficients of a system of forms. Algebraic
methods for deriving (relative integral) invariants were devel-
oped during this period. Classical invariant theory is closely
related to projective geometry. The vanishing of a form in 𝑛
variables corresponds to a hypersurface in an 𝑛 − 1-dimen-
sional projective space. The invariants are then used to
classify hypersurfaces into projective equivalence classes.

Differential invariants were introduced and studied by
Lie and Tresse in the late 19th century [5, 6]. A differential
invariant is a function defined on a jet space that is invariant
under the action of a Lie group. Given 𝑞 functions with 𝑝

independent variables, a jet space is defined by considering
the independent variables, the dependent variables, and the
derivatives of the dependent variables as functionally inde-
pendent coordinates of the space. Since differential equations
are surfaces in the jet space, differential invariants serve to
classify differential equations into equivalence classes. If one
differential equation is solved in an equivalence class, then all
differential equations in the equivalence class are solved.

The idea of an invariant is important in computer vision
[7–9]. Two views of a 3D scene are geometrically related by
the epipolar constraint. Two views of a planar object are geo-
metrically related by a projective transformation. Invariants
of objects arewidely used tomatch two images that are related
by a geometric transformation. Apart from their direct appli-
cation in object recognition, differential invariants provide a
mathematical foundation to design local feature detectors of
images.

An elegant tool for deriving differential invariants is the
moving frame method [10–22]. The concept of moving
frames has a long history. Cartan derived some differential
invariants based on his moving frame method [10, 11].
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The method was generalized by Fels and Olver for gen-
eral transformation groups [12, 13]. Differential invariants of
one-dimensional manifolds are well studied. There are a
few papers devoted to the differential invariants of surfaces
[18–22].

This paper presents an effectivemethod to derive a special
type of affine differential invariants. Given some functions
defined on the plane and an affine group acting on the plane,
there are induced actions of the group on the functions
and on the derivative functions of the functions. Affine
differential invariants of these functions are useful in many
applications. However, we have found little systematic study
of this problem at present. No clear and simple results are
available for application users to use directly. We propose
a direct and simple method to construct affine differential
invariants in this situation. Some useful formulas of affine
differential invariants are presented in explicit form.

The rest of the paper is organized as follows. In Section 2,
we define the basic concepts and notation. In Section 3,
we present a few theorems on the properties of the affine
differential invariants. In Section 4, we present the basic
theorem for constructing the affine differential invariants.We
give a few explicit formulas of affine differential invariants in
Section 5 for ordinary people to user directly. We conclude in
Section 6.

2. The Basic Concepts and Notation

In this section, we introduce the basic concepts and define
the notation we will use. In what follows, we take the ground
field to be R, the field of real numbers. Given a group 𝐺 and
a space 𝑆, an action 𝛼 of 𝐺 on 𝑆 is a map 𝛼 : 𝐺 × 𝑆 → 𝑆 such
that 𝛼(𝑒, 𝑥) = 𝑥 and 𝛼(𝑔, 𝛼(ℎ, 𝑥)) = 𝛼(𝑔ℎ, 𝑥) for all 𝑔, ℎ ∈ 𝐺
and 𝑥 ∈ 𝑆, where 𝑒 is the unit element of 𝐺.

A group 𝐺 acting on a space 𝑆 is called a transformation
group if there is a group homomorphism 𝜌 : 𝐺 → 𝛼

𝑋

mapping 𝐺 to the group of invertible maps on 𝑋 induced by
the action 𝛼. That is, the action of a transformation group
𝐺 preserves the structure endowed on 𝑆. The name of a
transformation group reflects to a certain extent the behavior
of the action and the structure endowed on 𝑆.

A 𝐺 invariant of 𝑆 under the action of 𝛼 is a real valued
functionI defined on 𝑆 such that

I (𝛼 (𝑔, 𝑥)) = I (𝑥) , (1)

for all 𝑔 ∈ 𝐺 and 𝑥 ∈ 𝑆. That is,I is constant on the orbits of
𝐺.

Given an action 𝛼 of a group 𝐺 on a space 𝑆, there is an
induced action 𝜇 on the set of smooth functions C∞(𝑆,R)
from 𝑆 to R. The action 𝜇 is usually defined as 𝜇 : (𝑔, 𝑓) →

𝜇(𝑔, 𝑓) for 𝑔 ∈ 𝐺 and 𝑓 ∈ C∞(𝑆,R), where 𝜇(𝑔, 𝑓)(𝑥) :=
𝑓(𝛼(𝑔

−1
, 𝑥)) for 𝑥 ∈ 𝑆.

In this paper, we will denote a sequence by ⟦𝑛
𝑖=1
𝑎
𝑖
. That is,

⟦
𝑛

𝑖=1
𝑎
𝑖
= 𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
. (2)

The 𝑛th order partial derivative of a smooth function 𝑢(𝑥, 𝑦)
is denoted by 𝑢

𝑖,𝑛−𝑖
:

𝑢
𝑖,𝑛−𝑖

=

𝜕
𝑛
𝑢 (𝑥, 𝑦)

𝜕𝑥
𝑖
𝜕𝑦
𝑛−𝑖

. (3)

Given 𝑞 smooth functions ⟦
𝑞

𝑖=1
𝑢
𝑖 that depend on 𝑝

independent variables ⟦𝑝
𝑖=1
𝑥
𝑖, the 𝑛th jet spaceJ𝑛(𝑋×𝑈

(𝑛)
) is

an Euclidean space of dimension 𝑝 + 𝑞(𝑝 + 𝑛)!𝑝!𝑛!, where 𝑋
is the space whose coordinates are the independent variables
⟦
𝑝

𝑖=1
𝑥
𝑖 and 𝑈(𝑛) is the fiber space whose coordinates are the

functions ⟦𝑞
𝑖=1
𝑢
𝑖 and their derivatives up to the order 𝑛. These

coordinates are assumed to be functionally independent.
In this paper, we study smooth functions with two

variables 𝑥 and 𝑦. In this case a point in the 𝑛th jet space J
has the following form:

Υ = (𝑥, 𝑦, ⟦
𝑞

𝑖=1
𝑢
𝑖
, ⟦
𝑞

𝑘=1
⟦
𝑛

𝑗=1
⟦
𝑗

𝑖=0
𝑢
𝑘

𝑖,𝑗−𝑖
) . (4)

After defining the action of a group 𝐺 on functions, we
can proceed to define the group action on derivatives of
functions.This induced action is called the prolonged action.
A differential invariant is a function defined on jet space J,
that is, invariant under the prolonged group action.

