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Computing the average shortest-path length of a large scale-free network needs much memory space and computation time.
Hence, parallel computing must be applied. In order to solve the load-balancing problem for coarse-grained parallelization, the
relationship between the computing time of a single-source shortest-path length of node and the features of node is studied. We
present a dynamic programming model using the average outdegree of neighboring nodes of different levels as the variable and the
minimum time difference as the target.The coefficients are determined on timemeasurable networks. A native array andmultimap
representation of network are presented to reduce the memory consumption of the network such that large networks can still be
loaded into the memory of each computing core. The simplified load-balancing model is applied on a network of tens of millions
of nodes. Our experiment shows that this model can solve the load-imbalance problem of large scale-free network very well. Also,
the characteristic of this model can meet the requirements of networks with ever-increasing complexity and scale.

1. Introduction

The research on complex networks is developing at a brisk
pace, and significant achievements have been made in recent
years [1–4]. Now it is attracting researchers from various
areas, including mathematics, physics, biology, computer
science, sociology, epidemiology, and others [5].

A scale-free network is a complex network or a connected
graph with the property that the number of links originating
from a given node exhibits a power law distribution [6].Many
networks are conjectured to be scale-free, including World
Wide Web links, biological networks, and social networks.

Like other networks, specific structural features can
characterize a scale-free network, among them are degree
distribution, average shortest-path length (ASPL), clustering
coefficient, and other aspects yet to be explored. Average
shortest-path length is a concept in network topology that
is defined as the average number of steps along the shortest
paths for all possible pairs of network nodes. It is ameasure of
the efficiency of information or mass transport on a network.
Some examples are the average number of clicks which will
lead you fromonewebsite to another, or the number of people

you will have to communicate through on average, to contact
a complete stranger.

The average shortest-path length is defined as follows.
Consider a network 𝐺 with the set of vertices 𝑉. Let
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𝑁(𝑁 − 1), because paths exist between any pair of nodes.
For unweighted directed networks, the time complexity

is 𝑂(𝑁 ∗ (𝑁 + 𝐸)) for computing the all-pairs shortest-path



2 Journal of Applied Mathematics

length using breadth-first-search algorithm [7], where 𝐸 is
the number of edges in 𝐺. For weighted directed network,
the time complexity is 𝑂(𝑁3) using Floyd algorithm [8]. If
the network has millions of nodes or edges, the time needed
in computing will be unbearable. Hence, parallel algorithm
must be used to effectively reduce the computing time.

All-pairs shortest-path length is the sum of single-source
shortest-path length (SSSPL) of each node in 𝐺. There are
two types of parallel methods to compute all-pairs shortest-
path length, the fine-grained parallelization method and
the coarse-grained parallelization method. In fine-grained
parallelization, the computing of the SSSPL for each node is
accomplished using multiple cores to reduce the computing
time [9–11]. Therefore, the time needed in getting the sum
of the SSSPL of every node can be reduced as well. While
in coarse-grained parallelization, suppose that there are 𝑁
nodes in 𝐺 and 𝑃 cores available for computing; then one
core is responsible for the computing of the SSSPL of 𝑁/𝑃
nodes. This kind of parallelization will not reduce the time
needed in computing the SSSPL of one node, but ideally, the
time needed in computing the all-pairs shortest-path length
can be reduced to 1/𝑃 of that of a serial algorithm.

Compared with fine-grained parallelization, coarse-
grained parallelization is much easier to implement on most
parallel computers, because only a reduction operation is
needed after all cores have finished their assignments of
computing the SSSPL of their respective𝑁/𝑃 nodes. In fine-
grained parallelization, apart from a reduction operation in
the end, a lot of scheduling and communication operations
will be needed in computing the SSSPL of each node. These
operationswill decrease the performance of parallelization, as
there aremore andmore computing nodes available to us, and
the complexity and scale of networks are ever increasing. For
any realistic scenario, the number of nodes in large scale-free
networks will be significantly larger than the number of cores
used by the parallel algorithm. Therefore, the coarse-grained
method is also efficient because no computing resources are
wasted.

Based on the observation mentioned previously, we will
use coarse-grained parallelization to compute the all-pairs
shortest-path length of large scale-free networks. It is a typical
single-program-single-data (SPSD) parallelization; that is,
program and data are the same in different cores; only the
range of source nodes are different. Load imbalance might be
the only problem, which is caused by the difference of time
in computing the SSSPL of different nodes, as different cores
are assigned different source nodes. Hence, in coarse-grained
parallelization, the problem is how to schedule different
source nodes to different cores such that the load is balanced
across all cores.

