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We propose certain types of interval-valued fuzzy graphs including balanced interval-valued fuzzy graphs, neighbourly irregular
interval-valued fuzzy graphs, neighbourly total irregular interval-valued fuzzy graphs, highly irregular interval-valued fuzzy graphs,
and highly total irregular interval-valued fuzzy graphs. Some interesting properties associated with these new interval-valued fuzzy
graphs are investigated, and necessary and sufficient conditions under which neighbourly irregular and highly irregular interval-
valued fuzzy graphs are equivalent are obtained. We also describe the relationship between intuitionistic fuzzy graphs and interval-
valued fuzzy graphs.

1. Introduction

Themajor role of graph theory in computer applications is the
development of graph algorithms. A number of algorithms
are used to solve problems that are modeled in the form
of graphs. These algorithms are used to solve the graph
theoretical concepts, which in turn are used to solve the cor-
responding computer science application problems. Several
computer programming languages support the graph theory
concepts [1]. The main goal of such languages is to enable
the user to formulate operations on graphs in a compact and
natural manner. Some of these languages are (1) SPANTREE:
to find a spanning tree in the given graph, (2) GTPL: graph
theoretic language, (3) GASP: graph algorithm software
package, (4) HINT: an extension of LISP, (5) GRASPE: an
extension of LISP, (6) IGTS: an extension of FORTRAN, (7)
GEA: graphic extended AL-GOL, (8) AMBIT: to manipulate
digraphs, (9) GIRL: graph information retrieval language,
and (10) FGRAAL: FORTRAN Extended graph algorithmic
language [1, 2].

Zadeh [3] introduced the notion of interval-valued fuzzy
sets, and Atanassov [4] introduced the concept of intuition-
istic fuzzy sets as extensions of Zadeh’s fuzzy set theory [5]

for representing vagueness and uncertainty. Interval-valued
fuzzy set theory reflects the uncertainty by the length of the
interval membership degree [𝜇

1
, 𝜇
2
]. In intuitionistic fuzzy

set theory for every membership degree (𝜇
1
, 𝜇
2
), the value

𝜋 = 1 − 𝜇
1

− 𝜇
2
denotes a measure of nondeterminacy

(or undecidedness). Interval-valued fuzzy sets provide a
more adequate description of vagueness than traditional
fuzzy sets. It is therefore important to use interval-valued
fuzzy sets in applications, such as fuzzy control. One of
the computationally most intensive parts of fuzzy control is
defuzzification [6]. Since interval-valued fuzzy sets are widely
studied and used, we describe briefly thework of Gorzalczany
on approximate reasoning [7, 8], Roy and Biswas on medical
diagnosis [9], Türksen onmultivalued logic [10], andMendel
on intelligent control [6].

Kauffman’s initial definition of a fuzzy graph [11] was
based on Zadeh’s fuzzy relations [5]. Rosenfeld [12] intro-
duced the fuzzy analogue of several basic graph-theoretic
concepts. Since then, fuzzy graph theory has been finding
an increasing number of applications in modeling real time
systems where the level of information inherent in the system
varies with differences levels of precision. Fuzzy models
are becoming useful because of their aim to reduce the
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differences between the traditional numerical models used in
engineering and sciences and the symbolic models used in
expert systems. Mordeson and Peng [13] defined the concept
of complement of fuzzy graph and described some operations
on fuzzy graphs. In [14], the definition of complement of
a fuzzy graph was modified so that the complement of the
complement is the original fuzzy graph, which agreeswith the
crisp graph case. Ju andWang gave the definition of interval-
valued fuzzy graph in [15]. Akram et al. [16–20] introduced
many new concepts including bipolar fuzzy graphs, interval-
valued line fuzzy graphs, and strong intuitionistic fuzzy
graphs. In this paper, we propose certain types of interval-
valued fuzzy graphs including balanced interval-valued fuzzy
graphs, neighbourly irregular interval-valued fuzzy graphs,
neighbourly total irregular interval-valued fuzzy graphs,
highly irregular interval-valued fuzzy graphs, and highly
total irregular interval-valued fuzzy graphs. Some interesting
properties associated with these new interval-valued fuzzy
graphs are investigated, and necessary and sufficient condi-
tions under which neighbourly irregular and highly irregular
interval-valued fuzzy graphs are equivalent are obtained. We
also describe the relationship between intuitionistic fuzzy
graphs and interval-valued fuzzy graphs.

We used standard definitions and terminologies in this
paper. For notations, terminologies and applications are not
mentioned in the paper; the readers are referred to [13, 14, 21–
29].

2. Preliminaries

In this section, we review some elementary concepts whose
understanding is necessary to fully benefit from this paper.

By a graph 𝐺
∗ = (𝑉, 𝐸), we mean a nontrivial, finite,

connected, and undirected graph without loops or multiple
edges. We write 𝑥𝑦 ∈ 𝐸 to mean (𝑥, 𝑦) ∈ 𝐸, and if 𝑒 = 𝑥𝑦 ∈ 𝐸,
we say that 𝑥 and 𝑦 are adjacent. Formally, given a graph
𝐺
∗ = (𝑉, 𝐸), two vertices 𝑥, 𝑦 ∈ 𝑉 are said to be neighbors,

or adjacent nodes, if 𝑥𝑦 ∈ 𝐸. The number of vertices, the
cardinality of 𝑉, is called the order of graph and denoted
by |𝑉|. The number of edges, the cardinality of 𝐸, is called
the size of graph and denoted by |𝐸|. A path in a graph 𝐺

∗

is an alternating sequence of vertices and edges V
0
, 𝑒
1
, V
1
,

𝑒
2
, . . . , V

𝑛−1
, 𝑒
𝑛
, V
𝑛
. The path graph with 𝑛 vertices is denoted

by 𝑃
𝑛
. A path is sometimes denoted by 𝑃

𝑛
: V
0
V
1
⋅ ⋅ ⋅ V
𝑛
(𝑛 > 0).

The length of a path 𝑃
𝑛
in𝐺∗ is 𝑛. A path 𝑃

𝑛
: V
0
V
1
⋅ ⋅ ⋅ V
𝑛
in𝐺∗

is called a cycle if V
0
= V
𝑛
and 𝑛 ≥ 3. Note that path graph, 𝑃

𝑛
,

has 𝑛 − 1 edges and can be obtained from a cycle graph, 𝐶
𝑛
,

by removing any edge. An undirected graph 𝐺
∗ is connected

if there is a path between each pair of distinct vertices. The
neighbourhood of a vertex V in a graph 𝐺

∗ is the induced
subgraph of 𝐺∗ consisting of all vertices adjacent to V and
all edges connecting two such vertices. The neighbourhood
is often denoted 𝑁(V). The degree deg(V) of vertex V is the
number of edges incident on V or equivalently, deg(V) =

|𝑁(V)|. The set of neighbors, called a (open) neighborhood
𝑁(V) for a vertex V in a graph 𝐺

∗, consists of all vertices
adjacent to V but not including V; that is,𝑁(V) = {𝑢 ∈ 𝑉 | V𝑢 ∈

𝐸}. When V is also included, it is called a closed neighborhood
𝑁[V], that is, 𝑁[V] = 𝑁(V) ∪ {V}. A regular graph is a graph

where each vertex has the same number of neighbors, that is,
all the vertices have the same closed neighbourhood degree.
A connected graph is highly irregular if each of its vertices is
adjacent only to vertices with distinct degrees. Equivalently,
a graph 𝐺

∗ is highly irregular if every two vertices of 𝐺∗

connected by a path of length 2 have distinct degrees. A
connected graph is said to be neighbourly irregular if no two
adjacent vertices of 𝐺∗ have the same degree. Equivalently, a
connected graph 𝐺∗ is called neighbourly irregular if every
two adjacent vertices of 𝐺∗ have distinct degree.

