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The integral representations of the solution around the vertices of the interior reentered angles (on the “singular” parts) are
approximated by the composite midpoint rule when the boundary functions are from 𝐶

4,𝜆
, 0 < 𝜆 < 1. These approximations

are connected with the 9-point approximation of Laplace’s equation on each rectangular grid on the “nonsingular” part of the
polygon by the fourth-order gluing operator. It is proved that the uniform error is of order 𝑂(ℎ

4
+ 𝜀), where 𝜀 > 0 and ℎ is the

mesh step. For the 𝑝-order derivatives (𝑝 = 0, 1, . . .) of the difference between the approximate and the exact solutions, in each “
singular” part 𝑂((ℎ

4
+ 𝜀)𝑟

1/𝛼𝑗−𝑝

𝑗
) order is obtained; here 𝑟

𝑗
is the distance from the current point to the vertex in question and 𝛼

𝑗
𝜋

is the value of the interior angle of the 𝑗th vertex. Numerical results are given in the last section to support the theoretical results.

1. Introduction

In the last two decades, among different approaches to solve
the elliptic boundary value problems with singularities, a
special emphasis has been placed on the construction of
combined methods, in which differential properties of the
solution in different parts of the domain are used (see [1, 2],
and references therein).

In [2–7], a new combined difference-analytical method,
called the block-grid method (BGM), is proposed for the
solution of the Laplace equation on polygons, when the
boundary functions on the sides causing the singular vertices
are given as algebraic polynomials of the arc length. In the
BGM, the given polygon is covered by a finite number of
overlapping sectors around the singular vertices (“singular”
parts) and rectangles for the part of the polygon which lies at
a positive distance from these vertices (“nonsingular” part).
The special integral representation in each “singular” part
is approximated, and they are connected by the appropriate
order gluing operator with the finite difference equations
used in the “nonsingular” part of the polygon.

In [8, 9], the restriction on the boundary functions to be
algebraic polynomials on the sides of the polygon causing the
singular vertices in the BGM was removed. It was assumed
that the boundary function on each side of the polygon is
given from the Hölder classes 𝐶𝑘,𝜆

, 0 < 𝜆 < 1, and on the
“nonsingular” part the 5-point scheme is used when 𝑘 = 2

[8] and the 9-point scheme is used when 𝑘 = 6 [9]. For the
5-point scheme a simple linear interpolation with 4 points
is used. For the 9-point scheme an interpolation with 31
points is used to construct a gluing operator connecting
the subsystems. Moreover, to connect the quadrature nodes
which are at a distance of less than 4ℎ from boundary of the
polygon, a special representation of the harmonic function
through the integrals of Poisson type for a half plane is used
(see [9]).

In this paper the BGM is developed for the Dirichlet
problem when the boundary function on each side of the
polygon is from 𝐶

4,𝜆, by using the 9-point scheme on the
“nonsingular” part with 16-point gluing operator for all
quadrature nodes, including those near the boundary. The



2 Abstract and Applied Analysis

paper is organized as follows: in Section 2, the boundary
value problem and the integral representations of the exact
solution in each “singular” part are given. In Section 3, to
support the aim of the paper, a Dirichlet problem on the
rectangle for the known exact solution from 𝐶

𝑘,𝜆, 𝑘 = 3, 4, is
solved using the 9-point scheme and the numerical results are
illustrated. In Section 4, the system of block-grid equations
and the convergence theorems are given. In Section 5 a highly
accurate approximation of the coefficient of the leading
singular term of the exact solution (stress intensity factor) is
given. In Section 6 the method is illustrated for solving the
problem in L-shaped polygonwith the corner singularity.The
conclusions are summarized in Section 7.

2. Dirichlet Problem on a Staircase Polygon

Let 𝐺 be an open simply connected polygon, 𝛾
𝑗
, 𝑗 =

1, 2, . . . , 𝑁, its sides, including the ends, enumerated coun-
terclockwise, 𝛾 = 𝛾

1
∪ ⋅ ⋅ ⋅ ∪ 𝛾

𝑁
the boundary of 𝐺, and 𝛼

𝑗
𝜋,

(𝛼
𝑗
= 1/2, 1, 3/2, 2), the interior angle formed by the sides

𝛾
𝑗−1

and 𝛾
𝑗
, (𝛾

0
= 𝛾

𝑁
). Denote by 𝐴

𝑗
= 𝛾

𝑗−1
∩ 𝛾

𝑗
the vertex of

the 𝑗th angle and by 𝑟
𝑗
, 𝜃

𝑗
a polar system of coordinates with a

pole in𝐴
𝑗
, where the angle 𝜃

𝑗
is taken counterclockwise from

the side 𝛾
𝑗
.

We consider the boundary value problem

Δ𝑢 = 0 on 𝐺, 𝑢 = 𝜑
𝑗
(𝑠) on 𝛾

𝑗
, 1 ≤ 𝑗 ≤ 𝑁, (1)

whereΔ ≡ 𝜕
2
/𝜕𝑥

2
+𝜕

2
/𝜕𝑦

2
, 𝜑

𝑗
is a given function on 𝛾

𝑗
of the

arc length 𝑠 taken along 𝛾, and 𝜑
𝑗
∈ 𝐶

4,𝜆
(𝛾

𝑗
), 0 < 𝜆 < 1; that

is, 𝜑
𝑗
has the fourth-order derivative on 𝛾

𝑗
, which satisfies a

Hölder condition with exponent 𝜆.
At some vertices𝐴

𝑗
, (𝑠 = 𝑠

𝑗
) for 𝛼

𝑗
= 1/2 the conjugation

conditions

𝜑
(2𝑞)

𝑗−1
(𝑠

𝑗
) = (−1)

𝑞
𝜑
(2𝑞)

𝑗
(𝑠

𝑗
) , 𝑞 = 0, 1 (2)

are fulfilled. For the remaining vertices 𝐴
𝑗
, the values of 𝜑

𝑗−1

and 𝜑
𝑗
at 𝐴

𝑗
might be different. Let 𝐸 be the set of all 𝑗, (1 ≤

𝑗 ≤ 𝑁) for which 𝛼
𝑗

̸= 1/2 or 𝛼
𝑗
= 1/2, but (2) is not fulfilled.