Little work can be found on the load-balancing problem
of this coarse-grained parallelization, due mainly to the fact
that the research on scale-free networks was not popular
until the end of last century. Even in the past decade, due
to the large scale of network and restriction in computing
power, the computing of the average shortest-path length
was mainly achieved through approximation [12–15]. But
nowadays, thanks to multicore and manycore technologies,

the development in parallel computing has made it possible
for accurate computing of such a problem.

We only concentrate on scale-free networks here, as
in other networks, for example, the small-world network
generated using WS and NW models [16] and the random
network generated using the ERmodel [17], load imbalance is
not a big problem for coarse-grained parallelization, because
the computing time of the SSSPL for different nodes does not
vary significantly.

The remainder of this paper is organized as follows. The
influence of outdegree on computing time of the SSSPL is
discussed in Section 2.The load-balancingmodel is discussed
in Section 3. The evaluation of this model in large scale-
free networks is discussed in Section 4, before discussing
conclusion and future work in Section 5.

2. Analysis of the Outdegree on
Computing Time

We only study the directed complex networks in this paper
becausemost of the networks that naturally exist are directed.
The SSSPL problem is to find the shortest-path length from a
source node to all other nodes in the network or graph. It is
easy to see that if a node has an outdegree of 0, the SSSPL
will be 0 as well, because no path exists from this node to
all other nodes in this network. Therefore, these nodes can
be safely excluded from the job assignment without affecting
the average shortest-path length. But apart from this, we can
hardly find other relations between the feature of a node
and its SSSPL. For example, if nodes with outdegree of 1 are
selected, the corresponding computing time of the SSSPL is
illustrated in Table 1. The network in Table 1 is taken from
[1], and we name it BA network hereafter. It contains 325,729
nodes and 1,797,134 edges, among them 21,941 nodes have
outdegree of 1.

In Table 1, the first column is the ratio of computing time
of these nodes to the maximum computing time of the node
in the whole network. We can see that the time needed in
computing the SSSPL of these nodes varies greatly. If we
randomly assign these nodes to different processors, the load
balancing will become a problem.

However, we know that if one node has large outdegree,
which means that many nodes are connected to this node,
the possibility of a long computing time of the SSSPL of this
node will be high. For example, there are 1,882 nodes with
outdegree larger than 900 in BA network, among them 1,760
nodes have computing time larger than 1𝑒 − 2; that is, more
than 93.5% of the computing time of these nodes can be
regarded as long. To express this more clearly, we give the
detailed information about the relation between threshold of
outdegree and computing time in BA network in Table 2.

The average outdegree of this network is about 10.85.
From Table 2, we can see that bigger outdegree can in some
sense reflect longer computing time. A similar situation can
be observed for China education network in 2004 [18, 19],
as listed in Table 3. We name it edu04 network hereafter, in
which the average outdegree is 2.81.

However, there are still many nodes that have a long
computing time with small outdegree. In Table 1, there are
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Table 1: The relation between time span and number of nodes with
outdegree 1.

Time span Number of nodes Number percentage
(1𝑒 − 1, 1) 5989 27.29
(1𝑒 − 2, 1𝑒 − 1) 9667 44.05
(1𝑒 − 3, 1𝑒 − 2) 924 4.21
(1𝑒 − 4, 1𝑒 − 3) 791 3.61
(1𝑒 − 5, 1𝑒 − 4) 2359 10.76
(1𝑒 − 6, 1𝑒 − 5) 2211 10.08

Table 2:Threshold of outdegree and computing timeof BAnetwork.

Threshold of
outdegree

Number of
nodes

Number of nodes
with computing time

bigger than 0.01
Percentage

>10 28181 21652 76.83
>27 11720 10096 86.14
>47 5147 4666 90.65
>900 1882 1760 93.52

15,656 nodes having outdegree of 1, but their computing times
is also long (the computing time is bigger than 1𝑒 − 2). We
know that if one node has a small outdegree (e.g., 1), but this
node is connected to a node with a large outdegree, then the
possibility of a long computing time of the SSSPL of this node
will be high. Also, if one node has a big outdegree, but all
its neighbors have a small outdegree, then the possibility of
a short computing time of the SSSPL of this node will also be
high.Therefore, the computing time of the SSSPL of one node
is related not only to its outdegree but also to the outdegree
of its neighbors of the 𝑖th (𝑖 = 1, 2, 3, . . .) level. The neighbor
of the first level is the direct neighbor of this node and the
neighbor of the second level is the neighbor of the direct
neighbor of this node, and so on.