Let𝐺𝐿(2,R) denote the general linear group of all invert-
ible matrices of order 2 over R. An affine transformation
group A(2) is the group 𝐺𝐿(2,R) ⋉ R2 acting on R2 via the
following:

𝛼 (𝑔, 𝑥) → 𝐴𝑥 + 𝑏, (5)

where 𝑔 = (𝐴, 𝑏) ∈ A(2), 𝐴 ∈ 𝐺𝐿(2,R), and 𝑏 ∈ R2.
In order to study the specific properties of affine differential
invariants, we would like to write an affine transformation in
the following explicit form:

𝑥 = 𝑎𝑥 + 𝑏𝑦 + 𝑒,

𝑦 = 𝑐𝑥 + 𝑑𝑦 + 𝑓,

(6)

where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ∈ R and (𝑎𝑑 − 𝑏𝑐) ̸= 0. The point
(𝑥, 𝑦) is called the transformed point. This convention is not
obligatory. From the point of view of transformation, each
one of (𝑥, 𝑦) and (𝑥, 𝑦) is the transformed point of the other.

Under the affine transformation (6), the relation between
a smooth function 𝑢(𝑥, 𝑦) and the transformed function
�̃�(𝑥, 𝑦) is as follows:

�̃� (𝑥, 𝑦) = �̃� (𝑎𝑥 + 𝑏𝑦 + 𝑒, 𝑐𝑥 + 𝑑𝑦 + 𝑓) = 𝑢 (𝑥, 𝑦) . (7)

Likewise, which one of 𝑢(𝑥, 𝑦) and �̃�(𝑥, 𝑦) is called the
transformed function is just a point of view. The 𝑛th order
partial derivative of the transformed function �̃�(𝑥, 𝑦) is
denoted by the following:

�̃�
𝑖,𝑛−𝑖

=

𝜕
𝑛
�̃� (𝑥, 𝑦)

𝜕𝑥
𝑖
𝜕𝑦
𝑛−𝑖

. (8)
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A relative affine differential invariant with respect to
transformation (6) is a polynomialI defined on the jet space
J such that

I (⟦
𝑞

𝑘=1
⟦
𝑛

𝑗=1
⟦
𝑗

𝑖=0
�̃�
𝑘

𝑖,𝑗−𝑖
) =

1

(𝑎𝑑 − 𝑏𝑐)
𝑤
I (⟦
𝑞

𝑘=1
⟦
𝑛

𝑗=1
⟦
𝑗

𝑖=0
𝑢
𝑘

𝑖,𝑗−𝑖
) ,

(9)

where 𝑤 is called the weight of the differential invariant.
The degree of a term in I is the sum of the exponents of
the derivatives in the term. From the principles of invariant
theory, it suffices to consider only homogeneous polynomials.
In this case, all terms inI have the same degree, which will
be called the degree of the differential invariant. The order
of the differential invariant is the highest order of derivative
occurring inI. It is easy to see that an invariant in the sense
of (1) can be constructed directly if two relative invariants are
known. Fromnowon, whenwe speak of invariants, we always
mean relative invariants in the sense of (9).

The definition of affine differential invariant in (9) does
not include 𝑥, 𝑦, and 𝑢(𝑥, 𝑦). The reason for not including
𝑢(𝑥, 𝑦) is that it is always invariant under affine transfor-
mation (6). The inclusion of 𝑢(𝑥, 𝑦) would be redundant.
The reason for not including 𝑥 and 𝑦 is that any nontrivial
polynomial of 𝑥 and 𝑦 cannot be an affine invariant. We will
prove this in the next section.

3. The Properties of Affine
Differential Invariants

In this section, we derive a few properties of the differential
invariants of functions defined on the plane under the action
of the affine group A(2). These properties are important for
constructing affine differential invariants. We begin with a
proof of the proposition we claimed in the last section.

Theorem 1. An affine invariant polynomialI cannot contain
𝑥 or 𝑦.

Proof. It suffices to show that a translation invariant polyno-
mial I cannot contain 𝑥 or 𝑦. Let I(𝑥, 𝑦, ⟦

𝑞

𝑘=1
⟦
𝑛

𝑗=1
⟦
𝑗

𝑖=0
𝑢
𝑘

𝑖,𝑗−𝑖
)

be a translation invariant polynomial. After a translation of
the following form:

𝑥 = 𝑥 + 𝑒, 𝑦 = 𝑦 + 𝑓, (10)

we have the following identities:
�̃�
𝑖,𝑛−𝑖

= 𝑢
𝑖,𝑛−𝑖

, (11)

for all 𝑛 ≥ 1 and 0 ≤ 𝑖 ≤ 𝑛. According to the definition of
affine differential invariant, using identities in (11), we have
the following:

I (𝑥, 𝑦, ⟦
𝑞

𝑘=1
⟦
𝑛

𝑗=1
⟦
𝑗

𝑖=0
𝑢
𝑘

𝑖,𝑗−𝑖
) = I (𝑥, 𝑦, ⟦

𝑞

𝑘=1
⟦
𝑛

𝑗=1
⟦
𝑗

𝑖=0
𝑢
𝑘

𝑖,𝑗−𝑖
) ,

(12)

under translation transformation (10). Differentiating both
sides of (12) with respect to 𝑒, we have the following:

0 =

𝜕I

𝜕𝑥

𝜕𝑥

𝜕𝑒

+

𝜕I

𝜕𝑦

𝜕𝑦

𝜕𝑒

+∑

𝜕I

𝜕𝑢
𝑘

𝑖,𝑗−𝑖

𝜕𝑢
𝑘

𝑖,𝑗−𝑖

𝜕𝑒

. (13)

Since

𝜕𝑥

𝜕𝑒

= 1,

𝜕𝑦

𝜕𝑒

= 0,

𝜕𝑢
𝑘

𝑖,𝑗−𝑖

𝜕𝑒

= 0,
(14)

for all 𝑖, 𝑗, and 𝑘 under consideration, we have the following:

𝜕I

𝜕𝑥

= 0. (15)

That is,I does not depend on 𝑥. Similarly, we can prove that
I does not depend on 𝑦.