It is known that one of the best known classes of graphs is
the class of regular graphs. These graphs have been studied
extensively in various contexts. Regular graphs of degree 𝑟

and order 𝑛 exist with only limited, but natural, restrictions.
Indeed, for integers 𝑟 and 𝑛 with 0 ≤ 𝑟 ≤ 𝑛 − 1, an 𝑟-regular
graph of order 𝑛 exists if and only if 𝑛𝑟 is even. A graph that
is not regular will be called irregular. It is well known [30]
that all nontrivial graphs, regular or irregular, must contain
at least two vertices of the same degree. In a regular graph,
of course, every vertex is adjacent only to vertices having the
same degree. On the other hand, it is possible for a vertex in
an irregular graph to be adjacent only to vertices with distinct
degrees. With these observations made, we now consider
graphs that are opposite, in a certain sense, to regular graphs.
We consider only undirected graphs with the finite number
of vertices and edges.

Applications of fuzzy relations arewidespread and impor-
tant, especially in the field of clustering analysis, neural
networks, computer networks, pattern recognition, decision
making, and expert systems. In each of these, the basic
mathematical structure is that of a fuzzy graph.

Definition 1 (see [3, 5]). A fuzzy subset 𝜇 on a set 𝑋 is a map
𝜇 : 𝑋 → [0, 1]. A fuzzy binary relation on𝑋 is a fuzzy subset
𝜇 on 𝑋 × 𝑋. By a fuzzy relation, we mean a fuzzy binary
relation given by 𝜇 : 𝑋 × 𝑋 → [0, 1].

Fuzzy set theory is an extension of ordinary set theory
in which to each element a real number between 0 and 1,
called the membership degree, is assigned. Unfortunately, it
is not always possible to give an exact degree of membership.
There can be uncertainty about the membership degree
because of lack of knowledge, vague information, and so
forth. A possible way to overcome this problem is to use
interval-valued fuzzy sets, which assign to each element a
closed interval which approximates the “real,” but unknown,
membership degree. The length of this interval is a measure
for the uncertainty about the membership degree.

An interval number𝐷 is an interval [𝑎−, 𝑎+]with 0 ≤ 𝑎− ≤

𝑎+ ≤ 1. The interval [𝑎, 𝑎] is identified with the number 𝑎 ∈

[0, 1]. Let𝐷[0, 1] be the set of all closed subintervals of [0, 1].
Then, it is known that (𝐷[0, 1], ≤, ∨, ∧) is a complete lattice
with [0, 0] as the least element and [1, 1] as the greatest.

Definition 2 (see [7]). An interval-valued fuzzy relation 𝑅 in
a universe𝑋×𝑌 is a mapping 𝑅 : 𝑋×𝑌 → 𝐷[0, 1] such that
𝑅(𝑥, 𝑦) = [𝑅−(𝑥, 𝑦), 𝑅+(𝑥, 𝑦)] ∈ 𝐷[0, 1] for all pairs (𝑥, 𝑦) ∈

𝑋 × 𝑌.
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Interval-valued fuzzy relations reflect the idea that mem-
bership grades are often not precise and the intervals repre-
sent such uncertainty.

Definition 3 (see [15]). By an interval-valued fuzzy graph𝐺 of
a graph 𝐺

∗, we mean a pair 𝐺 = (𝐴, 𝐵), where 𝐴 = [𝜇−
𝐴
, 𝜇+
𝐴
]

is an interval-valued fuzzy set on 𝑉 and 𝐵 = [𝜇−
𝐵
, 𝜇+
𝐵
] is an

interval-valued fuzzy relation on 𝐸 such that

𝜇
−

𝐵
(𝑥𝑦) ≤ min (𝜇

−

𝐴
(𝑥), 𝜇

−

𝐴
(𝑦)) ,

𝜇
+

𝐵
(𝑥𝑦) ≤ min (𝜇

+

𝐴
(𝑥), 𝜇

+

𝐴
(𝑦)) ,

(1)

for all 𝑥𝑦 ∈ 𝐸.

Throughout this paper, 𝐺∗ is a crisp graph, and 𝐺 is an
interval-valued fuzzy graph.

3. Balanced Interval-Valued Fuzzy Graphs

Definition 4. Let 𝐺 be an interval-valued fuzzy graph. The
neighbourhood degree of a vertex 𝑥 in𝐺 is defined by deg(𝑥) =

[deg
𝜇
−

(𝑥), deg
𝜇
+

(𝑥)], where deg
𝜇
−

(𝑥) = ∑
𝑦∈𝑁(𝑥)

𝜇−
𝐴
(𝑦) and

deg
𝜇
+

(𝑥) = ∑
𝑦∈𝑁(𝑥)

𝜇+
𝐴
(𝑦). Notice that 𝜇−

𝐵
(𝑥𝑦) > 0, 𝜇+

𝐵
(𝑥𝑦) >

0 for 𝑥𝑦 ∈ 𝐸, and 𝜇−
𝐵
(𝑥𝑦) = 𝜇+

𝐵
(𝑥𝑦) = 0 for 𝑥𝑦 ∉ 𝐸.

Definition 5. Let 𝐺 = (𝐴, 𝐵) be an interval-valued fuzzy
graph on𝐺∗. If all the vertices have the same open neighbour-
hood degree 𝑛, then 𝐺 is called an 𝑛-regular interval-valued
fuzzy graph. The open neighbourhood degree of a vertex 𝑥

in 𝐺 is defined by deg(𝑥) = [deg
𝜇
−

(𝑥), deg
𝜇
+

(𝑥)], where
deg
𝜇
−

(𝑥) = ∑
𝑦∈𝑁(𝑥)

𝜇−
𝐴
(𝑦) and deg

𝜇
+

(𝑥) = ∑
𝑦∈𝑁(𝑥)

𝜇+
𝐴
(𝑦).

Definition 6. Let 𝐺 be an interval-valued fuzzy graph. The
closed neighbourhood degree of a vertex 𝑥 is defined by
deg[𝑥] = [deg

𝜇
−

[𝑥], deg
𝜇
+

[𝑥]], where

deg
𝜇
−
[𝑥] = deg

𝜇
−
(𝑥) + 𝜇

−

𝐴
(𝑥) ,

deg
𝜇
+
[𝑥] = deg

𝜇
+
(𝑥) + 𝜇

+

𝐴
(𝑥) .

(2)

If all the vertices have the same closed neighbourhood degree
𝑚, then 𝐺 is called a 𝑚-totally regular interval-valued fuzzy
graph.

Example 7. Consider a graph 𝐺∗ such that 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑},
𝐸 = {𝑎𝑏, 𝑏𝑐, 𝑐𝑑, 𝑎𝑑}. Let 𝐴 be an interval-valued fuzzy subset
of 𝑉, and let𝐵 be an interval-valued fuzzy subset of𝐸 ⊆ 𝑉×𝑉

defined by

[
[
[

[

𝑎 𝑏 𝑐 𝑑

𝜇−
𝐴

0.3 0.3 0.3 0.3

𝜇+
𝐴

0.5 0.5 0.5 0.5

]
]
]

]

,

d c

ba

[0.1, 0.2]

[0.1, 0.4][0.1, 0.4]

[0.1, 0.2]

[0.3, 0.5] [0.3, 0.5]

[0.3, 0.5][0.3, 0.5]

G

Figure 1: 𝐺 is regular and totally regular.