In the neighborhood of 𝐴
𝑗
, 𝑗 ∈ 𝐸, we construct two fixed

block sectors 𝑇𝑖

𝑗
= 𝑇

𝑗
(𝑟

𝑗𝑖
) ⊂ 𝐺, 𝑖 = 1, 2, where 0 < 𝑟

𝑗2
< 𝑟

𝑗1
<

min{𝑠
𝑗+1

−𝑠
𝑗
, 𝑠

𝑗
−𝑠

𝑗−1
}, 𝑇

𝑗
(𝑟) = {(𝑟

𝑗
, 𝜃

𝑗
) : 0 < 𝑟

𝑗
< 𝑟, 0 < 𝜃

𝑗
<

𝛼
𝑗
𝜋}.
Let (see [10])

𝜑
𝑗0
(𝑡) = 𝜑

𝑗
(𝑠

𝑗
+ 𝑡) − 𝜑

𝑗
(𝑠

𝑗
) ,

𝜑
𝑗1
(𝑡) = 𝜑

𝑗−1
(𝑠

𝑗
− 𝑡) − 𝜑

𝑗−1
(𝑠

𝑗
) ,

(3)

𝑄
𝑗
(𝑟

𝑗
, 𝜃

𝑗
) = 𝜑

𝑗
(𝑠

𝑗
) +

(𝜑
𝑗−1

(𝑠
𝑗
) − 𝜑

𝑗
(𝑠

𝑗
)) 𝜃

𝑗

𝛼
𝑗
𝜋

+
1

𝜋

1

∑

𝑘=0

∫

𝜎𝑗𝑘

0

𝑦
𝑗
𝜑
𝑗𝑘

(𝑡
𝛼𝑗) 𝑑𝑡

(𝑡 − (−1)
𝑘
𝑥
𝑗
)
2

+ 𝑦2

𝑗

,

(4)

where

𝑥
𝑗
= 𝑟

1/𝛼𝑗

𝑗
cos(

𝜃
𝑗

𝛼
𝑗

) , 𝑦
𝑗
= 𝑟

1/𝛼𝑗

𝑗
sin(

𝜃
𝑗

𝛼
𝑗

) ,

𝜎
𝑗𝑘

=
󵄨󵄨󵄨󵄨󵄨
𝑠
𝑗+1−𝑘

− 𝑠
𝑗−𝑘

󵄨󵄨󵄨󵄨󵄨

1/𝛼𝑗
.

(5)

The function𝑄
𝑗
(𝑟

𝑗
, 𝜃

𝑗
) is harmonic on𝑇

1

𝑗
and satisfies the

boundary conditions in (1) on 𝛾
𝑗−1

∩ 𝑇
1

𝑗
and 𝛾

𝑗
∩ 𝑇

1

𝑗
, 𝑗 ∈ 𝐸,

except for the point 𝐴
𝑗
when 𝜑

𝑗−1
(𝑠

𝑗
) ̸= 𝜑

𝑗
(𝑠

𝑗
).

We formally set the value of 𝑄
𝑗
(𝑟

𝑗
, 𝜃

𝑗
) and the solution

𝑢 of the problem (1) at the vertex 𝐴
𝑗
equal to (𝜑

𝑗−1
(𝑠

𝑗
) +

𝜑
𝑗
(𝑠

𝑗
))/2, 𝑗 ∈ 𝐸.
Let

𝑅
𝑗
(𝑟, 𝜃, 𝜂)

=
1

𝛼
𝑗

1

∑

𝑘=0

(−1)
𝑘
𝑅((

𝑟

𝑟
𝑗2

)

1/𝛼𝑗

,
𝜃

𝛼
𝑗

, (−1)
𝑘 𝜂

𝛼
𝑗

) ,

𝑗 ∈ 𝐸,

(6)

where

𝑅 (𝑟, 𝜃, 𝜂) =
1 − 𝑟

2

2𝜋 (1 − 2𝑟 cos (𝜃 − 𝜂) + 𝑟2)
(7)

is the kernel of the Poisson integral for a unit circle.

Lemma 1 (see [10]). The solution 𝑢 of the boundary value
problem (1) can be represented on 𝑇

2

𝑗
\ 𝑉

𝑗
, 𝑗 ∈ 𝐸, in the form

𝑢 (𝑟
𝑗
, 𝜃

𝑗
) = 𝑄

𝑗
(𝑟

𝑗
, 𝜃

𝑗
)

+ ∫

𝛼𝑗𝜋

0

𝑅
𝑗
(𝑟

𝑗
, 𝜃

𝑗
, 𝜂) (𝑢 (𝑟

𝑗2
, 𝜂) − 𝑄

𝑗
(𝑟

𝑗2
, 𝜂)) 𝑑𝜂,

(8)

where 𝑉
𝑗
is the curvilinear part of the boundary of 𝑇2

𝑗
, and

𝑄
𝑗
(𝑟

𝑗
, 𝜃

𝑗
) is the function defined by (4).

3. 9-Point Solution on Rectangles

Let Π = {(𝑥, 𝑦) : 0 < 𝑥 < 𝑎, 0 < 𝑦 < 𝑏} be a rectangle,
with 𝑎/𝑏 being rational, 𝛾

𝑗
, 𝑗 = 1, 2, 3, 4 the sides, including

the ends, enumerated counterclockwise, starting from the left
side (𝛾

0
≡ 𝛾

4
, 𝛾

5
≡ 𝛾

1
), and 𝛾 = ∪

4

𝑗=1
𝛾
𝑗
the boundary of Π.

We consider the boundary value problem

Δ𝑢 = 0 on Π,

𝑢 = 𝜑
𝑗

on 𝛾
𝑗
, 𝑗 = 1, 2, 3, 4,

(9)

where 𝜑
𝑗
is the given function on 𝛾

𝑗
.

Definition 2. One says that the solution 𝑢 of the problem (9)
belongs to 𝐶

4,𝜆
(Π) if

𝜑
𝑗
∈ 𝐶

4,𝜆
(𝛾

𝑗
) , 0 < 𝜆 < 1, 𝑗 = 1, 2, 3, 4, (10)
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and at the vertices 𝐴
𝑗
= 𝛾

𝑗−1
∩ 𝛾

𝑗
the conjugation conditions

𝜑
(2𝑞)

𝑗
= (−1)

𝑞
𝜑
(2𝑞)

𝑗−1
, 𝑞 = 0, 1 (11)

are satisfied.

Remark 3. From Theorem 3.1 in [11] it follows that the class
of functions 𝐶4,𝜆

(Π) is wider than 𝐶
4,𝜆

(Π).

Let ℎ > 0, with 𝑎/ℎ ≥ 2, 𝑏/ℎ ≥ 2 integers. We assign
to Π

ℎ a square net on Π, with step ℎ, obtained with the lines
,𝑦 = 0, ℎ, 2ℎ, . . .. Let 𝛾ℎ

𝑗
be a set of nodes on the interior of 𝛾

𝑗

and let

̇𝛾
ℎ

𝑗
= 𝛾

𝑗
∩ 𝛾

𝑗+1
, 𝛾

ℎ
= ∪

4

𝑗=1
(𝛾

ℎ

𝑗
∪ ̇𝛾

ℎ

𝑗
) ,

Π
ℎ

= Π
ℎ
∪ 𝛾

ℎ
.