Since �̃�
𝑖,𝑛−𝑖

= 𝑢
𝑖,𝑛−𝑖

for all 𝑛 ≥ 1 and 0 ≤ 𝑖 ≤ 𝑛 under
translation transformation, we immediately have the follow-
ing theorem.

Theorem 2. Any polynomial function I(⟦
𝑞

𝑘=1
⟦
𝑛

𝑗=1
⟦
𝑗

𝑖=0
𝑢
𝑘

𝑖,𝑗−𝑖
)

defined on a jet space of two dimensional functions is trans-
lation invariant.

Now we give a theorem that is useful for deriving proper-
ties of the affine differential invariants.

Theorem 3. Every affine transformation of the form (6) is
equivalent to successively performing the following four types
of transformations:

𝑥 = 𝑎𝑥, 𝑦 = 𝑑𝑦, (𝑎, 𝑑 ∈ R, 𝑎𝑑 ̸= 0) , (16)

𝑥 = 𝑥 + 𝑏𝑦, 𝑦 = 𝑦, (𝑏 ∈ R) , (17)

𝑥 = 𝑥, 𝑦 = 𝑐𝑥 + 𝑦, (𝑐 ∈ R) , (18)

𝑥 = 𝑥 + 𝑒, 𝑦 = 𝑦 + 𝑓, (𝑒, 𝑓 ∈ R) . (19)

Proof. An affine transformation of the form (6) is equivalent
to a linear transformation followed by a translation. It is
proved that every binary linear transformation is a product
of linear transformations of the forms (16), (17), and (18) [1].
Thus, every affine transformation is composed of transforma-
tions of the forms (16), (17), and (18) plus a translation of the
form (19).

We now prove a theorem which describes relations
between the original derivative functions and the trans-
formed derivative functions under the 2D affine action.

Theorem 4. Let 𝑢(𝑥, 𝑦) be a smooth function defined on the
plane, under the action of affine group A(2) defined in (6):

𝑢
𝑖,𝑛−𝑖

=

𝑖

∑

𝑗=0

𝑛−𝑖

∑

𝑘=0

(

𝑖

𝑗
)(

𝑛 − 𝑖

𝑘
) 𝑎
𝑗
𝑐
𝑖−𝑗
𝑏
𝑘

× 𝑑
𝑛−𝑖−𝑘

�̃�
𝑗+𝑘,𝑛−𝑗−𝑘

, 𝑛 ≥ 1, 0 ≤ 𝑖 ≤ 𝑛.

(20)

Proof. We prove the theorem by induction on 𝑛. For the base
case 𝑛 = 1, since

𝑢
10
= 𝑎�̃�
10
+ 𝑐�̃�
01
,

𝑢
01
= 𝑏�̃�
10
+ 𝑑�̃�
01
,

(21)
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the statement is true. Now suppose that the theorem holds for
𝑛 = 𝑚 > 1. Then we have the following:

𝑢
𝑖,𝑚+1−𝑖

=

𝜕

𝜕𝑦

(𝑢
𝑖,𝑚−𝑖

)

=

𝑖

∑

𝑗=0

𝑚−𝑖

∑

𝑘=0

(

𝑖

𝑗
)(

𝑚 − 𝑖

𝑘
) 𝑎
𝑗
𝑐
𝑖−𝑗
𝑏
𝑘+1

× 𝑑
𝑚+1−𝑖−(𝑘+1)

�̃�
𝑗+𝑘+1,𝑚+1−𝑗−(𝑘+1)

+

𝑖

∑

𝑗=0

𝑚−𝑖

∑

𝑘=0

(

𝑖

𝑗
)(

𝑚 − 𝑖

𝑘
) 𝑎
𝑗
𝑐
𝑖−𝑗
𝑏
𝑘

× 𝑑
𝑚+1−𝑖−𝑘

�̃�
𝑗+𝑘,𝑚+1−𝑗−𝑘

=

𝑖

∑

𝑗=0

𝑚+1−𝑖

∑

𝑘=1

(

𝑖

𝑗
)(

𝑚 − 𝑖

𝑘 − 1
) 𝑎
𝑗
𝑐
𝑖−𝑗
𝑏
𝑘

× 𝑑
𝑚+1−𝑖−𝑘

�̃�
𝑗+𝑘,𝑚+1−𝑗−𝑘

+

𝑖

∑

𝑗=0

𝑚−𝑖

∑

𝑘=0

(

𝑖

𝑗
)(

𝑚 − 𝑖

𝑘
) 𝑎
𝑗
𝑐
𝑖−𝑗
𝑏
𝑘

× 𝑑
𝑚+1−𝑖−𝑘

�̃�
𝑗+𝑘,𝑚+1−𝑗−𝑘

=

𝑖

∑

𝑗=0

𝑚+1−𝑖

∑

𝑘=0

(

𝑖

𝑗
)(

𝑚 + 1 − 𝑖

𝑘
) 𝑎
𝑗
𝑐
𝑖−𝑗
𝑏
𝑘

× 𝑑
𝑚+1−𝑖−𝑘

�̃�
𝑗+𝑘,𝑚+1−𝑗−𝑘

,

𝑢
𝑖+1,𝑚−𝑖

=

𝜕

𝜕𝑥

(𝑢
𝑖,𝑚−𝑖

)

=

𝑖

∑

𝑗=0

𝑚𝑖

∑

𝑘=0

(

𝑖

𝑗
)(

𝑚 − 𝑖

𝑘
) 𝑎
𝑗+1
𝑐
𝑖+1−(𝑗+1)