[
[
[

[

𝑎𝑏 𝑏𝑐 𝑐𝑑 𝑑𝑎

𝜇−
𝐵

0.1 0.1 0.1 0.1

𝜇+
𝐵

0.2 0.4 0.2 0.4

]
]
]

]

.

(3)

Routine computations show that an interval-valued fuzzy
graph 𝐺 as shown in Figure 1 is both regular and totally
regular.

Example 8. Consider a graph 𝐺
∗ such that 𝑉 = {V

1
, V
2
, V
3
},

𝐸 = {V
1
V
2
, V
1
V
3
}. Let 𝐴 be an interval-valued fuzzy subset of

𝑉 and let 𝐵 be an interval-valued fuzzy subset of 𝐸 defined by

𝜇
−

𝐴
(V
1
) = 0.4, 𝜇

−

𝐴
(V
2
) = 0.7, 𝜇

−

𝐴
(V
3
) = 0.6,

𝜇
+

𝐴
(V
1
) = 0.4, 𝜇

+

𝐴
(V
2
) = 0.8, 𝜇

+

𝐴
(V
3
) = 0.7,

𝜇
−

𝐵
(V
1
V
2
) = 0.2, 𝜇

−

𝐵
(V
1
V
3
) = 0.2; 𝜇

+

𝐵
(V
1
V
2
) = 0.3,

𝜇
+

𝐵
(V
1
V
3
) = 0.4.

(4)

Routine computations show that an interval-valued fuzzy
graph 𝐺 is neither totally regular nor regular.

Definition 9. We define the order 𝑂(𝐺) and size 𝑆(𝐺) of an
interval-valued fuzzy graph 𝐺 = (𝐴, 𝐵) by

𝑂 (𝐺) = ∑
𝑥∈𝑉

1 + 𝜇+
𝐴
(𝑥) − 𝜇−

𝐴
(𝑥)

2
,

𝑆 (𝐺) = ∑
𝑥𝑦∈𝐸

1 + 𝜇+
𝐵
(𝑥𝑦) − 𝜇−

𝐵
(𝑥𝑦)

2
.

(5)
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Definition 10. An interval-valued fuzzy graph 𝐺 = (𝐴, 𝐵) is
called complete if

𝜇
−

𝐵
(𝑥𝑦) = min (𝜇

−

𝐴
(𝑥) , 𝜇

−

𝐴
(𝑦)) ,

𝜇
+

𝐵
(𝑥𝑦) = max (𝜇

+

𝐴
(𝑥) , 𝜇

+

𝐴
(𝑦)) ∀𝑥, 𝑦 ∈ 𝑉.

(6)

Example 11. Consider a graph𝐺∗ such that𝑉 = {𝑥, 𝑦, 𝑧}, 𝐸 =

{𝑥𝑦, 𝑦𝑧, 𝑧𝑥}. Let𝐴 be an interval-valued fuzzy subset of𝑉 and
let 𝐵 be an interval-valued fuzzy subset of 𝐸 defined by

𝜇
−

𝐴
(𝑥) = 0.3, 𝜇

−

𝐴
(𝑦) = 0.4, 𝜇

−

𝐴
(𝑧) = 0.5,

𝜇
+

𝐴
(𝑥) = 0.5, 𝜇

+

𝐴
(𝑦) = 0.7, 𝜇

+

𝐴
(𝑧) = 0.6,

𝜇
−

𝐵
(𝑥𝑦) = 0.3, 𝜇

−

𝐵
(𝑦𝑧) = 0.4, 𝜇

−

𝐵
(𝑧𝑥) = 0.3,

𝜇
+

𝐵
(𝑥𝑦) = 0.5, 𝜇

+

𝐵
(𝑦𝑧) = 0.6, 𝜇

+

𝐵
(𝑧𝑥) = 0.5.

(7)

Routine computations show that 𝐺 is both complete
and totally regular interval-valued fuzzy graph, but 𝐺 is not
regular since deg(𝑥) ̸= deg(𝑧) ̸= deg(𝑦).

Theorem 12. Every complete interval-valued fuzzy graph is
totally regular.

Theorem 13. Let𝐺 = (𝐴, 𝐵) be an interval-valued fuzzy graph
of a graph 𝐺

∗. Then,𝐴 = [𝜇−
𝐴
, 𝜇+
𝐴
] is a constant function if and

only if the following statements are equivalent:

(a) 𝐺 is a regular interval-valued fuzzy graph,
(b) 𝐺 is a totally regular interval-valued fuzzy graph.

Proof. Suppose that 𝐴 = [𝜇−
𝐴
, 𝜇+
𝐴
] is a constant function. Let

𝜇−
𝐴
(𝑥) = 𝑐

1
and 𝜇+

𝐴
(𝑥) = 𝑐

2
for all 𝑥 ∈ 𝑉.

(a) ⇒ (b): Assume that 𝐺 is an 𝑛-regular interval-valued
fuzzy graph. Then, deg

𝜇
−

(𝑥) = 𝑛
1
and deg

𝜇
+

(𝑥) = 𝑛
2
for all

𝑥 ∈ 𝑉. So,

deg
𝜇
−
[𝑥] = deg

𝜇
−
(𝑥) + 𝜇

−

𝐴
(𝑥) ,

deg
𝜇
+
[𝑥] = deg

𝜇
+
(𝑥) + 𝜇

+

𝐴
(𝑥) , ∀𝑥 ∈ 𝑉.

(8)

Thus,

deg
𝜇
−
[𝑥] = 𝑛

1
+ 𝑐
1
, deg

𝜇
+
[𝑥] = 𝑛

2
+ 𝑐
2
, ∀𝑥 ∈ 𝑉. (9)

Hence, 𝐺 is a totally regular interval-valued fuzzy graph.
(b) ⇒ (a): Suppose that 𝐺 is a totally regular interval-

valued fuzzy graph. Then,

deg
𝜇
−
[𝑥] = 𝑘

1
, deg

𝜇
+
[𝑥] = 𝑘

2
, ∀𝑥 ∈ 𝑉, (10)

or

deg
𝜇
−
(𝑥) + 𝜇

−

𝐴
(𝑥) = 𝑘

1
,

deg
𝜇
+
(𝑥) + 𝜇

+

𝐴
(𝑥) = 𝑘

2
, ∀𝑥 ∈ 𝑉,

(11)

or

deg
𝜇
−
(𝑥) + 𝑐

1
= 𝑘
1
, deg

𝜇
+
(𝑥) + 𝑐

2
= 𝑘
2
, ∀𝑥 ∈ 𝑉, (12)

or

deg
𝜇
−
(𝑥) = 𝑘

1
− 𝑐
1
, deg

𝜇
+
(𝑥) = 𝑘

2
− 𝑐
2
, ∀𝑥 ∈ 𝑉. (13)

Thus, 𝐺 is a regular interval-valued fuzzy graph. Hence, (a)
and (b) are equivalent.

The converse part is obvious.

Theorem 14. Let 𝐺 be an interval-valued fuzzy graph where a
crisp graph 𝐺∗ is an odd cycle. Then, 𝐺 is a regular interval-
valued fuzzy graph if and only if 𝐵 is a constant function.