(12)

We consider the system of finite difference equations

𝑢
ℎ
= 𝐵𝑢

ℎ
on Π

ℎ
,

𝑢
ℎ
= 𝜑

𝑗
on 𝛾

ℎ

𝑗
, 𝑗 = 1, 2, 3, 4,

(13)

where

𝐵𝑢 (𝑥, 𝑦)

≡
(𝑢 (𝑥 + ℎ, 𝑦) + 𝑢 (𝑥, 𝑦 + ℎ) + 𝑢 (𝑥 − ℎ, 𝑦) + 𝑢 (𝑥, 𝑦 − ℎ))

5

+ ( ((𝑢 (𝑥 + ℎ, 𝑦 + ℎ) + 𝑢 (𝑥 − ℎ, 𝑦 + ℎ)

+ 𝑢 (𝑥 − ℎ, 𝑦 − ℎ) + 𝑢 (𝑥 + ℎ, 𝑦 − ℎ)))

× 20
−1
) .

(14)

On the basis of the maximum principle the unique
solvability of the system of finite difference equations (13)
follows (see [12, Chapter 4]).

Everywhere below we will denote constants which are
independent of ℎ and of the cofactors on their right by
𝑐, 𝑐

0
, 𝑐

1
, . . ., generally using the same notation for different

constants for simplicity.

Theorem 4. Let 𝑢 be the solution of problem (9). If 𝑢 ∈

𝐶
4,𝜆

(Π), then

max
Π
ℎ

󵄨󵄨󵄨󵄨𝑢ℎ − 𝑢
󵄨󵄨󵄨󵄨 ≤ ch4, (15)

where 𝑢
ℎ
is the solution of the system (13).

Proof. For the proof of this theorem see [13].

LetΠ󸀠
= {(𝑥, 𝑦) : −0.25 < 𝑥 < 0.25, 0 < 𝑦 < 1} and let 𝛾󸀠

be the boundary of Π󸀠. We consider the Dirichlet problem

Δ𝑢 = 0 on Π
󸀠
,

𝑢 = V on 𝛾
󸀠
,

(16)

0 20 40 60 80 100 120 140
11

12
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14

15

16

17

𝐶4,0.0003

𝐶4,0.003

𝐶4,0.03

𝐶3,0.55
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𝐶3,0.75

𝐶3,0.8

R
ϱ

h−1 = 2ϱ

Figure 1: Dependence of the approximate solutions for the bound-
ary functions from 𝐶

𝑘,𝜆.

where V = 𝑟
𝑘+𝜆 cos(𝑘 + 𝜆)𝜃, 𝑟 = √𝑥2 + 𝑦2, 0 < 𝜆 < 1, is the

exact solution of this problem, which is from 𝐶
𝑘,𝜆

(Π
󸀠

).
We solve the problem (16) by approximating 9-point

scheme when 𝑘 = 3, 4 for the different values of 𝜆.
In Figure 1, the order of numerical convergence

R
󰜚

Π
ℎ =

max
Π
ℎ
󵄨󵄨󵄨󵄨𝑢2−󰜚 − 𝑢

󵄨󵄨󵄨󵄨

max
Π
ℎ
󵄨󵄨󵄨󵄨𝑢2−(󰜚+1) − 𝑢

󵄨󵄨󵄨󵄨

(17)

of the 9-point solution 𝑢
ℎ
, for different ℎ = 2

−󰜚 and 󰜚 =

4, 5, 6, 7, is demonstrated.These results show that the order of
numerical convergence, when the exact solution 𝑢 ∈ 𝐶

𝑘,𝜆
(Π),

depends on 𝑘 and 𝜆 and is𝑂(ℎ
4
)when 𝑘 = 4, which supports

estimation (15). Moreover, this dependence also requires the
use of fourth-order gluing operator for all quadrature nodes
in the construction of the system of block-grid equations,
when the given boundary functions are from the Hölder
classes 𝐶4,𝜆.

4. System of Block-Grid Equations

In addition to the sectors 𝑇
1

𝑗
and 𝑇

2

𝑗
(see Section 2) in the

neighborhood of each vertex 𝐴
𝑗
, 𝑗 ∈ 𝐸 of the polygon 𝐺, we

construct two more sectors 𝑇3

𝑗
and 𝑇

4

𝑗
, where 0 < 𝑟

𝑗4
< 𝑟

𝑗3
<

𝑟
𝑗2
, 𝑟

𝑗3
= (𝑟

𝑗2
+ 𝑟

𝑗4
)/2 and 𝑇

3

𝑘
∩ 𝑇

3

𝑙
= 0, 𝑘 ̸= 𝑙, 𝑘, 𝑙 ∈ 𝐸, and let

𝐺
𝑇
= 𝐺 \ (∪

𝑗∈𝐸
𝑇
4

𝑗
).

We cover the given solution domain (a staircase polygon)
by the finite number of sectors 𝑇

1

𝑗
, 𝑗 ∈ 𝐸, and rectangles

Π
𝑘

⊂ 𝐺
𝑇
, 𝑘 = 1, 2, . . . ,𝑀, as is shown in Figure 2, for

the case of 𝐿-shaped polygon, where 𝑗 = 1,𝑀 = 4 (see
also [2]). It is assumed that for the sides 𝑎

1𝑘
and 𝑎

2𝑘
of

Π
𝑘
the quotient 𝑎

1𝑘
/𝑎

2𝑘
is rational and 𝐺 = (∪

𝑀

𝑘=1
Π

𝑘
) ∪

(∪
𝑗∈𝐸

𝑇
3

𝑗
). Let 𝜂

𝑘
be the boundary of the rectangleΠ

𝑘
, let𝑉

𝑗
be
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Figure 2: Description of BGM for the L-shaped domain.

the curvilinear part of the boundary of the sector 𝑇2

𝑗
, and let

𝑡
𝑘𝑗

= 𝜂
𝑘
∩ 𝑇

3

𝑗
. We choose a natural number 𝑛 and define

the quantities 𝑛(𝑗) = max{4, [𝛼
𝑗
𝑛]}, 𝛽

𝑗
= 𝛼

𝑗
𝜋/𝑛(𝑗), and

𝜃
𝑚

𝑗
= (𝑚 − 1/2)𝛽

𝑗
, 𝑗 ∈ 𝐸, 1 ≤ 𝑚 ≤ 𝑛(𝑗). On the arc 𝑉

𝑗

we take the points (𝑟
𝑗2
, 𝜃

𝑚

𝑗
), 1 ≤ 𝑚 ≤ 𝑛(𝑗), and denote the

set of these points by 𝑉
𝑛

𝑗
. We introduce the parameter ℎ ∈

(0, 𝜘
0
/4], where 𝜘

0
is a gluing depth of the rectanglesΠ

𝑘
, 𝑘 =

1, 2, . . . ,𝑀, and define a square grid on Π
𝑘
, 𝑘 = 1, 2, . . . ,𝑀,

withmaximal possible step ℎ
𝑘
≤ min{ℎ,min{𝑎

1𝑘
, 𝑎

2𝑘
}/6} such

that the boundary 𝜂
𝑘
lies entirely on the grid lines. Let Πℎ

𝑘
be

the set of grid nodes on Π
𝑘
, let 𝜂ℎ

𝑘
be the set of nodes on 𝜂

𝑘
,

and let Πℎ

𝑘
= Π

ℎ

𝑘
∪ 𝜂

ℎ

𝑘
. We denote the set of nodes on the

closure of 𝜂
𝑘
∩ 𝐺

𝑇
by 𝜂

ℎ

𝑘0
, the set of nodes on 𝑡

𝑘𝑗
by 𝑡

ℎ

𝑘𝑗
, and

the set of remaining nodes on 𝜂
𝑘
by 𝜂

ℎ

𝑘1
.