𝑏
𝑘

× 𝑑
𝑚+1−(𝑖+1)−𝑘

�̃�
𝑗+𝑘+1,𝑚+1−(𝑗+1)−𝑘

+

𝑖

∑

𝑗=0

𝑚−𝑖

∑

𝑘=0

(

𝑖

𝑗
)(

𝑚 − 𝑖

𝑘
) 𝑎
𝑗
𝑐
𝑖+1−𝑗

𝑏
𝑘

× 𝑑
𝑚+1−(𝑖+1)−𝑘

�̃�
𝑗+𝑘,𝑚+1−𝑗−𝑘

=

𝑖+1

∑

𝑗=1

𝑚−𝑖

∑

𝑘=0

(

𝑖

𝑗 − 1
)(

𝑚 − 𝑖

𝑘
) 𝑎
𝑗
𝑐
𝑖+1−𝑗

𝑏
𝑘

× 𝑑
𝑚+1−(𝑖+1)−𝑘

�̃�
𝑗+𝑘,𝑚+1−𝑗−𝑘

+

𝑖

∑

𝑗=0

𝑚−𝑖

∑

𝑘=0

(

𝑖

𝑗
)(

𝑚 − 𝑖

𝑘
) 𝑎
𝑗
𝑐
𝑖+1−𝑗

𝑏
𝑘

× 𝑑
𝑚+1−(𝑖+1)−𝑘

�̃�
𝑗+𝑘,𝑚+1−𝑗−𝑘

=

𝑖+1

∑

𝑗=0

𝑚−𝑖

∑

𝑘=0

(

𝑖 + 1

𝑗
)(

𝑚 − 𝑖

𝑘
) 𝑎
𝑗
𝑐
𝑖+1−𝑗

𝑏
𝑘

× 𝑑
𝑚+1−(𝑖+1)−𝑘

�̃�
𝑗+𝑘,𝑚+1−𝑗−𝑘

.

(22)
So, the theorem is true for 𝑛 = 𝑚 + 1. We conclude from the
principle of mathematical induction that the theorem is true
for all positive integer 𝑛.

Next, we proceed to prove several theorems that describe
properties of the affine differential invariants.

Theorem 5. Let

I = ∑C
𝐼

𝑞

∏

𝑖=1

𝑛

∏

𝑗=1

𝑗

∏

𝑘=0

(𝑢
𝑖

𝑘,𝑗−𝑘
)

𝑙𝐼𝑖𝑗𝑘 (23)

be a homogeneous and isobaric polynomial function defined on
the jet space, whereC

𝐼
are coefficients indexed by 𝐼. A necessary

and sufficient condition for the function I to be an invariant
with respect to the transformation (16) is

𝑞

∑

𝑖=1

𝑛

∑

𝑗=1

𝑗

∑

𝑘=0

𝑘𝑙
𝐼𝑖𝑗𝑘

=

𝑞

∑

𝑖=1

𝑛

∑

𝑗=1

𝑗

∑

𝑘=0

(𝑗 − 𝑘) 𝑙
𝐼𝑖𝑗𝑘
. (24)

Proof. Let

I = ∑C
𝐼

𝑞

∏

𝑖=1

𝑛

∏

𝑗=1

𝑗

∏

𝑘=0

(𝑢
𝑖

𝑘,𝑗−𝑘
)

𝑙𝐼𝑖𝑗𝑘 (25)

be an affine differential invariant with respect to the linear
transformation (16). From (20), we have the following:

𝑢
𝑖,𝑛−𝑖

= 𝑎
𝑖
𝑑
𝑛−𝑖
�̃�
𝑖,𝑛−𝑖

. (26)
Substituting (26) into (25), we have the following:

I = ∑C
𝐼

𝑞

∏

𝑖=1

𝑛

∏

𝑗=1

𝑗

∏

𝑘=0

(𝑢
𝑖

𝑘,𝑗−𝑘
)

𝑙𝐼𝑖𝑗𝑘

= ∑C
𝐼

𝑞

∏

𝑖=1

𝑛

∏

𝑗=1

𝑗

∏

𝑘=0

(𝑎
𝑘
𝑑
𝑗−𝑘
�̃�
𝑖

𝑘,𝑗−𝑘
)

𝑙𝐼𝑖𝑗𝑘
.

(27)

From the definition in (9), for I to be an affine differential
invariant, there must be an identity of the following form:

∑C
𝐼

𝑞

∏

𝑖=1

𝑛

∏

𝑗=1

𝑗

∏

𝑘=0

(�̃�
𝑖

𝑘,𝑗−𝑘
)

𝑙𝐼𝑖𝑗𝑘

=

1

(𝑎𝑑)
𝜆
∑C
𝐼

𝑞

∏

𝑖=1

𝑛

∏

𝑗=1

𝑗

∏

𝑘=0

(𝑢
𝑖

𝑘,𝑗−𝑘
)

𝑙𝐼𝑖𝑗𝑘
.

(28)

From (27) and (28), we have

∑C
𝐼

𝑞

∏

𝑖=1

𝑛

∏

𝑗=1

𝑗

∏

𝑘=0

(𝑎
𝑘
𝑑
𝑗−𝑘
�̃�
𝑖

𝑘,𝑗−𝑘
)

𝑙𝐼𝑖𝑗𝑘

= (𝑎𝑑)
𝜆
∑C
𝐼

𝑞

∏

𝑖=1

𝑛

∏

𝑗=1

𝑗

∏

𝑘=0

(�̃�
𝑖

𝑘,𝑗−𝑘
)

𝑙𝐼𝑖𝑗𝑘
.

(29)
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Comparing the degrees of 𝑎 and 𝑑 on both sides of (29), we
conclude that

𝜆 =

𝑞

∑

𝑖=1

𝑛

∑

𝑗=1

𝑗

∑

𝑘=0

(𝑗 − 𝑘) 𝑙
𝐼𝑖𝑗𝑘

=

𝑞

∑

𝑖=1

𝑛

∑

𝑗=1

𝑗

∑

𝑘=0

𝑘𝑙
𝐼𝑖𝑗𝑘
.

(30)

This ends the proof.