Proof. If 𝐵 = [𝜇−
𝐵
, 𝜇+
𝐵
] is a constant function, say 𝜇−

𝐵
= 𝑐
1
and

𝜇+
𝐵

= 𝑐
2
for all 𝑥𝑦 ∈ 𝐸; then, deg

𝜇
−

(𝑥) = 2𝑐
1
and deg

𝜇
+

(𝑥) =

2𝑐
2
for every𝑥 ∈ 𝑉. Hence𝐺 is a regular interval-valued fuzzy

graph.
Conversely, suppose that 𝐺 is a (𝑘

1
, 𝑘
2
)-regular interval-

valued fuzzy graph. Let 𝑒
1
, 𝑒
2
, . . . , 𝑒

2𝑛+1
be the edges of 𝐺 in

that order. Let 𝜇−
𝐵
(𝑒
1
) = 𝑐
1
, 𝜇−
𝐵
(𝑒
2
) = 𝑘

1
− 𝑐
1
, 𝜇−
𝐵
(𝑒
3
) = 𝑘

1
−

(𝑘
1
− 𝑐
1
) = 𝑐
1
, 𝜇−
𝐵
(𝑒
4
) = 𝑘
1
− 𝑐
1
, and so on. Therefore,

𝜇
−

𝐵
(𝑒
𝑖
) = {

𝑐
1
, if 𝑖 is odd,

𝑘
1
− 𝑐
1
, if 𝑖 is even.

(14)

Thus, 𝜇−
𝐵
(𝑒
1
) = 𝜇−
𝐵
(𝑒
2𝑛+1

) = 𝑐
1
. So, if 𝑒

1
and 𝑒
2𝑛+1

incident at a
vertex V

1
, then deg

𝜇
−

(V
1
) = 𝑘
1
, deg
𝜇
−

(𝑒
1
) + deg

𝜇
−

(𝑒
2𝑛+1

) = 𝑘
1
,

𝑐
1
+ 𝑐
1
= 𝑘
1
, 2𝑐
1
= 𝑘
1
, and 𝑐

1
= 𝑘
1
/2. This shows that 𝜇−

𝐵
is a

regular function.
Similarly, let 𝜇+

𝐵
(𝑒
1
) = 𝑐
2
, 𝜇+
𝐵
(𝑒
2
) = 𝑘
2
− 𝑐
2
, 𝜇+
𝐵
(𝑒
3
) = 𝑘
2
−

(𝑘
2
− 𝑐
2
) = 𝑐
2
, 𝜇+
𝐵
(𝑒
4
) = 𝑘
2
− 𝑐
2
, and so on. Therefore,

𝜇
+

𝐵
(𝑒
𝑖
) = {

𝑐
2
, if 𝑖 is odd,

𝑘
2
− 𝑐
2
, if 𝑖 is even.

(15)

Thus, 𝜇+
𝐵
(𝑒
2
) = 𝜇+

𝐵
(𝑒
2𝑛+1

) = 𝑐
2
. So, if 𝑒

2
and 𝑒
2𝑛

incident at
a vertex V

2
, then deg

𝜇
+

(V
2
) = 𝑘
2
, deg
𝜇
+

(𝑒
2
) + deg

𝜇
+

(𝑒
2𝑛+1

) =

𝑘
2
, 𝑐
2
+ 𝑐
2

= 𝑘
2
, 2𝑐
2

= 𝑘
2
, and 𝑐

2
= 𝑘
2
/2. This shows that

𝜇+
𝐵
is a constant function. Hence, 𝐵 = [𝜇−

𝐵
, 𝜇+
𝐵
] is a constant

function.

We state the following characterization without its proof.

Theorem 15. Let 𝐺 be an interval-valued fuzzy graph where a
crisp graph 𝐺∗ is an even cycle. Then, 𝐺 is a regular interval-
valued fuzzy graph if and only if either 𝐵 = [𝜇−

𝐵
, 𝜇+
𝐵
] is a

constant function or alternate edges have the samemembership
values.

Definition 16. The density of an interval-valued fuzzy
graphs 𝐺 is 𝐷(𝐺) = (𝐷

−(𝐺), 𝐷+(𝐺)), where 𝐷−(𝐺) =
(2∑
𝑥,𝑦∈𝑉

(𝜇−
𝐵
(𝑥𝑦)))/(∑

𝑥,𝑦∈𝑉
(𝜇−
𝐴
(𝑥) ∧ 𝜇−

𝐴
(𝑦))) for 𝑥, 𝑦 ∈ 𝑉

and𝐷+(𝐺) = (2∑
𝑥,𝑦∈𝑉

(𝜇+
𝐵
(𝑥𝑦)))/(∑

𝑥,𝑦∈𝑉
(𝜇+
𝐴
(𝑥)∧𝜇+

𝐴
(𝑦))) for

𝑥, 𝑦 ∈ 𝑉. An interval-valued fuzzy graph 𝐺 is balanced if
𝐷(𝐻) ≤ 𝐷(𝐺); that is, 𝐷−(𝐻) ≤ 𝐷−(𝐺), 𝐷+(𝐻) ≤ 𝐷+(𝐺)

for all subgraphs𝐻 of 𝐺. An interval-valued fuzzy graph 𝐺 is
strictly balanced if for every 𝑥, 𝑦 ∈ 𝑉, 𝐷(𝐻) = 𝐷(𝐺) for all
nonempty subgraphs.
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Example 17. Consider the regular interval-valued fuzzy graph
𝐺which is given in Example 7. Routine calculations show that
𝐷
−(𝐺) = 0.67 and 𝐷+(𝐺) = 1.2. Thus, 𝐷(𝐺) = (0.67, 1.2).

Consider that 𝐻
1

= {𝑎, 𝑏, 𝑐}, 𝐻
2

= {𝑎, 𝑐}, 𝐻
3

= {𝑎, 𝑑}, and
𝐻
4

= {𝑏, 𝑐} are a nonempty subgraphs of 𝐺. Then, 𝐷(𝐻
1
) =

(0.67, 1.2), 𝐷(𝐻
2
) = (0, 0), 𝐷(𝐻

3
) = (0.67, 1.6), and 𝐷(𝐻

4
) =

(0.67, 1.6). It is easy to see that regular interval-valued fuzzy
graph is not balanced.

Remark 18. Every regular interval-valued fuzzy graph may
not be balanced.

Example 19. Consider the regular interval-valued fuzzy
graph 𝐺 which is given in Example 11. Routine calculations
show that 𝐷−(𝐺) = 2 and 𝐷+(𝐺) = 2. Thus, 𝐷(𝐺) = (2, 2).
Consider𝐻

1
= {𝑥, 𝑦},𝐻

2
= {𝑥, 𝑧},𝐻

3
= {𝑦, 𝑧} be a nonempty

subgraphs of 𝐺. Then, 𝐷(𝐻
1
) = (2, 2), 𝐷(𝐻

2
) = (2, 2), and

𝐷(𝐻
3
) = (2, 2). It is easy to see that complete interval-valued

fuzzy graph is balanced. 𝐺 is also strictly balanced.

Proposition 20. Any complete interval-valued fuzzy graph is
balanced.

Proposition 21. Let 𝐺 be a self-complementary interval-
valued fuzzy graph. Then, 𝐷(𝐺) = (1, 1).

Proposition 22. Let 𝐺
1
and 𝐺

2
be two balanced interval-

valued fuzzy graphs. Then, 𝐺
1
× 𝐺
2
is balanced if and only if

𝐷(𝐺
1
) = 𝐷(𝐺

2
) = 𝐷(𝐺

1
× 𝐺
2
).

Theorem23. Let𝐺 be a strictly balanced interval-valued fuzzy
graph, and let𝐺 be its complement; then𝐷(𝐺)+𝐷(𝐺) = (2, 2).