Let

𝜔
ℎ,𝑛

= (∪
𝑀

𝑘=1
𝜂
ℎ

𝑘0
) ∪ (∪

𝑗∈𝐸
𝑉

𝑛

𝑗
) ,

𝐺
ℎ,𝑛

𝑇
= 𝜔

ℎ,𝑛
∪ (∪

𝑀

𝑘=1
Π

ℎ

𝑘
) .

(18)

Let 𝜑 = {𝜑
𝑗
}
𝑁

𝑗=1
, where 𝜑

𝑗
∈ 𝐶

4,𝜆
(𝛾

𝑗
), 0 < 𝜆 < 1, is

the given function in (1). We use the matching operator 𝑆
4

at the points of the set 𝜔ℎ,𝑛 constructed in [14]. The value of
𝑆
4
(𝑢

ℎ
, 𝜑) at the point 𝑃 ∈ 𝜔

ℎ,𝑛 is expressed linearly in terms
of the values of 𝑢

ℎ
at the points 𝑃

𝑘
of the grid constructed on

Π
𝑘(𝑃)

, (𝑃 ∈ Π
𝑘(𝑃)

) some part of whose boundary located in
𝐺 is the maximum distance away from 𝑃, and in terms of the
boundary values of 𝜑(𝑚)

, 𝑚 = 0, 1, 2, 3 at a fixed number of
points. Moreover 𝑆4(𝑢

ℎ
, 0) has the representation

𝑆
4
(𝑢

ℎ
, 0) = ∑

0≤𝑙≤15

𝜉
𝑙
𝑢
ℎ,𝑙
, (19)

where 𝑢
ℎ,𝑘

= 𝑢
ℎ
(𝑃

𝑘
),

𝜉
𝑙
≥ 0, ∑

0≤𝑙≤15

𝜉
𝑙
= 1, (20)

𝑢 − 𝑆
4
(𝑢, 𝜑) = 𝑂 (ℎ

4
) . (21)

Let 𝜔
ℎ,𝑛

𝐼
⊂ 𝜔

ℎ,𝑛 be the set of such points 𝑃 ∈ 𝜔
ℎ,𝑛,

for which all points 𝑃
𝑙
in expression (19) are in ∪

𝑀

𝑘=1
Π

ℎ

𝑘
. If

some points 𝑃
𝑙
in (19) emerge through the side 𝛾

𝑚
, then the

set of such points 𝑃 is denoted by 𝜔
ℎ,𝑛

𝐷
. According to the

construction of 𝑆4 in [14], the expression 𝑆
4
(𝑢

ℎ
, 𝜑) at each

point 𝑃 ∈ 𝜔
ℎ,𝑛

= 𝜔
ℎ,𝑛

𝐼
∪ 𝜔

ℎ,𝑛

𝐷
can be expressed as follows:

𝑆
4
(𝑢

ℎ
, 𝜑)

=

{{

{{

{

𝑆
4
𝑢
ℎ
, 𝑃 ∈ 𝜔

ℎ,𝑛

𝐼
,

𝑆
4
(𝑢

ℎ
−

3

∑

𝑘=0

𝑎
𝑘
Re 𝑧𝑘) + (

3

∑

𝑘=0

𝑎
𝑘
Re 𝑧𝑘)

𝑃

, 𝑃 ∈ 𝜔
ℎ,𝑛

𝐷
,

(22)

where

𝑎
𝑘
=

1

𝑘!

𝑑
𝑘
𝜑
𝑚
(𝑠)

𝑑𝑠𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑠=𝑠𝑃

, 𝑘 = 0, 1, 2, 3 (23)

and 𝑠
𝑃
corresponds to such a point𝑄 ∈ 𝛾

𝑚
for which the line

𝑃𝑄 is perpendicular to 𝛾
𝑚
.

Let

𝑄
𝑗
= 𝑄

𝑗
(𝑟

𝑗
, 𝜃

𝑗
) , 𝑄

𝑞

𝑗2
= 𝑄

𝑗
(𝑟

𝑗2
, 𝜃

𝑞

𝑗
) . (24)

The quantities in (24) are given by (4) and (5), which contain
integrals that have not been computed exactly in the general
case. Assume that approximate values 𝑄

𝜀

𝑗
and 𝑄

𝑞𝜀

𝑗2
of the

quantities in (24) are known with accuracy 𝜀 > 0; that is,
󵄨󵄨󵄨󵄨󵄨
𝑄

𝜀

𝑗
− 𝑄

𝑗

󵄨󵄨󵄨󵄨󵄨
≤ 𝑐

1
𝜀,

󵄨󵄨󵄨󵄨󵄨
𝑄

𝑞𝜀

𝑗2
− 𝑄

𝑞

𝑗2

󵄨󵄨󵄨󵄨󵄨
≤ 𝑐

2
𝜀, (25)

where 𝑗 ∈ 𝐸, 1 ≤ 𝑞 ≤ 𝑛(𝑗), and 𝑐
1
, 𝑐

2
are constants

independent of 𝜀.
Consider the system of linear algebraic equations

𝑢
𝜀

ℎ
= 𝐵𝑢

𝜀

ℎ
on Π

ℎ

𝑘
,

𝑢
𝜀

ℎ
= 𝜑

𝑚
on 𝜂

ℎ

𝑘1
∩ 𝛾

𝑚
,

𝑢
𝜀

ℎ
(𝑟

𝑗
, 𝜃

𝑗
)

= 𝑄
𝜀

𝑗
+ 𝛽

𝑗

𝑛(𝑗)

∑

𝑞=1

(𝑢
𝜀

ℎ
(𝑟

𝑗2
, 𝜃

𝑞

𝑗
) − 𝑄

𝑞𝜀

𝑗2
)

× 𝑅
𝑗
(𝑟

𝑗
, 𝜃

𝑗
, 𝜃

𝑞

𝑗
) on (𝑟

𝑗
, 𝜃

𝑗
) ∈ 𝑡

ℎ

𝑘𝑗
,

𝑢
𝜀

ℎ
= 𝑆

4
𝑢
𝜀

ℎ
on 𝜔

ℎ,𝑛
,

(26)

where 1 ≤ 𝑘 ≤ 𝑀, 1 ≤ 𝑚 ≤ 𝑁, and 𝑗 ∈ 𝐸.
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Table 1: The order of convergence in the “nonsingular” part when
ℎ = 2

−󰜚 and 𝜀 = 5 × 10
−13.

