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A rigorous mathematical characterization for early-stage spatial and temporal patterns formation in a Leslie-Gower predator-prey
model with cross diffusion is investigated. Given any general perturbation near an unstable constant equilibrium, we prove that its
nonlinear evolution is dominated by the corresponding linear dynamics along a fixed finite number of the fastest growing modes.

1. Introduction

Since Turing proposed the striking idea of “diffusion-driven
instability” in 1952 [1], reaction-diffusion systems are often
employed to investigate chemical and biological pattern for-
mations and have receivedmuch attention from the scientists
[2–7]. However, most of the works concentrate on pattern
formation in the case of linear instability, and there is a little
discussion about the nonlinear effect of a reaction-diffusion
system on the evolution of a nonuniform pattern.

In general, nonlinear instability is treated with great del-
icacy and difficulty. At first, nonlinear instability was estab-
lished for nondissipative systems [8–11]. In 2004, Guo et al.
[12] established nonlinear instability for an unstable Kirch-
hoff ellipse. Based upon a precise linear analysis, they found
that the dynamics of general perturbation can be character-
ized by the linear dynamics of the fastest growingmodes.This
marks a beginning of a quantitative description of instability.
Subsequently, Guo and Hwang dealt with nonlinear stability
for a Keller-Segel model in [13] and described the early-stage
pattern formation in that model.

Recently, Guo and Hwang considered the following reac-
tion-diffusion system [14]

𝜕𝑈

𝜕𝑡
= ∇ ⋅ (𝐷

1
(𝑈, 𝑉) ∇𝑈) + 𝑓 (𝑈,𝑉) ,

𝜕𝑉

𝜕𝑡
= ∇ ⋅ (𝐷

2
(𝑈, 𝑉) ∇𝑉) + 𝑔 (𝑈, 𝑉) ,

(1)

in a box T𝑁 = (0, 𝜋)
𝑁

⊂ R𝑁(𝑁 ≤ 3) with the homogeneous
Neumann boundary conditions. In system (1),𝑈(𝑥, 𝑡),𝑉(𝑥, 𝑡)

denote the densities of two interactive species at time 𝑡,
the functions 𝐷

1
, 𝐷
2
are their diffusion rates, and 𝑓, 𝑔 are

the reaction functions. The classical Turing instability and
Turing patterns were studied under some suitable conditions.
Their result shows that the nonlinear evolution of patterns
is dominated by the corresponding linear dynamics along a
fixed finite number of the fastest growing modes over a time
period.

In this paper, we consider the following Leslie-Gower
predator-prey model with cross diffusion:

𝑢
𝑡
− 𝑑
1
Δ𝑢 = 𝜆𝑢 − 𝑢

2
− 𝛽𝑢V, 𝑥 ∈ T

𝑁
, 𝑡 > 0,

V
𝑡
− 𝑑
2
Δ [(1 + 𝑑

3
𝑢) V] = V (𝜇 −

V
𝑚 + 𝑢

) , 𝑥 ∈ T
𝑁
, 𝑡 > 0,

𝜕𝑢

𝜕𝑥
𝑖

=
𝜕V
𝜕𝑥
𝑖

= 0, 𝑥
𝑖
= 0, 𝜋, 𝑖 = 1, . . . , 𝑁, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , V (𝑥, 0) = V

0
(𝑥) , 𝑥 ∈ T

𝑁
,

(2)

where 𝑢(𝑥, 𝑡) and V(𝑥, 𝑡) represent the densities of the species
prey and predator, respectively.The parameters 𝜆, 𝛽, 𝜇,𝑚, 𝑑

1
,

𝑑
2
, and 𝑑

3
are all positive constants, where 𝜆 and 𝜇 are

the intrinsic growth rates of the prey and predator, 𝛽 is
the predation rate, and the term V/(𝑚 + 𝑢) is a modified
Leslie-Gower term [15].The constants 𝑑

1
, 𝑑
2
, called diffusion
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coefficients, represent the natural tendency of each species to
diffuse to areas of smaller population concentration, and 𝑑

3
,

called a cross-diffusion coefficient, expresses the population
flux of the predator resulting from the presence of the prey
species. For more ecological backgrounds about this model,
one can refer to [15–17].