Proof. Let 𝐺 be a strictly balanced interval-valued fuzzy
graph and 𝐺 its complement. Let𝐻 be a nonempty subgraph
of 𝐺. Since 𝐺 is strictly balanced, 𝐷(𝐺) = 𝐷(𝐻) for every
𝐻 ⊆ 𝐺 and 𝑥, 𝑦 ∈ 𝑉. In 𝐺,

𝜇−
𝐵
(𝑥𝑦) = 𝜇

−

𝐴
(𝑥) ∧ 𝜇

−

𝐴
(𝑦) − 𝜇

−

𝐵
(𝑥𝑦) , (16)

𝜇+
𝐵
(𝑥𝑦) = 𝜇

+

𝐴
(𝑥) ∧ 𝜇

+

𝐴
(𝑦) − 𝜇

+

𝐵
(𝑥𝑦) , (17)

for every 𝑥, 𝑦 ∈ 𝑉. Dividing (16) by 𝜇−
𝐴
(𝑥) ∧ 𝜇−

𝐴
(𝑦), we get

𝜇−
𝐵
(𝑥𝑦)

𝜇−
𝐴
(𝑥) ∧ 𝜇−

𝐴
(𝑦)

= 1 −
𝜇−
𝐵
(𝑥𝑦)

𝜇−
𝐴
(𝑥) ∧ 𝜇−

𝐴
(𝑦)

, for every 𝑥, 𝑦∈𝑉,

(18)

and dividing (17) by 𝜇+
𝐴
(𝑥) ∧ 𝜇+

𝐴
(𝑦), we get

𝜇+
𝐵
(𝑥𝑦)

𝜇+
𝐴
(𝑥) ∧ 𝜇+

𝐴
(𝑦)

= 1 −
𝜇+
𝐵
(𝑥𝑦)

𝜇+
𝐴
(𝑥) ∧ 𝜇+

𝐴
(𝑦)

, for every 𝑥, 𝑦∈𝑉.

(19)

Then,

∑
𝑥,𝑦∈𝑉

𝜇−
𝐵
(𝑥𝑦)

𝜇−
𝐴
(𝑥) ∧ 𝜇−

𝐴
(𝑦)

= 1 − ∑
𝑥,𝑦∈𝑉

𝜇−
𝐵
(𝑥𝑦)

𝜇−
𝐴
(𝑥) ∧ 𝜇−

𝐴
(𝑦)

, for every 𝑥, 𝑦 ∈ 𝑉,

∑
𝑥,𝑦∈𝑉

𝜇+
𝐵
(𝑥𝑦)

𝜇+
𝐴
(𝑥) ∧ 𝜇+

𝐴
(𝑦)

= 1 − ∑
𝑥,𝑦∈𝑉

𝜇+
𝐵
(𝑥𝑦)

𝜇+
𝐴
(𝑥) ∧ 𝜇+

𝐴
(𝑦)

, for every 𝑥, 𝑦 ∈ 𝑉.

(20)

Multiplying both sides the above equations by 2,

2 ∑
𝑥,𝑦∈𝑉

𝜇−
𝐵
(𝑥𝑦)

𝜇−
𝐴
(𝑥) ∧ 𝜇−

𝐴
(𝑦)

= 2 − 2 ∑
𝑥,𝑦∈𝑉

𝜇−
𝐵
(𝑥𝑦)

𝜇−
𝐴
(𝑥) ∧ 𝜇−

𝐴
(𝑦)

, for every 𝑥, 𝑦 ∈ 𝑉,

2 ∑
𝑥,𝑦∈𝑉

𝜇+
𝐵
(𝑥𝑦)

𝜇+
𝐴
(𝑥) ∧ 𝜇+

𝐴
(𝑦)

= 2 − 2 ∑
𝑥,𝑦∈𝑉

𝜇+
𝐵
(𝑥𝑦)

𝜇+
𝐴
(𝑥) ∧ 𝜇+

𝐴
(𝑦)

, for every 𝑥, 𝑦 ∈ 𝑉.

(21)

Thus, 𝐷−(𝐺) = 2 − 𝐷−(𝐺) and 𝐷+(𝐺) = 2 − 𝐷+(𝐺).
Now,

𝐷 (𝐺) + 𝐷 (𝐺) = (𝐷
−
(𝐺) , 𝐷

+
(𝐺)) + (𝐷

−
(𝐺) ,𝐷

+
(𝐺))

= (𝐷
−
(𝐺) + 𝐷

−
(𝐺)) , (𝐷

+
(𝐺) + 𝐷

+
(𝐺))

= (2, 2) .

(22)

This completes the proof.

Corollary 24. The complement of strictly balanced interval-
valued fuzzy graph is strictly balanced.

Theorem 25. Let 𝐺
1
and 𝐺

2
be isomorphic interval-valued

fuzzy graphs. If 𝐺
2
is balanced, then 𝐺

1
is balanced.

4. Irregularity in Interval-Valued
Fuzzy Graphs

Definition 26. Let𝐺 be an interval-valued fuzzy graph on𝐺∗.
If there is a vertex which is adjacent to vertices with distinct
neighbourhood degrees, then𝐺 is called an irregular interval-
valued fuzzy graph. That is, deg(𝑥) ̸= 𝑛 for all 𝑥 ∈ 𝑉.
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[0.1, 0.2] [0.1, 0.2]

[0.2, 0.3]
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Figure 2: Irregular interval-valued fuzzy graph.

Example 27. Consider a graph 𝐺∗ such that

𝑉 = {V
1
, V
2
, V
3
} , 𝐸 = {V

1
V
2
, V
2
V
3
, V
1
V
3
} . (23)

Let 𝐴 be an interval-valued fuzzy subset of𝑉, and let 𝐵 be an
interval-valued fuzzy subset of 𝐸 ⊆ 𝑉 × 𝑉 defined by

[
[
[

[

V
1

V
2

V
3

𝜇−
𝐴

0.2 0.2 0.3

𝜇+
𝐴

0.6 0.7 0.4

]
]
]

]

,

[
[
[

[

V
1
V
2
V
1
V
3
V
2
V
3

𝜇−
𝐵

0.1 0.1 0.2

𝜇+
𝐵

0.2 0.2 0.3

]
]
]

]

.

(24)

By routine computations, we have deg(V
1
) = [0.5, 1.1],

deg(V
2
) = [0.5, 1.0], and deg(V

3
) = [0.4, 1.3]. It is clear that

𝐺 as shown in Figure 2 is an irregular interval-valued fuzzy
graph.

Definition 28. Let 𝐺 be an interval-valued fuzzy graph. If
there is a vertex which is adjacent to vertices with distinct
closed neighbourhood degrees, then 𝐺 is called a totally
irregular interval-valued fuzzy graph.

Example 29. Consider an interval-valued fuzzy graph𝐺 such
that

𝑉 = {V
1
, V
2
, V
3
, V
4
, V
5
} ,

𝐸 = {V
1
V
2
, V
2
V
3
, V
2
V
4
, V
3
V
1
, V
3
V
4
, V
4
V
1
, V
4
V
5
} .

(25)

By routine computations, we have deg[V
1
] = [1.4, 2.4],

deg[V
2
] = [1.4, 2.4], deg[V

3
] = [1.4, 2.4], deg[V

4
] = [1.6, 2.6],

and deg[V
5
] = [0.6, 0.8]. It is clear from calculations that 𝐺 as

�1 �2

�3�4

[0.4, 0.6]

[0.4, 0.6]

[0.2, 0.2]

[0.3, 0.5]

[0.3, 0.7]

[0.1, 0.2]

[0.2, 0.2]
[0.1, 0.4]

[0.
2,
0.
4]

[0.1, 0.3]

[0.2, 0.3]

[0.3, 0.5]

�5

Figure 3: 𝐺 is totally irregular.
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[0.3, 0.7]

[0.1, 0.4] [0.1, 0.4]

[0.4, 0.4]

[0.1, 0.2]

[0.1, 0.2]

Figure 4: 𝐺 is neighbourly irregular.

shown in Figure 3 is a totally irregular interval-valued fuzzy
graph.