(2
−󰜚
, 𝑛) ‖𝜁

𝜀

ℎ
‖
𝐺
𝑁𝑆 R

󰜚

𝐺
𝑁𝑆

(2
−4
, 60) 1.609 × 10

−8
15.577

(2
−5
, 170) 1.033 × 10

−9

(2
−5
, 130) 1.191 × 10

−9
16.690

(2
−6
, 150) 7.136 × 10

−11

(2
−5
, 140) 1.136 × 10

−9
16.259

(2
−6
, 170) 6.991 × 10

−11

(2
−6
, 100) 2.169 × 10

−10
17.096

(2
−7
, 130) 1.269 × 10

−11

Table 2: The order of convergence in the “singular” part when ℎ =

2
−󰜚 and 𝜀 = 5 × 10

−13.

(2
−󰜚
, 𝑛) ‖𝜁

𝜀

ℎ
‖
𝐺
𝑆 R

󰜚

𝐺
𝑆

(2
−4
, 100) 1.931 × 10

−8
16.078

(2
−5
, 150) 1.182 × 10

−9

(2
−5
, 130) 1.294 × 10

−9
16.789

(2
−6
, 150) 7.708 × 10

−11

(2
−5
, 140) 1.312 × 10

−9
17.967

(2
−6
, 170) 7.304 × 10

−11

(2
−6
, 100) 2.389 × 10

−10
18.164

(2
−7
, 130) 1.315 × 10

−11

Table 3: The minimum errors of the solution over the pairs (ℎ−1, 𝑛)
in maximum norm when 𝜀 = 5 × 10

−13.

(ℎ
−1
, 𝑛) ‖𝜁

𝜀

ℎ
‖
𝐺
𝑁𝑆 ‖𝜁

𝜀

ℎ
‖
𝐺
𝑆 Iteration

(16, 70) 1.139 × 10
−8

1.572 × 10
−8

22

(32, 170) 1.033 × 10
−9

1.184 × 10
−9

23

(64, 170) 6.990 × 10
−11

7.304 × 10
−11

24

(128, 200) 8.628 × 10
−12

8.833 × 10
−12

25

Let 𝑇∗

𝑗
= 𝑇

𝑗
(𝑟

∗

𝑗
) be the sector, where 𝑟∗

𝑗
= (𝑟

𝑗2
+𝑟

𝑗3
)/2, 𝑗 ∈

𝐸, and let 𝑢𝜀
ℎ
(𝑟

𝑗2
, 𝜃

𝑞

𝑗
), 1 ≤ 𝑞 ≤ 𝑛(𝑗), 𝑗 ∈ 𝐸, be the solution

values of the system (26) on 𝑉
ℎ

𝑗
(at the quadrature nodes).

The function

𝑈
𝜀

ℎ
(𝑟

𝑗
, 𝜃

𝑗
) = 𝑄

𝑗
(𝑟

𝑗
, 𝜃

𝑗
)

+ 𝛽
𝑗

𝑛(𝑗)

∑

𝑞=1

𝑅
𝑗
(𝑟

𝑗
, 𝜃

𝑗
, 𝜃

𝑞

𝑗
) (𝑢

𝜀

ℎ
(𝑟

𝑗2
, 𝜃

𝑞

𝑗
) − 𝑄

𝑞𝜀

𝑗2
) ,

(27)

defined on 𝑇
∗

𝑗
, is called an approximate solution of the

problem (1) on the closed block 𝑇
3

𝑗
, 𝑗 ∈ 𝐸.

Definition 5. The system (26) and (27) is called the system of
block-grid equations.

Theorem 6. There is a natural number 𝑛
0
, such that for all

𝑛 ≥ 𝑛
0
and for any 𝜀 > 0 the system (26) has a unique solution.

Proof. From the estimation (2.29) in [15] follows the existence
of the positive constants 𝑛

0
and 𝜎, such that for all 𝑛 ≥ 𝑛

0

max
(𝑟𝑗,𝜃𝑗)∈𝑇

3

𝑗

𝛽
𝑗

𝑛(𝑗)

∑

𝑞=1

𝑅
𝑗
(𝑟

𝑗
, 𝜃

𝑗
, 𝜃

𝑞

𝑗
) ≤ 𝜎 < 1. (28)

The proof is obtained on the basis of principle of maximum
by taking into account (14), (19), (20), and (28).

Theorem 7. There exists a natural number 𝑛
0
, such that for all

𝑛 ≥ max {𝑛
0
, [ln1+𝜘ℎ−1] + 1} , (29)

where 𝜘 > 0 is a fixed number, and for any 𝜀 > 0 the following
inequalities are valid:

max
𝐺
ℎ,𝑛

𝑇

󵄨󵄨󵄨󵄨𝑢
𝜀

ℎ
− 𝑢

󵄨󵄨󵄨󵄨 ≤ 𝑐 (ℎ
4
+ 𝜀) , (30)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
𝑝

𝜕𝑥𝑝−𝑞𝜕𝑦𝑞
(𝑈

𝜀

ℎ
(𝑟

𝑗
, 𝜃

𝑗
) − 𝑢 (𝑟

𝑗
, 𝜃

𝑗
))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑐

𝑝
(ℎ

4
+ 𝜀) on 𝑇

3

𝑗
,

(31)

for integer 1/𝛼
𝑗
when 𝑝 ≥ 1/𝛼

𝑗
,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
𝑝

𝜕𝑥𝑝−𝑞𝜕𝑦𝑞
(𝑈

𝜀

ℎ
(𝑟

𝑗
, 𝜃

𝑗
) − 𝑢 (𝑟

𝑗
, 𝜃

𝑗
))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝑐
𝑝
(ℎ

4
+ 𝜀)

𝑟
𝑝−1/𝛼𝑗

on 𝑇
3

𝑗
,

(32)

for any 1/𝛼
𝑗
, if 0 ≤ 𝑝 < 1/𝛼

𝑗
,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
𝑝

𝜕𝑥𝑝−𝑞𝜕𝑦𝑞
(𝑈

𝜀

ℎ
(𝑟

𝑗
, 𝜃

𝑗
) − 𝑢 (𝑟

𝑗
, 𝜃

𝑗
))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝑐
𝑝
(ℎ

4
+ 𝜀)

𝑟
𝑝−1/𝛼𝑗

on 𝑇
3

𝑗
\ 𝐴

𝑗
,

(33)

for noninteger 1/𝛼
𝑗
, when 𝑝 > 1/𝛼

𝑗
. Everywhere 0 ≤ 𝑞 ≤ 𝑝, 𝑢

is the exact solution of the problem (1) and𝑈
𝜀

ℎ
(𝑟

𝑗
, 𝜃

𝑗
) is defined

by formula (27).