Theorem 6. A necessary and sufficient condition for a poly-
nomial function I to be an affine differential invariant with
respect to the linear transformation (17) is

OI = 0, (31)

where

O =

𝑞

∑

𝑖=1

𝑛

∑

𝑗=1

𝑗−1

∑

𝑘=0

(𝑗 − 𝑘) 𝑢
𝑖

𝑘+1,𝑗−𝑘−1

𝜕

𝜕𝑢
𝑖

𝑘,𝑗−𝑘

. (32)

Proof. With respect to the linear transformation (17), we have
the following:

�̃�
𝑖,𝑛−𝑖

=

𝑛−𝑖

∑

𝑘=0

(

𝑛 − 𝑖

𝑘
)𝛽
𝑘
𝑢
𝑖+𝑘,𝑛−𝑖−𝑘

, (33)

where 𝛽 = −𝑏. Differentiating both sides of (33) with respect
to 𝛽, we have the following:

𝑑

𝑑𝛽

�̃�
𝑖,𝑛−𝑖

=

𝑛−𝑖

∑

𝑘=1

(

𝑛 − 𝑖

𝑘
) 𝑘𝛽
𝑘−1

𝑢
𝑖+𝑘,𝑛−𝑖−𝑘

=

𝑛−𝑖−1

∑

𝑘=0

(

𝑛 − 𝑖

𝑘 + 1
) (𝑘 + 1) 𝛽

𝑘
𝑢
𝑖+𝑘+1,𝑛−𝑖−𝑘−1

=

𝑛−𝑖−1

∑

𝑘=0

(𝑛 − 𝑖)!

(𝑘 + 1)! (𝑛 − 𝑖 − 𝑘 − 1)!

× (𝑘 + 1) 𝛽
𝑘
𝑢
𝑖+𝑘+1,𝑛−𝑖−𝑘−1

= (𝑛 − 𝑖)

𝑛−𝑖−1

∑

𝑘=0

(

𝑛 − 𝑖 − 1

𝑘
)𝛽
𝑘
𝑢
𝑖+𝑘+1,𝑛−𝑖−𝑘−1

= (𝑛 − 𝑖) �̃�𝑖+1,𝑛−𝑖−1
.

(34)

With respect to the linear transformation (17), an affine
differential invariant has to make the following equation:

I (⟦
𝑞

𝑖=1
⟦
𝑛

𝑗=1
⟦
𝑗

𝑘=0
�̃�
𝑖

𝑘,𝑗−𝑘
) = I (⟦

𝑞

𝑖=1
⟦
𝑛

𝑗=1
⟦
𝑗

𝑘=0
𝑢
𝑖

𝑘,𝑗−𝑘
) . (35)

Holding in the 𝛽. Differentiating both sides of (35) with
respect to 𝛽, we have the following:

𝑞

∑

𝑖=1

𝑛

∑

𝑗=1

𝑗

∑

𝑘=0

𝜕I (⟦
𝑞

𝑖=1
⟦
𝑛

𝑗=1
⟦
𝑗

𝑘=0
�̃�
𝑖

𝑘,𝑗−𝑘
)

𝜕�̃�
𝑖

𝑘,𝑗−𝑘

𝑑�̃�
𝑖

𝑘,𝑗−𝑘

𝑑𝛽

= 0. (36)

Substituting (34) into (36), we have the following:
𝑞

∑

𝑖=1

𝑛

∑

𝑗=1

𝑗

∑

𝑘=0

(𝑗 − 𝑘) �̃�
𝑖

𝑘+1,𝑗−𝑘−1

𝜕I (⟦
𝑞

𝑖=1
⟦
𝑛

𝑗=1
⟦
𝑗

𝑘=0
�̃�
𝑖

𝑘,𝑗−𝑘
)

𝜕�̃�
𝑖

𝑘,𝑗−𝑘

= 0.

(37)

This ends the proof.

Similarly, we can prove the following theorem.

Theorem 7. A necessary and sufficient condition for a poly-
nomial function I to be an affine differential invariant with
respect to the linear transformation (18) is

DI = 0, (38)

where

D =

𝑞

∑

𝑖=1

𝑛

∑

𝑗=1

𝑗

∑

𝑘=1

𝑘𝑢
𝑖

𝑘−1,𝑗−𝑘+1

𝜕

𝜕𝑢
𝑖

𝑘,𝑗−𝑘

. (39)

CombiningTheorems 2, 5, 6, and 7, we have the following.

Theorem 8. The necessary and sufficient conditions for a
homogeneous and isobaric polynomial function I to be an
affine differential invariant with respect to the affine transfor-
mation (6) is

OI = 0,

DI = 0,

𝑞

∑

𝑖=1

𝑛

∑

𝑗=1

𝑗

∑

𝑘=0

𝑘𝑙
𝐼𝑖𝑗𝑘

=

𝑞

∑

𝑖=1

𝑛

∑

𝑗=1

𝑗

∑

𝑘=0

(𝑗 − 𝑘) 𝑙
𝐼𝑖𝑗𝑘
.

(40)

4. The Generating Operator of
Affine Differential Invariants

We present direct and simple methods to construct the dif-
ferential invariants in this section. We begin with two special
cases.

Let 𝑢1(𝑥, 𝑦) and 𝑢
2
(𝑥, 𝑦) be two smooth functions in

variables 𝑥 and 𝑦. The Jacobian

𝐽 = det(
𝑢
1

10
𝑢
1

01

𝑢
2

10
𝑢
2

01

) (41)

of the two functions is invariant with respect to the affine
transformation (6). This proposition can be proved through
direct calculation:

det(
𝑢
1

10
𝑢
1

01

𝑢
2

10
𝑢
2

01

)

= det(
𝑎�̃�
1

10
+ 𝑐�̃�
1

01
𝑏�̃�
1

10
+ 𝑑�̃�
1

01

𝑎�̃�
2

10
+ 𝑐�̃�
2

01
𝑏�̃�
2

10
+ 𝑑�̃�
2

01

)

= (𝑎𝑑 − 𝑏𝑐) det(
�̃�
1

10
�̃�
1

01

�̃�
2

10
�̃�
2

01

) .