Definition 30. A connected interval-valued fuzzy graph 𝐺 is
said to be neighbourly irregular if every two adjacent vertices
of 𝐺 have distinct open neighbourhood degree.

Example 31. Consider an interval-valued fuzzy graph 𝐺 such
that

𝑉 = {V
1
, V
2
, V
3
, V
4
} ,

𝐸 = {V
1
V
2
, V
2
V
3
, V
3
V
4
, V
4
V
1
} .

(26)

By routine computations, we have deg(V
1
) = [0.8, 1.2],

deg(V
2
) = [0.6, 1.0], deg(V

3
) = [0.8, 1.2], and deg(V

4
) =

[0.6, 1.0]. Hence, 𝐺 as shown in Figure 4 is neighbourly
irregular.

Definition 32. A connected interval-valued fuzzy graph 𝐺 is
said to be neighbourly totally irregular if every two adjacent
vertices of 𝐺 have distinct closed neighbourhood degree.
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�1 �2
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Figure 5: 𝐺 is neighbourly totally irregular.

Example 33. Consider an interval-valued fuzzy graph𝐺 such
that

𝑉 = {V
1
, V
2
, V
3
, V
4
} ,

𝐸 = {V
1
V
2
, V
2
V
3
, V
3
V
4
, V
4
V
1
} .

(27)

By routine computations, we have deg[V
1
] = [1.1, 1.6],

deg[V
2
] = [0.9, 1.8], deg[V

3
] = [1.0, 1.7], and deg[V

4
] =

[0.9, 1.8]. Hence,𝐺 as shown in Figure 5 is neighbourly totally
irregular.

Definition 34. Let 𝐺 be a connected interval-valued fuzzy
graph. 𝐺 is called highly irregular if every vertex of 𝐺 is
adjacent to vertices with distinct neighbourhood degrees.

Example 35. Consider an interval-valued fuzzy graph𝐺 such
that

𝑉 = {V
1
, V
2
, V
3
, V
4
, V
5
, V
6
} ,

𝐸 = {V
1
V
2
, V
2
V
3
, V
2
V
6
, V
3
V
4
, V
3
V
5
, V
4
V
5
, V
5
V
1
} .

(28)

By routine computations, we have deg(V
1
) = [0.4, 0.8],

deg(V
2
) = [0.6, 1.7], deg(V

3
) = [0.9, 1.3], deg(V

4
) = [0.6, 1.1],

deg(V
5
) = [1.0, 1.8], and deg(V

6
) = [0.1, 0.4]. Clearly, 𝐺 as

shown in Figure 6 is highly irregular.

Example 36. Consider an interval-valued fuzzy graph𝐺 such
that

𝑉 = {V
1
, V
2
, V
3
, V
4
} ,

𝐸 = {V
1
V
2
, V
2
V
3
, V
3
V
4
, V
4
V
1
} .

(29)

By routine computations, we have deg(V
1
) = [0.6, 1.0],

deg(V
2
) = [0.8, 0.9], deg(V

3
) = [0.6, 1.0], and deg(V

4
) =
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Figure 6: 𝐺 is highly irregular.

[0.8, 0.9].We see that every two adjacent vertices have distinct
open neighbourhood degree. But the vertex V

2
adjacent to

the vertices V
1
and V

3
has the same neighbourhood degree,

that is, deg(V
1
) = deg(V

3
). Hence, 𝐺 as shown in Figure 7 is

neighbourly irregular but not highly irregular.

Remark 37. A neighbourly irregular interval-valued fuzzy
graph may not be highly irregular.

Theorem38. An interval-valued fuzzy graph𝐺 is highly irreg-
ular and neighbourly irregular interval-valued fuzzy graph if
and only if the neighbourhood degrees of all the vertices of 𝐺
are distinct.

Proof. Let 𝐺 be an interval-valued fuzzy graph with 𝑛-
vertices V

1
, V
2
, . . . , V

𝑛
. Assume that 𝐺 is highly irregular and

neighbourly irregular.

Claim 1. The neighbourhood degrees of all vertices of 𝐺

are distinct. Let deg(V
𝑖
) = [𝑘

𝑖
, 𝑙
𝑖
], 𝑖 = 1, 2, . . . , 𝑛. Let

the adjacent vertices of V
1
be V
2
, V
3
, . . . , V

𝑛
with neighbour-

hood degrees [𝑘
2
, 𝑙
2
], [𝑘
3
, 𝑙
3
], . . . , [𝑘

𝑛
, 𝑙
𝑛
], respectively. Then,

𝑘
2

̸= 𝑘
3

̸= ⋅ ⋅ ⋅ ̸= 𝑘
𝑛

and 𝑙
2

̸= 𝑙
3

̸= ⋅ ⋅ ⋅ ̸= 𝑙
𝑛
, since 𝐺 is highly

irregular. Also 𝑘
1

̸= 𝑘
2

̸= 𝑘
3

̸= ⋅ ⋅ ⋅ ̸= 𝑘
𝑛
and 𝑙
1

̸= 𝑙
2

̸= 𝑙
3

̸= ⋅ ⋅ ⋅ ̸= 𝑙
𝑛
,

since 𝐺 is neighbourly irregular. Hence, the neighbourhood
degree of all the vertices of 𝐺 is distinct.
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Figure 7: 𝐺 is neighbourly irregular but not highly irregular.

Conversely, assume that the neighbourhood degrees of all
the vertices of 𝐺 are distinct.

Claim 2. 𝐺 is highly irregular and neighbourly irregular
interval-valued fuzzy graph.

Let deg(V
𝑖
) = [𝑘

𝑖
, 𝑙
𝑖
], 𝑖 = 1, 2, . . . , 𝑛. Given that

𝑘
1

̸= 𝑘
2

̸= 𝑘
3

̸= ⋅ ⋅ ⋅ ̸= 𝑘
𝑛
and 𝑙
1

̸= 𝑙
2

̸= 𝑙
3

̸= ⋅ ⋅ ⋅ ̸= 𝑙
𝑛
, which implies

that every two adjacent vertices have distinct neighbourhood
degrees and to every vertex, the adjacent vertices have distinct
neighbourhood degrees.

Theorem 39. An interval-valued fuzzy graph 𝐺 of 𝐺∗, where
𝐺∗ is a cycle with 3 vertices that is neighbourly irregular and
highly irregular if and only if the lower and upper membership
values of the vertices between every pair of vertices are all
distinct.

Proof. Assume that lower and upper membership values of
the vertices are all distinct.

Claim 1. 𝐺 is neighbourly irregular and highly irregular
interval-valued fuzzy graph.