Proof. Let

𝜉
𝜀

ℎ
= 𝑢

𝜀

ℎ
− 𝑢, (34)

where 𝑢𝜀
ℎ
is a solution of system (26) and 𝑢 is the trace on𝐺

ℎ,𝑛

𝑇

of the solution of (1). On the basis of (1), (26), and (34) the
error 𝜉𝜀

ℎ
satisfies the system of difference equations

𝜉
𝜀

ℎ
= 𝐵𝜉

𝜀

ℎ
+ 𝑟

1

ℎ
on Π

ℎ

𝑘
,

𝜉
𝜀

ℎ
= 0 on 𝜂

ℎ

𝑘1
,

𝜉
𝜀

ℎ
(𝑟

𝑗
, 𝜃

𝑗
) = 𝛽

𝑗

𝑛(𝑗)

∑

𝑞=1

𝜉
𝜀

ℎ
(𝑟

𝑗2
, 𝜃

𝑞

𝑗
) 𝑅

𝑗
(𝑟

𝑗
, 𝜃

𝑗
, 𝜃

𝑞

𝑗
)

+ 𝑟
2

𝑗ℎ
, (𝑟

𝑗
, 𝜃

𝑗
) ∈ 𝑡

ℎ

𝑘𝑗
,

𝜉
𝜀

ℎ
= 𝑆

4
𝜉
𝜀

ℎ
+ 𝑟

3

ℎ
on 𝜔

ℎ,𝑛
,

(35)
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Table 4: In 𝐺
𝑆
∩ 𝑟 ≥ 0.2, the minimum errors of the derivatives over the pairs (ℎ−1, 𝑛) in maximum norm when 𝜀 = 5 × 10

−13.

(ℎ
−1
, 𝑛) Max

𝐺
𝑆
∩ {𝑟≥0.2}

𝑟
1/3

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝑈
𝜀

ℎ

𝜕𝑥
−

𝜕𝑢

𝜕𝑥

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
Max

𝐺
𝑆
∩ {𝑟≥0.2}

𝑟
1/3

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝑈
𝜀

ℎ

𝜕𝑦
−

𝜕𝑢

𝜕𝑦

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(16, 70) 3.895 × 10
−7

3.895 × 10
−7

(32, 170) 4.627 × 10
−8

4.627 × 10
−8

(64, 170) 1.124 × 10
−9

3.125 × 10
−9

(128, 200) 2.214 × 10
−10

2.233 × 10
−10

Table 5: In𝐺
𝑆, the minimum errors of the derivatives over the pairs

(ℎ
−1
, 𝑛) in maximum norm when 𝜀 = 5 × 10

−13.

(ℎ
−1
, 𝑛) Max

𝐺
𝑆𝑟

1/3

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝑈
𝜀

ℎ

𝜕𝑥
−

𝜕𝑢

𝜕𝑥

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
Max

𝐺
𝑆𝑟

1/3

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝑈
𝜀

ℎ

𝜕𝑦
−

𝜕𝑢

𝜕𝑦

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(16, 70) 9.663 × 10
−6

9.663 × 10
−6

(32, 170) 9.653 × 10
−6

9.653 × 10
−6

(64, 170) 9.649 × 10
−6

9.649 × 10
−6

(128, 200) 9.648 × 10
−6

9.648 × 10
−6

where 1 ≤ 𝑘 ≤ 𝑀, 𝑗 ∈ 𝐸,

𝑟
1

ℎ
= 𝐵𝑢 − 𝑢 on ∪

𝑀

𝑘=1
Π

ℎ

𝑘
, (36)

𝑟
2

𝑗ℎ
= 𝛽

𝑗

𝑛(𝑗)

∑

𝑞=1

(𝑢 (𝑟
𝑗2
, 𝜃

𝑞

𝑗
) − 𝑄

𝑞𝜀

𝑗2
) 𝑅

𝑗
(𝑟

𝑗
, 𝜃

𝑗
, 𝜃

𝑞

𝑗
)

− (𝑢 − 𝑄
𝜀

𝑗
) on ∪

𝑀

𝑘=1
(∪

𝑗∈𝐸
𝑡
ℎ

𝑘𝑗
) ,

(37)

𝑟
3

ℎ

=

{{

{{

{

𝑆
4
𝑢 − 𝑢 on 𝜔

ℎ,𝑛

𝐼
,

𝑆
4
(𝑢 −

3

∑

𝑘=0

𝑎
𝑘
Re 𝑧𝑘) − (𝑢 −

3

∑

𝑘=0

𝑎
𝑘
Re 𝑧𝑘)

𝑃

, 𝑃 ∈ 𝜔
ℎ,𝑛

𝐷
.

(38)

On the basis of estimations (15), (21), (25), and Lemma 1
by analogy to the proof of Theorem 4.3 in [9] the proof of
inequality (30) follows.

The function 𝑈
𝜀

ℎ
(𝑟

𝑗
, 𝜃

𝑗
) given by formula (27), defined

on the closed sector 𝑇
∗

𝑗
, 𝑗 ∈ 𝐸, where 𝑟

∗

𝑗
= (𝑟

𝑗2
+ 𝑟

𝑗3
)/2,

and the integral representation (8) of the exact solution of
the problem (1) is given on 𝑇

2

𝑗
\ 𝑉

𝑗
, 𝑗 ∈ 𝐸, and then the

difference function 𝜁
𝜀

ℎ
(𝑟

𝑗
, 𝜃

𝑗
) = 𝑈

𝜀

ℎ
(𝑟

𝑗
, 𝜃

𝑗
)−𝑢(𝑟

𝑗
, 𝜃

𝑗
) is defined

on 𝑇
∗

𝑗
, 𝑗 ∈ 𝐸 and

𝜁
𝜀

ℎ
(𝑟

∗

𝑗
, 0) = 𝜁

𝜀

ℎ
(𝑟

∗

𝑗
, 𝛼

𝑗
𝜋) = 0, 𝑗 ∈ 𝐸. (39)

On the basis of Lemma 6.11 from [16], (25), and (28), for 𝑛 ≥

max{𝑛
0
, [ln1+𝜘ℎ−1]+1},𝜘 > 0 is a fixed number, andwe obtain

󵄨󵄨󵄨󵄨󵄨
𝜁
𝜀

ℎ
(𝑟

𝑗
, 𝜃

𝑗
)
󵄨󵄨󵄨󵄨󵄨
≤ 𝑐 (ℎ

4
+ 𝜀) on 𝑇

∗

𝑗
, 𝑗 ∈ 𝐸. (40)

Furthermore, the function 𝜁
𝜀

ℎ
(𝑟

𝑗
, 𝜃

𝑗
) continuous on 𝑇

∗

𝑗
is a

solution of the following Dirichlet problem:

Δ𝜁
𝜀

ℎ
= 0 on 𝑇

∗

𝑗
,

𝜁
𝜀

ℎ
= 0 on 𝛾

𝑚
∩ 𝑇

∗

𝑗
, 𝑚 = 𝑗 − 1, 𝑗,

𝜁
𝜀

ℎ
(𝑟

∗

𝑗
, 𝜃

𝑗
) = 𝑈

𝜀

ℎ
(𝑟

∗

𝑗
, 𝜃

𝑗
) − 𝑢 (𝑟

∗

𝑗
, 𝜃

𝑗
) , 0 ≤ 𝜃

𝑗
≤ 𝛼

𝑗
𝜋.