The outdegree of the neighbors can be expressed in two
terms, the sumof outdegree and the average outdegreeAvg(𝑖).
Obviously, the latter can better express the connectivity of
the neighboring nodes. For unweighted graph, the average
outdegree Avg(𝑖) of the neighbor of node 𝑖 is

Avg (𝑖) = 1󵄨󵄨󵄨󵄨𝑁𝑖
󵄨󵄨󵄨󵄨

∑
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a node 𝑗 that belongs to𝑁
𝑖
. We will discuss the overall impact

factor of each level of the average outdegree on the computing
time of the SSSPL in the next section.

3. The Dynamic Programming Model of
the Load-Imbalance Problem

Based on the analysis mentioned previously, we present
the dynamic programming model of the load-balancing
problem. Suppose that there are 𝑁 nodes in graph 𝐺,
𝐷
𝑖𝑗
is the average outdegree of the 𝑗th level neighbor of node
𝑖 (𝑖 = 1, 2, 3, . . . , 𝑁, 𝑗 = 0, 1, 2, 3, . . .), 𝐷

𝑖0
is the outdegree of

Table 3: Threshold of outdegree and computing time of edu04
network.

Threshold of
outdegree

Number of
nodes

Number of nodes
with computing time

bigger than 0.01
Percentage

>3 20881 8225 39.39
>10 9472 4875 51.47
>50 1068 848 79.41
>100 268 232 86.56

node 𝑖, 𝑇
𝑖
is the computing time of the SSSPL of node 𝑖, 𝑃 is

the number of computing cores, 𝐶
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is the coefficients of 𝐷
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is the total computing time in core 𝑘. The sorted

nodes with id starting from 𝑘 and step size 𝑃 are assigned to
core 𝑘, and𝑁/𝑃 nodes are assigned to each core.

3.1. Implementation of the Load-Balancing Model. The serial
computing time of the SSSPL of each node and the average
outdegree of different levels of each node are measured using
NetworkX [20] and Python [21]. To make the goal of this
model more clear, we use Max𝑇 to denote the maximum
sum of computing time among 𝑃 cores, Min𝑇 to denote
the minimum sum of computing time among 𝑃 cores, and
time difference = (Max𝑇 −MinT)/Max𝑇. Then, the goal of
this model can be expressed as finding the coefficients such
that time difference takes the minimum among all possible
values.

We only compute the average outdegree till the second
level, as it will take too long if the level goes deeper. Hence,
the sum of 𝐶

0
∗ 𝐷
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1
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is 0.1; there are 36 combinations

for 𝐶
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(𝑗 = 0, 1, 2). We use different numbers of cores and

different coefficients to compute the time difference of the BA
and edu04 networks. The results show that time difference
will be the smallest when 𝐶

0
= 0.6, 𝐶

1
= 0.3, and 𝐶

2
= 0.1.

Figure 1 illustrates the relation between time difference and
number of cores of these twonetworks, where the𝑥-axis is the
number of cores and 𝑦-axis time difference. Different values
of time difference of BA network with coefficients 0.6, 0.3,
and 0.1 are described using solid circles. The values of edu04
network with the same coefficients are described using up
triangles.

3.2. Analysis of the Model. From the analysis of these two
networks, we get two results. First, when the average degree
of a network (the number of edges divided by the number of
nodes) is large, the time difference is relatively small. Second,
when the number of cores is small, the difference is also
very small. For example, the difference is 0 when 2 cores are
used. The difference will be larger when more cores are used.
The first characteristic of this model can meet the demands
of the ever-increasing complexity of the network, because
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Table 4: Time difference for different coefficients and number of
cores.

Coefficients
Cores 0.6, 0.3, 0.1 0.7, 0.2, 0.1 0.5, 0.3, 0.2

8 1.55% 1.48% 1.65%
16 2.37% 2.49% 4.21%
32 4.12% 4.81% 6.34%

the network is becoming more and more complex, and the
average degree is getting bigger and bigger. For example, the
average degree of the edu04 network is only about 1.5. But
in 2008, it has grown into a network with 2,508,811 nodes
and 25,278,346 edges [22], and the average degree reaches
nearly 10. For the second characteristic, we did experiments
on networks of various sizes and found out that the real cause
is the decrease of the number of nodes assigned to each core
whenmore cores are used. In other words, for a fixed number
of cores, the differencewill become smaller when the network
is getting larger. We know that the network is growing very
fast. Therefore, this characteristic of the model can meet the
requirements of the ever-increasing scale of networks.