Let V
𝑖
, V
𝑗
, V
𝑘

∈ 𝑉. Given that 𝜇−
𝐴
(V
𝑖
) ̸= 𝜇−
𝐴
(V
𝑗
) ̸=

𝜇
−

𝐴
(V
𝑘
) and 𝜇

+

𝐴
(V
𝑖
) ̸= 𝜇
+

𝐴
(V
𝑗
) ̸= 𝜇
+

𝐴
(V
𝑘
), which implies that

∑
𝑥∈𝑁(𝑥)

𝜇−
𝐴
(V
𝑖
) ̸= ∑
𝑥∈𝑁(𝑥)

𝜇−
𝐴
(V
𝑗
) ̸= ∑
𝑥∈𝑁(𝑥)

𝜇−
𝐴
(V
𝑘
) and

∑
𝑥∈𝑁(𝑥)

𝜇+
𝐴
(V
𝑖
) ̸= ∑
𝑥∈𝑁(𝑥)

𝜇+
𝐴
(V
𝑗
) ̸= ∑
𝑥∈𝑁(𝑥)

𝜇+
𝐴
(V
𝑘
). That is,

deg(V
𝑖
) ̸= deg(V

𝑗
) ̸= deg(V

𝑘
). Hence, 𝐺 is neighbourly

irregular and highly irregular.
Conversely, assume that 𝐺 is neighbourly irregular and

highly irregular.

Claim 2. Lower and upper membership values of the vertices
are all distinct.

Let deg(V
𝑖
) = [𝑘

𝑖
, 𝑙
𝑖
], 𝑖 = 1, 2, . . . , 𝑛. Suppose that lower

and upper membership value of any two vertices are the

�1

�2�3

[0.4, 0.6]

[0.2, 0.6]

[0.2, 0.7] [0.2, 0.6]

[0.4, 0.6]

[0.4, 0.6]

Figure 8: 𝐺 is not neighbourly irregular, but it is complete.

same. Let V
1
, V
2

∈ 𝑉. Let 𝜇−
𝐴
(V
1
) = 𝜇−

𝐴
(V
2
) and 𝜇+

𝐴
(V
1
) =

𝜇+
𝐴
(V
2
). Then, deg(V

1
) = deg(V

2
), since 𝐺∗ is cycle, which is

a contradiction to the fact that𝐺 is neighbourly irregular and
highly irregular interval-valued fuzzy graph. Hence, lower
membership and upper membership value of the vertices are
all distinct.

Remark 40. A complete interval-valued fuzzy graph may not
be neighbourly irregular.

Example 41. Consider an interval-valued fuzzy graph 𝐺 such
that

𝑉 = {V
1
, V
2
, V
3
} , 𝐸 = {V

1
V
2
, V
2
V
3
, V
1
V
3
} . (30)

By routine computations, we have deg(V
1
) = [0.6, 1.3],

deg(V
2
) = [0.6, 1.3], and deg(V

3
) = [0.8, 1.2]. We see that

neighbourhood degree of V
1
and V

2
is not distinct. Hence,

𝐺 as shown in Figure 8 is not neighbourly irregular, but it is
complete.

Remark 42. A neighbourly total irregular interval-valued
fuzzy graph may not be neighbourly irregular.

Example 43. Consider an interval-valued fuzzy graph𝐺 such
that

𝑉 = {V
1
, V
2
, V
3
, V
4
} , 𝐸 = {V

1
V
2
, V
2
V
3
, V
3
V
4
, V
4
V
1
} . (31)

By routine computations, we have deg(V
1
) = [0.7, 0.9],

deg(V
2
) = [0.8, 1.1], deg(V

3
) = [0.7, 0.9], deg(V

4
) = [0.8, 1.1],

deg[V
1
] = [1.1, 1.5], deg[V

2
] = [1.1, 1.5], deg[V

3
] = [1.1, 1.4],

and deg[V
4
] = [1.2, 1.6]. We see that deg[V

1
] = deg[V

2
].

Hence, 𝐺 as shown in Figure 9 is neighbourly irregular but
not a neighbourly total irregular.
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�1 �2

�3�4

[0.4, 0.6]
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[0.4, 0.5] [0.1, 0.2]
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[0.4, 0.5]

[0.3, 0.4]
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Figure 9: 𝐺 is neighbourly irregular but not neighbourly total
irregular.

Proposition 44. If an interval-valued fuzzy graph 𝐺 is neigh-
bourly irregular and [𝜇−

𝐴
, 𝜇+
𝐴
] is a constant function, then it is

neighbourly totally irregular.

Proof. Assume that 𝐺 is a neighbourly irregular interval-
valued fuzzy graph. Then, the open neighbourhood degrees
of every two adjacent vertices are distinct. Let V

𝑖
, V
𝑗

∈ 𝑉 be
adjacent vertices with distinct open neighbourhood degrees
[𝑘
1
, 𝑙
1
] and [𝑘

2
, 𝑙
2
], where 𝑘

1
̸= 𝑘
2
, 𝑙
1

̸= 𝑙
2
. Let us assume that

(𝜇
1
(V
𝑖
), ]
1
(V
𝑖
)) = (𝜇

1
(V
𝑗
), ]
1
(V
𝑗
)) = [𝑐

1
, 𝑐
2
], where 𝑐

1
, 𝑐
2
are

constant and 𝑐
1
, 𝑐
2
∈ [0, 1]. Therefore, deg

𝜇
−

[V
𝑖
] = deg

𝜇
−

(V
𝑖
) +

𝜇
1
(V
𝑖
) = 𝑘

1
+ 𝑐
1
, deg
𝜇
+

[V
𝑖
] = deg

𝜇
+

(V
𝑖
) + ]
1
(V
𝑖
) = 𝑙

1
+

𝑐
2
deg
𝜇
−

[V
𝑗
] = deg

𝜇
−

(V
𝑗
) + 𝜇
1
(V
𝑗
) = 𝑘
2
+ 𝑐
1
, and deg

𝜇
+

[V
𝑗
] =

deg
𝜇
+

(V
𝑗
) + ]
1
(V
𝑗
) = 𝑙
2
+ 𝑐
2
.

Claim. Consider that deg
𝜇
−

[V
𝑖
] ̸= deg

𝜇
−

[V
𝑗
] and deg

𝜇
+

[V
𝑖
] ̸=

deg
𝜇
+

[V
𝑗
]. Suppose that, deg

𝜇
−

[V
𝑖
] = deg

𝜇
−

[V
𝑗
] and

deg
𝜇
+

[V
𝑖
] = deg

𝜇
+

[V
𝑗
]. Consider that

deg
𝜇
−

[V
𝑖
] = deg

𝜇
−

[V
𝑗
] ,

𝑘
1
+ 𝑐
1
= 𝑘
2
+ 𝑐
1
,

𝑘
1
− 𝑘
2
= 𝑐
1
− 𝑐
1
= 0,

𝑘
1
= 𝑘
2
, which is a contradiction to 𝑘

1
̸= 𝑘
2
.

(32)

Therefore, deg
𝜇
−

[V
𝑖
] ̸= deg

𝜇
−

[V
𝑗
]. Similarly, we consider that

deg
𝜇
+

[V
𝑖
] = deg

𝜇
+

[V
𝑗
] ,

𝑙
1
+ 𝑐
2
= 𝑙
2
+ 𝑐
2
,

𝑙
1
− 𝑙
2
= 𝑐
2
− 𝑐
2
= 0,

𝑙
1
= 𝑙
2
, which is a contradiction to 𝑙

1
̸= 𝑙
2
.

(33)

Therefore, deg
𝜇
+

[V
𝑖
] ̸= deg

𝜇
+

[V
𝑗
]. Hence, 𝐺 is a neighbourly

totally irregular interval-valued fuzzy graph.

Theorem 45. If an interval-valued fuzzy graph 𝐺 is neigh-
bourly totally irregular and [𝜇−

𝐴
, 𝜇+
𝐴
] is a constant function,

then it is a neighbourly irregular interval-valued fuzzy graph.