(42)
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Let 𝑢(𝑥, 𝑦) be a smooth function in variables 𝑥 and 𝑦.The
Hessian

𝐻 = det(𝑢20 𝑢11
𝑢
11

𝑢
02

) (43)

of the function is invariant with respect to the affine transfor-
mation (6). This can be verified by direct calculation also:

det(𝑢20 𝑢11
𝑢
11

𝑢
02

)

= det ( 𝑐
2
�̃�
02
+ 2𝑎𝑐�̃�

11
+ 𝑎
2
�̃�
20
𝑐𝑑�̃�
02
+ 𝑐𝑏�̃�

11
+ 𝑎𝑑�̃�

11
+ 𝑎𝑏�̃�

20

𝑐𝑑�̃�
02
+ 𝑐𝑏�̃�

11
+ 𝑎𝑑�̃�

11
+ 𝑎𝑏�̃�

20
𝑑
2
�̃�
02
+ 2𝑏𝑑�̃�

11
+ 𝑏
2
�̃�
20

)

= det(𝑎 𝑐

𝑏 𝑑
) det(�̃�20 �̃�11

�̃�
11

�̃�
02

) det(𝑎 𝑏

𝑐 𝑑
)

= (𝑎𝑑 − 𝑏𝑐)
2 det(�̃�20 �̃�11

�̃�
11

�̃�
02

) .

(44)

The Jacobian and Hessian are two special cases of a
general method for constructing affine differential invariants
from two smooth functions. The method is presented in the
following theorem.

Theorem9. Let 𝑢1(𝑥, 𝑦) and 𝑢2(𝑥, 𝑦) be two smooth functions
in variables 𝑥 and 𝑦. The following function

𝑟

∑

𝑠=0

(−1)
𝑠
(

𝑟

𝑠
) 𝑢
1

𝑟−𝑠,𝑠
𝑢
2

𝑠,𝑟−𝑠
(45)

is invariant with respect to the affine transformation (6), where
r is a positive integer.

Proof. From Theorem 2, (45) is invariant under translation
transformation. Now we have to show that (45) is also invari-
ant under linear transformations (16), (17), and (18). Under
the linear transformation (16), we have the following:

𝑟

∑

𝑠=0

(−1)
𝑠
(

𝑟

𝑠
) 𝑢
1

𝑟−𝑠,𝑠
𝑢
2

𝑠,𝑟−𝑠

= (𝑎𝑑)
𝑟

𝑟

∑

𝑠=0

(−1)
𝑠
(

𝑟

𝑠
) �̃�
1

𝑟−𝑠,𝑠
�̃�
2

𝑠,𝑟−𝑠
.

(46)

The theorem is true in this case. With respect to the linear
transformation (17), since

𝑢
𝜏

𝑖,𝑛−𝑖
=

𝑛−𝑖

∑

𝑘=0

(

𝑛 − 𝑖

𝑘
) 𝑏
𝑘
�̃�
𝜏

𝑖+𝑘,𝑛−𝑖−𝑘
, 𝜏 = 1, 2, (47)

we have the following:
𝑟

∑

𝑠=0

(−1)
𝑠
(

𝑟

𝑠
) 𝑢
1

𝑟−𝑠,𝑠
𝑢
2

𝑠,𝑟−𝑠

=

𝑟

∑

𝑠=0

𝑠

∑

𝑗=0

𝑟−𝑠

∑

𝑘=0

(−1)
𝑠
𝑏
𝑗+𝑘

(

𝑟

𝑠
)(

𝑠

𝑗
)

× (

𝑟 − 𝑠

𝑘
) �̃�
1

𝑟−𝑠+𝑗,𝑠−𝑗
�̃�
2

𝑠+𝑘,𝑟−𝑠−𝑘

=

𝑟

∑

𝑗=0

𝑟

∑

𝑠=𝑗

𝑟−𝑠

∑

𝑘=0

(−1)
𝑠
𝑏
𝑗+𝑘

(

𝑟

𝑠
)(

𝑠

𝑗
)

× (

𝑟 − 𝑠

𝑘
) �̃�
1

𝑟−𝑠+𝑗,𝑠−𝑗
�̃�
2

𝑠+𝑘,𝑟−𝑠−𝑘

=

𝑟

∑

𝑗=0

𝑟−𝑗

∑

𝑠=0

𝑟−𝑗−𝑠

∑

𝑘=0

(−1)
𝑠+𝑗
𝑏
𝑗+𝑘

(

𝑟

𝑠 + 𝑗
)(

𝑠 + 𝑗

𝑗
)

× (

𝑟 − 𝑠 − 𝑗

𝑘
) �̃�
1

𝑟−𝑠,𝑠
�̃�
2

𝑠+𝑗+𝑘,𝑟−𝑠−𝑗−𝑘

=

𝑟

∑

𝑠=0

𝑟−𝑠

∑

𝑗=0

𝑟−𝑗−𝑠

∑

𝑘=0

(−1)
𝑠+𝑗
𝑏
𝑗+𝑘

(

𝑟

𝑠 + 𝑗
)(

𝑠 + 𝑗

𝑗
)

× (

𝑟 − 𝑠 − 𝑗

𝑘
) �̃�
1

𝑟−𝑠,𝑠
�̃�
2

𝑠+𝑗+𝑘,𝑟−𝑠−𝑗−𝑘

=

𝑟

∑

𝑠=0

𝑟−𝑠

∑

𝑗=0

𝑟−𝑠

∑

𝑘=𝑗

(−1)
𝑠+𝑗
𝑏
𝑘
(

𝑟

𝑠 + 𝑗
)(

𝑠 + 𝑗

𝑗
)

× (

𝑟 − 𝑠 − 𝑗

𝑘 − 𝑗
) �̃�
1

𝑟−𝑠,𝑠
�̃�
2

𝑠+𝑘,𝑟−𝑠−𝑘

=

𝑟

∑

𝑠=0

𝑟−𝑠

∑

𝑘=0

(−1)
𝑠
𝑏
𝑘
𝑟!

𝑘! (𝑟 − 𝑠 − 𝑘)!𝑠!

�̃�
1

𝑟−𝑠,𝑠
�̃�
2

𝑠+𝑘,𝑟−𝑠−𝑘

×

𝑘

∑

𝑗=0

(−1)
𝑗
(

𝑘

𝑗
)

=

𝑟

∑

𝑠=0

𝑟−𝑠

∑

𝑘=0

(−1)
𝑠
𝑏
𝑘
𝑟!

𝑘! (𝑟 − 𝑠 − 𝑘)!𝑠!