(41)

Since 𝑇
3

𝑗
⊂ 𝑇

∗

𝑗
, on the basis of (39) and (40), from Lemma

6.12 in [16], inequalities (31)–(33) of Theorem 7 follow.

5. Stress Intensity Factor

Let, in the condition 𝜑
𝑗
∈ 𝐶

4,𝜆
(𝛾

𝑗
), the exponent 𝜆 be such

that

{𝛼
𝑗
(4 + 𝜆)} ̸= 0, {2𝛼

𝑗
(4 + 𝜆)} ̸= 0, (42)

where {⋅} is the symbol of fractional part.These conditions for
the given 𝛼

𝑗
can be fulfilled by decreasing 𝜆.

On the basis of Section 2 of [11], a solution of the problem
(1) can be represented in 𝑇

∗

𝑗
, 𝑗 ∈ 𝐸, as follows:

𝑢 (𝑥
𝑗
, 𝑦

𝑗
) = 𝑢̃ (𝑥

𝑗
, 𝑦

𝑗
) +

4

∑

𝑘=0

𝜇
(𝑗)

𝑘
Im {𝑧

𝑘 ln 𝑧}

+

𝑛𝛼𝑗

∑

𝑘=1

𝜏
(𝑗)

𝑘
𝑟
𝑘/𝛼𝑗

𝑗
sin

𝑘𝜃
𝑗

𝛼
𝑗

,

(43)

where 𝑛
𝛼𝑗

= [𝛼
𝑗
(4+𝜆)], [⋅] is the integer part, 𝑧 = 𝑥

𝑗
+𝑖𝑦

𝑗
, 𝜇(𝑗)

𝑘

and 𝜏
(𝑗)

𝑘
are some numbers, and 𝑢̃(𝑥

𝑗
, 𝑦

𝑗
) ∈ 𝐶

4,𝜆
(𝑇

2

𝑗
) is the

harmonic on 𝑇
2

𝑗
. By taking 𝜃

𝑗
= 𝛼

𝑗
𝜋/2, from the formula

(43), it follows that the coefficient 𝜏(𝑗)
1

which is called the stress
intensity factor can be represented as

𝜏
(𝑗)

1
= lim

𝑟𝑗→0

1

𝑟
1/𝛼𝑗

𝑗

(𝑢 (𝑥
𝑗
, 𝑦

𝑗
) − 𝑢̃ (𝑥

𝑗
, 𝑦

𝑗
)

−

4

∑

𝑘=0

𝜇
(𝑗)

𝑘
Im {𝑧

𝑘 ln 𝑧}) .

(44)
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Table 6: The stress intensity factor 𝜏𝜖
1,𝑛

for 𝑛 = 70, 170, 200 when 𝜀 = 5 × 10
−13.

ℎ
−1

𝜏
𝜀

1,70
𝜏
𝜀

1,170
𝜏
𝜀

1,200

16 1.000000014856688 1.000000017180415 1.000000017197438

32 1.000000005800844 1.000000001230267 1.000000001236709

64 1.000000004138169 1.000000000073107 1.000000000079938

128 1.000000004053153 1.000000000003531 1.000000000003267
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Figure 3: Dependence on 𝜀 for ℎ−1 = 16, 32.

From formula (44) it follows that 𝜏
(𝑗)

1
can be approxi-

mated by

𝜏
(𝑗)𝜀

1,𝑛

= lim
𝑟𝑗→0

1

𝑟
1/𝛼𝑗

𝑗

(𝑈
𝜀

ℎ
(𝑟

𝑗
, 𝜃

𝑗
)

−(𝜑
𝑗
(𝑠

𝑗
) + (𝜑

𝑗−1
(𝑠

𝑗
) − 𝜑

𝑗
(𝑠

𝑗
))

𝜃
𝑗

𝛼
𝑗
𝜋
)) .

(45)

Using formula (3), (4), and (27) from (45) for the stress
intensity factor (see [17]), we obtain the next formula:

𝜏
(𝑗)𝜀

1,𝑛
=

1

𝜋
∫

𝜎𝑗0

0

𝜑
𝑗0
(𝑡

𝛼𝑗) 𝑑𝑡

𝑡2
+

1

𝜋
∫

𝜎𝑗1

0

𝜑
𝑗1
(𝑡

𝛼𝑗) 𝑑𝑡

𝑡2

+
2

𝑛 (𝑗) 𝑟
1/𝛼𝑗

𝑗2

𝑛(𝑗)

∑

𝑞=1

(𝑢
𝜀

ℎ
(𝑟

𝑗2
, 𝜃

𝑞

𝑗
) − 𝑄

𝑞𝜀

𝑗2
) sin 1

𝛼
𝑗

𝜃
𝑞

𝑗
.

(46)

This formula is obtained for the second-order BGM in [8].
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Figure 4: Dependence on 𝜀 for ℎ−1 = 64, 128.

6. Numerical Results

Let 𝐺 be L-shaped and defined as follows:

𝐺 = {(𝑥, 𝑦) : −1 < 𝑥 < 1, −1 < 𝑦 < 1} \ Ω, (47)

where Ω = {(𝑥, 𝑦) : 0 ≤ 𝑥 ≤ 1, −1 ≤ 𝑦 ≤ 0} and 𝛾 is the
boundary of 𝐺.

We consider the following problem:

Δ𝑢 = 0 in 𝐺,

𝑢 = V (𝑟, 𝜃) on 𝛾,

(48)

where

V (𝑟, 𝜃) = 𝑟
2/3 sin(

2

3
𝜃) + 0.0051𝑟

16/3 cos(16

3
𝜃) (49)

is the exact solution of this problem.
We choose a “singular” part of 𝐺 as

𝐺
𝑆
= {(𝑥, 𝑦) : −0.5 < 𝑥 < 0.5, −0.5 < 𝑦 < 0.5} \ Ω

1
, (50)

where Ω
1
= {(𝑥, 𝑦) : 0 ≤ 𝑥 ≤ 0.5, −0.5 ≤ 𝑦 ≤ 0}. Then

𝐺
𝑁𝑆

= 𝐺 \ 𝐺
𝑆 is a “nonsingular” part of 𝐺.

The given domain 𝐺 is covered by four overlapping
rectangles Π

𝑘
, 𝑘 = 1, . . . , 4, and by the block sector 𝑇

3

1
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Figure 5: Maximum error depending on the number of quadrature nodes 𝑛.
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Figure 6: The approximate solution 𝑈
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and the exact solution 𝑢 in the “singular” part for 𝜀 = 5 × 10

−13.
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Figure 7: The error function in “singular” part when 𝜀 = 5 × 10
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ℎ
/𝜕

𝑥
in the “singular” part.