Proof. Assume that𝐺 is a neighbourly total irregular interval-
valued fuzzy graph. Then, the closed neighbourhood degree
of every two adjacent vertices is distinct. Let V

𝑖
, V
𝑗

∈ 𝑉

and deg[V
𝑖
] = [𝑘

1
, 𝑙
1
], deg[V

𝑗
] = [𝑘

2
, 𝑙
2
], where 𝑘

1
̸= 𝑘
2

and 𝑙
1

̸= 𝑙
2
. Assume that (𝜇

1
(V
𝑖
), ]
1
(V
𝑖
)) = [𝑐

1
, 𝑐
2
] and

(𝜇
1
(V
𝑗
), ]
1
(V
𝑗
)) = [𝑐

1
, 𝑐
2
], where 𝑐

1
, 𝑐
2

∈ [0, 1] are constant
and deg[V

𝑖
] ̸= deg[V

𝑗
].

Claim. Consider that deg(V
𝑖
) ̸= deg(V

𝑗
).

Given that deg[V
𝑖
] ̸= deg[V

𝑗
] which implies deg

𝜇
−

[V
𝑖
] ̸=

deg
𝜇
−

[V
𝑗
] and deg

𝜇
+

[V
𝑖
] ̸= deg

𝜇
+

[V
𝑗
], now, we consider that

deg
𝜇
−

[V
𝑖
] ̸= deg

𝜇
−

[V
𝑗
] ,

𝑘
1
+ 𝑐
1

̸= 𝑘
2
+ 𝑐
1
,

𝑘
1

̸= 𝑘
2
.

(34)

We now consider that

deg
𝜇
+

[V
𝑖
] ̸= deg

𝜇
+

[V
𝑗
] ,

𝑙
1
+ 𝑐
2

̸= 𝑙
2
+ 𝑐
2
,

𝑙
1

̸= 𝑙
2
.

(35)

That is, the neighbourhood degrees of adjacent vertices of 𝐺
are distinct. Hence, neighbourhood degree of every pair of
adjacent vertices is distinct in 𝐺.

Proposition 46. If an interval-valued fuzzy graph 𝐺 is neigh-
bourly irregular and neighbourly totally irregular, then [𝜇

−

𝐴
, 𝜇
+

𝐴
]

need not be a constant function.

Remark 47. If 𝐺 is a neighbourly irregular interval-valued
fuzzy graph, then interval-valued subgraph 𝐻 = (𝐴

, 𝐵) of
𝐺 may not be neighbourly irregular.

Remark 48. If 𝐺 is a totally irregular interval-valued fuzzy
graph, then interval-valued fuzzy subgraph 𝐻 = (𝐴, 𝐵) of
𝐺 may not be totally irregular.

5. Relationship between IFGs and IVFGs

In 2003, Deschrijver and Kerre [31] established the rela-
tionships between some extensions of fuzzy sets. In this
section, we present the relationship between extensions of
fuzzy graphs. Shannon and Atanassov [32] introduced the
notion of an intuitionistic fuzzy graph. Some operations on
intuitionistic fuzzy graphs are discussed in [33].

Definition 49 (see [32]). By an intuitionistic fuzzy graph (IFG,
for short) 𝐺 of a graph 𝐺

∗, we mean a pair 𝐺 = (𝐴, 𝐵),



10 Journal of Applied Mathematics

Fuzzy sets

Interval-
valued

fuzzy sets

Intuitionistic
fuzzy sets

Interval-
valued

fuzzy graphs

Intuitionistic
fuzzy graphs

Figure 10: Links between models.
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where 𝐴 = (𝜇
𝐴
, ]
𝐴
) is an intuitionistic fuzzy set on 𝑉 and

𝐵 = (𝜇
𝐵
, ]
𝐵
) is an intuitionistic fuzzy relation on 𝐸 such that

𝜇
𝐵
(𝑥𝑦) ≤ min (𝜇

𝐴
(𝑥) , 𝜇

𝐴
(𝑦)) ,

]
𝐵
(𝑥𝑦) ≤ max (]

𝐴
(𝑥) , ]

𝐴
(𝑦)) ,

(36)

for all 𝑥𝑦 ∈ 𝐸. The class of all IFGs on 𝐺∗ will be denoted by
IFG(𝐺∗).

Theorem 50 (see [33]). If 𝐺
1
and 𝐺

2
are intuitionistic fuzzy

graphs, then 𝐺
1
∩ 𝐺
2
, 𝐺
1
∪ 𝐺
2
, and 𝐺

1
are intuitionistic fuzzy

graphs.

Ju and Wang introduced the notion of interval-valued
fuzzy graph (IVFG, for short) in [15]. Some operations on
interval-valued fuzzy graphs are discussed in [18]. The class
of all IVFGs on 𝐺

∗ will be denoted byIVFG(𝐺
∗
).

Theorem 51 (see [19]). If 𝐺
1
and 𝐺

2
are interval-valued fuzzy

graphs, then𝐺
1
∩𝐺
2
,𝐺
1
∪𝐺
2
, and𝐺

1
are interval-valued fuzzy

graphs.

Lemma 52. (IVFG(𝐺∗), ∪, ∩) and (IFG(𝐺∗), ∪, ∩) are
complete lattices.

Theorem 53. The mapping

𝜓
1
: IVFG (𝐺

∗
) → IFG (𝐺

∗
) (37)

defined by

𝜓
1
(𝐵) = ({(𝑥, 𝜇

−

𝐴
(𝑥) , 1 − 𝜇

+

𝐴
(𝑥)) | 𝑥 ∈ 𝑉} ,

{(𝑥𝑦, 𝜇
−

𝐵
(𝑥𝑦) , 1 − 𝜇

+

𝐵
(𝑥𝑦)) | 𝑥𝑦 ∈ 𝐸}) ,

(38)

where
𝐵 = ({(𝑥, 𝜇

−

𝐴
(𝑥) , 𝜇

+

𝐴
(𝑥)) | 𝑥 ∈ 𝑉} ,

{(𝑥𝑦, 𝜇
−

𝐵
(𝑥𝑦) , 𝜇

+

𝐵
(𝑥𝑦)) | 𝑥𝑦 ∈ 𝐸}) ,

(39)

is an isomorphism between lattices (IVFG(𝐺∗), ∪, ∩) and
(IFG(𝐺∗), ∪, ∩).

Remark 54. From a pure mathematical point of view,
Theorem 53 shows that the two concepts intuitionistic fuzzy
graphs and interval-valued fuzzy graphs are equivalent.

In Figures 10 and 11, we present the relationships that exist
between different models. In these figures, a double arrow
between two theories means that they are equivalent, a single
arrow 𝑋 → 𝑌 denotes that 𝑌 is an extension of 𝑋. In
Figure 10, a dash arrow 𝑋[𝑌 denotes that model 𝑌 is based
on the previous model 𝑋.

6. Conclusions

Graph theory has several interesting applications in system
analysis, operations research, computer applications, and
economics. Since most of the time the aspects of graph
problems are uncertain, it is nice to deal with these aspects
via the methods of fuzzy systems. It is known that fuzzy
graph theory has numerous applications in modern science
and engineering, especially in the field of information theory,
neural networks, expert systems, cluster analysis, medical
diagnosis, traffic engineering, network routing, town plan-
ning, and control theory. Since interval-valued fuzzy set
theory is an increasingly popular extension of fuzzy set
theory where traditional [0, 1]-valued membership degrees
are replaced by intervals in [0, 1] that approximate the
(unknown) membership degrees, specific types of interval-
valued fuzzy graphs have been introduced and investigated
in this paper. The natural extension of this research work is
the application of interval-valued fuzzy graphs in the area of
soft computing including neural networks, expert systems,
database theory, and geographical information systems.
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