�̃�
1

𝑟−𝑠,𝑠
�̃�
2

𝑠+𝑘,𝑟−𝑠−𝑘
0
𝑘

=

𝑟

∑

𝑠=0

(−1)
𝑠
(

𝑟

𝑠
) �̃�
1

𝑟−𝑠,𝑠
�̃�
2

𝑠,𝑟−𝑠
.

(48)

So, the theorem is true in this case. Similarly, we can prove
that the theorem is true in the case of (18). From the principles
of group action, we conclude that the theorem is true.

Although the method presented in Theorem 9 is very
general and can produce infinite number of affine differential
invariants, there are affine differential invariants that cannot
be constructed in this way. We need a method that can derive
completely all affine differential invariants. Classical invariant
theory of binary forms is a well-studied field. There are
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methods to derive a complete set of invariants of a system
of binary forms under the action of the general linear group.
The following theorem establishes a relation between classical
invariant theory of binary forms and affine differential invari-
ants of 2D functions.

Theorem 10. Given a system of binary forms

⟦
𝑞

𝑖=1
⟦
𝑛

𝑗=1

𝑗

∑

𝑘=0

(

𝑗

𝑘
) 𝑎
𝑖

𝑘,𝑗
𝑋
𝑗−𝑘
𝑌
𝑘 (49)

and a set of smooth functions in variables x and y

⟦
𝑞

𝑖=1
𝑢
𝑖
(𝑥, 𝑦) , (50)

the homogeneous and isobaric polynomial function

I (⟦
𝑞

𝑖=1
⟦
𝑛

𝑗=1
⟦
𝑗

𝑘=0
𝑎
𝑖

𝑘,𝑗
) (51)

is an invariant of the system of binary forms in (49)with respect
to the following linear transformation:

𝑋 = 𝜆𝑋 + 𝜅�̃�,

𝑌 = 𝜂𝑋 + 𝜇�̃�

(52)

if and only if the homogeneous and isobaric polynomial func-
tion

I (⟦
𝑞

𝑖=1
⟦
𝑛

𝑗=1
⟦
𝑗

𝑘=0
𝑢
𝑖

𝑘,𝑗−𝑘
) (53)

is an affine differential invariant with respect to affine transfor-
mation (6).

Proof. From Theorem 8, the necessary and sufficient condi-
tions for the homogeneous and isobaric polynomial function

I (⟦
𝑞

𝑖=1
⟦
𝑛

𝑗=1
⟦
𝑗

𝑘=0
𝑢
𝑖

𝑘,𝑗−𝑘
) (54)

to be an affine differential invariant are as follows:

OI (⟦
𝑞

𝑖=1
⟦
𝑛

𝑗=1
⟦
𝑗

𝑘=0
𝑢
𝑖

𝑘,𝑗−𝑘
) = 0,

DI (⟦
𝑞

𝑖=1
⟦
𝑛

𝑗=1
⟦
𝑗

𝑘=0
𝑢
𝑖

𝑘,𝑗−𝑘
) = 0,

𝑞

∑

𝑖=1

𝑛

∑

𝑗=1

𝑗

∑

𝑘=0

𝑘𝑙
𝐼𝑖𝑗𝑘

=

𝑞

∑

𝑖=1

𝑛

∑

𝑗=1

𝑗

∑

𝑘=0

(𝑗 − 𝑘) 𝑙
𝐼𝑖𝑗𝑘
.

(55)

According to theorems of classical invariant theory (see book
Sections I.4 and I.9 in [1], cf. chap.I and chap.II in [3]), the
necessary and sufficient conditions for

I (⟦
𝑞

𝑖=1
⟦
𝑛

𝑗=1
⟦
𝑗

𝑘=0
𝑎
𝑖

𝑘,𝑗
) (56)

to be an invariant of the system of binary forms in (49) are as
follows:

OI (⟦
𝑞

𝑖=1
⟦
𝑛

𝑗=1
⟦
𝑗

𝑘=0
𝑎
𝑖

𝑘,𝑗
) = 0,

DI (⟦
𝑞

𝑖=1
⟦
𝑛

𝑗=1
⟦
𝑗

𝑘=0
𝑎
𝑖

𝑘,𝑗
) = 0,

𝑞

∑

𝑖=1

𝑛

∑

𝑗=1

𝑗

∑

𝑘=0

𝑘𝑙
𝐼𝑖𝑗𝑘

=

𝑞

∑

𝑖=1

𝑛

∑

𝑗=1

𝑗

∑

𝑘=0

(𝑗 − 𝑘) 𝑙
𝐼𝑖𝑗𝑘
,

(57)

where

O =

𝑞

∑

𝑖=1

𝑛

∑

𝑗=1

𝑗−1

∑

𝑘=0

(𝑗 − 𝑘) 𝑎
𝑖

𝑘+1,𝑗

𝜕

𝜕𝑎
𝑖

𝑘,𝑗

,

D =

𝑞

∑

𝑖=1

𝑛

∑

𝑗=1

𝑗

∑

𝑘=1

𝑘𝑎
𝑖

𝑘−1,𝑗

𝜕

𝜕𝑎
𝑖

𝑘,𝑗

.

(58)

It is easy to see that, after a replacement of the correspond-
ing variables, formula OI(⟦

𝑞

𝑖=1
⟦
𝑛

𝑗=1
⟦
𝑗

𝑘=0
𝑢
𝑖

𝑘,𝑗−𝑘
) is the same

as formula OI(⟦
𝑞

𝑖=1
⟦
𝑛

𝑗=1
⟦
𝑗

𝑘=0
𝑎
𝑖

𝑘,𝑗
) and formula

DI(⟦
𝑞

𝑖=1
⟦
𝑛

𝑗=1
⟦
𝑗

𝑘=0
𝑢
𝑖

𝑘,𝑗−𝑘
) is the same as formula

DI(⟦
𝑞

𝑖=1
⟦
𝑛

𝑗=1
⟦
𝑗

𝑘=0
𝑎
𝑖

𝑘,𝑗
). This means that (55) and (57) have the

same truth values. This ends the proof of the theorem.