(see Figure 2). For the boundary of 𝐺𝑆 on 𝐺 is the polygonal
line 𝑡

1
= 𝑎𝑏𝑐𝑑𝑒. The radius 𝑟

12
of sector 𝑇2

1
is taken as 0.93.

According to (49), the function 𝑄(𝑟, 𝜃) in (4) is

𝑄 (𝑟, 𝜃) =
0.0051

𝜋
∫

1

0

𝑦𝑡
8
𝑑𝑡

(𝑡 − 𝑥)
2
+ 𝑦2

+
0.0051

𝜋
∫

1

0

𝑦𝑡
8
𝑑𝑡

(𝑡 − 𝑥)
2
+ 𝑦2

,

(51)

where 𝑥 = 𝑟
2/3 cos(2𝜃/3) and 𝑦 = 𝑟

2/3 sin(2𝜃/3). Since we
have only one singular point, we omit subindices in (51). We
calculate the values 𝑄

𝜀
(𝑟

12
, 𝜃

𝑞
) and 𝑄

𝜀
(𝑟, 𝜃) on the grids 𝑡

ℎ

1
,

with an accuracy of 𝜀using the quadrature formulae proposed
in [10].

On the basis of (46) and (51), for the stress intensity factor,
we have

𝜏
𝜀

1,𝑛
=

0.0102

7𝜋
+

2

𝑛(0.93)
2/3

𝑛

∑

𝑞=1

(𝑢
𝜀

ℎ
(0.93, 𝜃

𝑞

𝑗
) − 𝑄

𝑞𝜀

𝑗2
) sin 2

3
𝜃
𝑞

𝑗
.

(52)

Taking the zero approximation 𝑢
𝜀(0)

ℎ
= 0, the results of

realization of the Schwarz iteration (see [2]) for the solution
of the problem (48) are given in Tables 1, 2, 3, and 4. Tables
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Figure 9: 𝜕𝑈𝜀
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in the “singular” part.
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1 and 2 represent the order of convergence. Table 6 shows a
highly accurate approximation of the stress intensity factor
by the proposed fourth order BGM

R
󰜚

𝐺
𝑁𝑆 =

max
𝐺
𝑁𝑆

󵄨󵄨󵄨󵄨𝑢
𝜀

2
−󰜚 − 𝑢

󵄨󵄨󵄨󵄨

max
𝐺
𝑁𝑆

󵄨󵄨󵄨󵄨󵄨
𝑢𝜀
2
−(󰜚+1) − 𝑢

󵄨󵄨󵄨󵄨󵄨

(53)

in the “nonsingular” and the order of convergence

R
󰜚

𝐺
𝑆 =

max
𝐺
𝑆
󵄨󵄨󵄨󵄨𝑈

𝜀

2
−󰜚 − 𝑢

󵄨󵄨󵄨󵄨

max
𝐺
𝑆

󵄨󵄨󵄨󵄨󵄨
𝑈𝜀

2
−(󰜚+1) − 𝑢

󵄨󵄨󵄨󵄨󵄨

(54)

in the “singular” parts of 𝐺, respectively, for 𝜀 = 5 ×

10
−13, where 󰜚 is a positive integer. In Table 3, the minimal

values over the pairs (ℎ
−1
, 𝑛) of the errors in maximum

norm, of the approximate solution when 𝜀 = 5 × 10
−13,

are presented. The similar values of errors for the first-order
derivatives are presented in Table 4, when 𝜕𝑄/𝜕𝑥 and 𝜕𝑄/𝜕𝑦

are approximated by fourth-order central difference formula
on 𝐺

𝑆 for 𝑟 ≥ 0.2. For 𝑟 < 0.2, the order of errors decreases
down to 10

−6, which are presented in Table 5. This happens
because the integrands in (51) are not sufficiently smooth for
fourth-order differentiation formula.Theorder of accuracy of
the derivatives for 𝑟 < 0.2 can be increased if we use similar
quadrature rules, which we used for the integrals in (51) for
the derivatives of integrands also.

Figures 3 and 4 show the dependence on 𝜀 for different
mesh steps ℎ. Figure 5 demonstrates the convergence of the
BGM with respect to the number of quadrature nodes for
different mesh steps ℎ. The approximate solution and the
exact solution in the “singular” part are given in Figure 6, to
illustrate the accuracy of the BGM.Theerror of the block-grid
solution, when the function 𝑄(𝑟, 𝜃) in (51) is calculated with
an accuracy of 𝜀 = 5 × 10

−13, is presented in Figure 7. Figures
8 and 9 show the singular behaviour of the first-order partial
derivatives in the “singular” part. The ratios R󰜚

𝐺
𝑆 and R

󰜚

𝐺
𝑁𝑆 ,

when 󰜚 = 5with respect to different 𝑛 values for ℎ−1 = 64 and
for a fixed value of 𝑛 of ℎ−1 = 32, are illustrated in Figures
10 and 11, respectively. These ratios show that the order of
the convergence in both the “singular” and the “nonsingular”
parts is asymptotically equal to 16 when 𝑛 is kept fixed for
ℎ
−1

= 32, and it is selected as large as possible (𝑛 > 100) for
ℎ
−1

= 64.

7. Conclusions

In the block-grid method (BGM) for solving Laplace’s
equation, the restriction on the boundary functions to be
algebraic polynomials on the sides of the polygon causing the
singular vertices is removed. This condition is replaced by
the functions from the Hölder classes 𝐶

4,𝜆, 0 < 𝜆 < 1. In
the integral representations around singular vertices (on the
“singular” part), which are combined with the 9-point finite
difference equations on the “nonsingular” part of the polygon,
the boundary conditions are taken into account with the help
of integrals of Poisson type for a half-plane. To connect the
subsystems, a homogeneous fourth-order gluing operator is
used. It is proved that the final uniform error is of order

𝑂(ℎ
4
+ 𝜀), where 𝜀 is the error of the approximation of

the mentioned integrals and ℎ is the mesh step. For the 𝑝-
order derivatives (𝑝 = 0, 1, . . .) of the difference between the
approximate and the exact solutions, in each “singular” part
𝑂((ℎ

4
+𝜀)𝑟

1/𝛼𝑗−𝑝

𝑗
) order is obtained.Themethod is illustrated

in solving the problem in L-shaped polygon with the corner
singularity. Dependence of the approximate solution and its
errors on 𝜀, ℎ and the number of quadrature nodes 𝑛 are
demonstrated. Furthermore, by the constructed approximate
solution on the “singular” part of the polygon, a highly
accurate formula for the stress intensity factor is given.

From the error estimation formula (33) of Theorem 7 it
follows that the error of the approximate solution on the block
sectors decreases as 𝑟1/𝛼𝑗

𝑗
(ℎ

4
+ 𝜀), which gives an additional

accuracy of the BGM near the singular points.
Themethod and results of this paper are valid formultiply

connected polygons.
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