We also use this load-balancing model on other scale-
free networks of various sizes. These networks are generated
using BA model with different parameters [1]. We find out
that when the ratio of the number of nodes over the number
of cores (𝑁/𝑃) is getting larger, the coefficients are not
unique to get the acceptable time difference values, but in
every scenario, the difference to the best is very small. For
example, when 16 cores are used in a network with 500,000
nodes and 1,500,000 edges, 𝑁/𝑃 being 31,250, there are 2
combinations of coefficients to get similar minimum time
difference values; when 8 cores are used in this network,
𝑁/𝑃 being 62,500, there will be 3 combinations of coefficients
to get similar minimum values. The time difference values
related to different numbers of cores and coefficients are listed
in Table 4. We can see that the coefficients of 0.6, 0.3, and 0.1
might not be the best, but they can still be safely used when
the ratio is getting bigger. Similar situations can be found in
other networks with different parameters.

For large-scale complex networks, it will take too long to
compute the average neighbor outdegree of the second level.
Hence, we simplify this model into just one level; that is, only
outdegree and the average outdegree of the neighbor of the
first level are considered. That is, the sum of 𝐶

0
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𝑖0
+ 𝐶
1
∗

𝐷
𝑖1
is used as the index value to sort 𝑇
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𝐶
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≤ 0.9, the variation of 𝐶

𝑗
is also 0.1. The results show that

the difference will be the least when 𝐶
0
= 0.8 and 𝐶

1
= 0.2.

Different values of TimeDifference of BA network with these
coefficients are described using down triangles in Figure 1,
the values of edu04 network with the same coefficients are
described using rectangles.

4. Evaluation

There are various algorithms for the computation of the
ASPL, for example, NetworkX [21]. However, if the network
is large, it will take a large amount of memory to represent
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Figure 1: Relation between time difference and number of cores.

the network. The network we used in the experiment has
2,508,811 nodes and 25,278,346 edges, and the memory
needed to represent this network would be around 74G if
NetworkXwere used, much bigger than thememory capacity
of a workstation. It is obviously impossible to parallelize the
serial algorithm because each core will get a copy of the whole
network during the parallel execution process.

To solve this space-complexity problem, we used a native
2-dimensional array to represent the network, where the
first row in the array is the start node of an edge and the
second row is the target node. Also, as there are many
search operations in the Breadth-First-Search algorithm, we
transform the array into a C++multimap using the start node
as the key and all nodes connected to this node as the values
of this key. With this data structure, the memory needed for
loading the same network is reduced to only 1.48G. Also,
these structures can significantly speed up the keywords-
based fast index, as all data in this map is sorted.

With the simplified load-balancing model, we compute
the average shortest-path length of the networkwith 2,508,811
nodes on a cluster of 6 Dell PowerEdge workstations that
have 72 cores; the operating system is CentOS 5.5 64 bit, and
the compiler is Intel C++ 11.1. We use MPI to implement job
assignment and to get the time used on each core, and the
average computation time is 537,721 seconds or about 6 days
and 5.5 hours. The time difference between the maximum
time and the minimum time is only about 1.43%.

5. Conclusion and Future Work

Themain contribution of this paper is the dynamic program-
ming model that can be used to solve the load-balancing
problem in coarse-grained parallel computing of average
shortest-path length problem of large scale-free network.
Though we only test the model with networks of up to tens
of millions of edges, the feature of this model can make it
scalable to networks with more complexity and larger scale.
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In this paper, we presented our reason of using coarse-
grained parallelization to compute the average shortest-path
length. We analyzed the relationship between the computing
time of the SSSPL of node and the features of nodes and
presented a dynamic programming model to reduce the
time difference among all computing cores. We used time
measurable networks to get the coefficients of this model
and applied this model to large scale-free network with
satisfactory result.

In the future, we will evaluate this model with various
kinds of networks to determine the relation between the
features of the network (e.g., the average degree) and the
coefficients. With this relation, we can distribute the nodes
more evenly among cores to achieve better load balance and
make this model more scalable to networks of different types.
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