5. Affine Differential Invariants of Low Orders

By the methods provided in the previous section, it is easy
to construct affine differential invariants of smooth functions
up to any order. A general method for constructing affine
differential invariants of smooth functions uses Theorem 8
directly. To construct all the differential invariants of degree 𝑑
and order 𝑛, we can enumerate all homogeneous and isobaric
polynomial functions of derivatives with unknown coeffi-
cients such that ∑𝑞

𝑖=1
∑
𝑛

𝑗=1
∑
𝑗

𝑘=0
𝑘𝑙
𝐼𝑖𝑗𝑘

= ∑
𝑞

𝑖=1
∑
𝑛

𝑗=1
∑
𝑗

𝑘=0
(𝑗 −

𝑘)𝑙
𝐼𝑖𝑗𝑘

. We then use the conditions OI(⟦
𝑞

𝑖=1
⟦
𝑛

𝑗=1
⟦
𝑗

𝑘=0
𝑢
𝑖

𝑘,𝑗−𝑘
) =

0, DI(⟦
𝑞

𝑖=1
⟦
𝑛

𝑗=1
⟦
𝑗

𝑘=0
𝑢
𝑖

𝑘,𝑗−𝑘
) = 0 to solve these unknown

coefficients, cf. [1]. However, since there is a 1-1 correspon-
dence between affine differential invariants and invariants of
binary forms by Theorem 10, we do not need to derive affine
differential invariants again. Low-degree invariants of binary
forms are known completely [1–4].There are generalmethods
in the classical theory such as the transvectionmethod which
can derive complete sets of invariants up to any order.

We present a few affine differential invariants of low
orders in this section.The invariants are in explicit form.This
is important since application users may not be familiar with
the mathematical background to derive the invariants.

There are two functional independent affine differential
invariants of order two:

I
2

2,1
= 𝑢
20
𝑢
02
− 𝑢
2

11
,

I
2

2,2
= 𝑢
20
𝑢
2

01
− 2𝑢
11
𝑢
01
𝑢
10
+ 𝑢
02
𝑢
2

10
.

(59)

There are four functional independent affine differential
invariants of order three. Two of them have weight three:

I
3

3,1
= 𝑢
30
𝑢
3

01
− 3𝑢
21
𝑢
10
𝑢
2

01

+ 3𝑢
12
𝑢
2

10
𝑢
01
− 𝑢
03
𝑢
3

10
,

I
3

3,2
= 𝑢
30
𝑢
02
𝑢
01
− 2𝑢
21
𝑢
11
𝑢
01
− 𝑢
21
𝑢
02
𝑢
10

+ 𝑢
12
𝑢
20
𝑢
01
+ 2𝑢
12
𝑢
11
𝑢
10
− 𝑢
03
𝑢
20
𝑢
10
.

(60)
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One of them has weight four:

I
4

3,3
= 𝑢
30
𝑢
12
𝑢
02
− 𝑢
30
𝑢
03
𝑢
11
− 𝑢
2

21
𝑢
02

+ 𝑢
21
𝑢
12
𝑢
11
+ 𝑢
21
𝑢
03
𝑢
20
− 𝑢
2

12
𝑢
20
.

(61)

Another third-order affine differential invariant has
weight six:

I
6

3,4
= 𝑢
2

30
𝑢
2

03
− 6𝑢
30
𝑢
21
𝑢
12
𝑢
03

+ 4𝑢
30
𝑢
3

12
− 3𝑢
2

21
𝑢
2

12
+ 4𝑢
3

21
𝑢
03
.

(62)

There are five functional independent affine differential
invariants of order four. One of them has weight six:

I
6

4,1
= 𝑢
40
𝑢
22
𝑢
04
− 𝑢
40
𝑢
2

13

+ 2𝑢
31
𝑢
22
𝑢
13
− 𝑢
2

31
𝑢
04
− 𝑢
3

22
.

(63)

Four of them have weight four:

I
4

4,2
= 𝑢
40
𝑢
04
− 4𝑢
31
𝑢
13
+ 3𝑢
2

22
,

I
4

4,3
= 𝑢
40
𝑢
4

01
− 4𝑢
31
𝑢
10
𝑢
3

01
+ 6𝑢
22
𝑢
2

10
𝑢
2

01

− 4𝑢
13
𝑢
3

10
𝑢
01
+ 𝑢
04
𝑢
4

10
,

I
4

4,4
= 𝑢
40
𝑢
2

02
− 4𝑢
31
𝑢
11
𝑢
02
+ 2𝑢
22
𝑢
20
𝑢
02

+ 4𝑢
22
𝑢
2

11
− 4𝑢
20
𝑢
13
𝑢
11
+ 𝑢
2

20
𝑢
04
,

I
4

4,5
= 𝑢
40
𝑢
03
𝑢
01
− 𝑢
31
(3𝑢
12
𝑢
01
+ 𝑢
03
𝑢
10
)

+ 3𝑢
22
(𝑢
21
𝑢
01
+ 𝑢
12
𝑢
10
) − 𝑢
13
(𝑢
30
𝑢
01
+ 3𝑢
21
𝑢
10
)

+ 𝑢
04
𝑢
30
𝑢
10
.

(64)

Needless to say, the presented invariants all satisfy the
properties (40).There are certainly other forms of invariants.
Thepresented invariants are supposed to be the simplest ones.

6. Conclusion

We have presented an effective method to construct affine
differential invariants of functions defined on the plane.
The method is clear and simple. It is possible to generalize
this method to construct differential invariants of functions
defined on higher dimensional spaces. The proposed differ-
ential invariants may be applied in applications such as com-
puter vision. These are the directions of future research.
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de transformations,” Acta Mathematica, vol. 18, no. 1, pp. 1–88,
1894.

[7] J. L. Mundy and A. Zisserman, Geometric Invariance in Com-
puter Vision, MIT Press, Cambridge, Mass, USA, 1992.

[8] R. Hartley and A. Zisserman,Multiple View Geometry in Com-
puter Vision, Cambridge University Press, Cambridge, Mass,
USA, 2nd edition, 2003.

[9] Y. B.Wang, B. Zhang, and T. S. Yao, “Projective invariants of co-
moments of 2D images,” Pattern Recognition, vol. 43, pp. 3233–
3242, 2010.
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