System (2) and its variants were studiedwidely for pattern
formation by applying the bifurcation theory and the degree
theory [6, 18–20] in the case of linear instability. Inspired
by the works [13, 14], in this paper, we attempt to study
the nonlinear instability for this system and give a rigorous
mathematical characterization for the nonlinear evolution of
pattern by using a bootstrap technique. The mathematical
approach in this paper is similar in spirit to that of [13, 14].
However, our problem (2) ismuchmore complex. Notice that
the diffusion term of the predator equation in themodel (2) is

𝑑
2
Δ [(1 + 𝑑

3
𝑢) V] = ∇ ⋅ [𝑑

2
𝑑
3
V∇𝑢 + 𝑑

2
(1 + 𝑑

3
𝑢) ∇V] . (3)

In some sense, the coupled degree in (2) is stronger than
that in (1). As a result, our analysis here, especially in
establishing 𝐻

2 estimates for nonlinear terms 𝑑
2
𝑑
3
∇(V∇𝑢)

and 𝑑
2
∇[(1 + 𝑑

3
𝑢)∇V], is much more difficult and requires

some techniques beyond those of [13, 14].
It is obvious that (2) has a unique positive equilibrium

(𝑢̃, Ṽ) if and only if 𝜆 > 𝛽𝜇𝑚, where

𝑢̃ =
𝜆 − 𝛽𝜇𝑚

1 + 𝛽𝜇
, Ṽ =

𝜇 (𝑚 + 𝜆)

1 + 𝛽𝜇
. (4)

Let 𝑢̂ = 𝑢(𝑥, 𝑡) − 𝑢̃, V̂ = V(𝑥, 𝑡) − Ṽ be the perturbation around
(𝑢̃, Ṽ) and still denote it by (𝑢, V).Then, the perturbation (𝑢, V)
satisfies the following strongly coupled equations:

𝑢
𝑡
− 𝑑
1
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1
(𝑢 + 𝑢̃, V + Ṽ) , 𝑥 ∈ T

𝑁
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V
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− 𝑑
2
Δ [(1 + 𝑑

3
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2
(𝑢 + 𝑢̃, V + Ṽ) , 𝑥 ∈ T

𝑁
, 𝑡 > 0,
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𝑖

=
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𝑖

= 0, 𝑥
𝑖
= 0, 𝜋, 𝑖 = 1, . . . , 𝑁, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑢
0
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0
(𝑥) , 𝑥 ∈ T

𝑁
,

(5)

where

𝑔
1
(𝑢, V) = 𝜆𝑢 − 𝑢

2
− 𝛽𝑢V, 𝑔

2
(𝑢, V) = V (𝜇 −

V
𝑚 + 𝑢

) .

(6)

This paper is organized as follows. In Section 2, the grow-
ing modes in the linearized system are studied, which are
important for our later discussions. Section 3 gives some esti-
mates for the perturbation.The key is to control the nonlinear
growth of high-order energy. In Section 4, the nonlinear
instability is obtained.

2. Growing Modes in the Linearized System

The corresponding linearized system of (5) takes the form of

𝑢
𝑡
− 𝑑
1
Δ𝑢 = −𝑢̃𝑢 − 𝛽𝑢̃V,

V
𝑡
− 𝑑
2
𝑑
3
ṼΔ𝑢 − 𝑑

2
(1 + 𝑑

3
𝑢̃) ΔV = 𝜇

2
𝑢 − 𝜇V.

(7)

We use [⋅, ⋅] to denote a column vector and let w(𝑥, 𝑡) =

[𝑢(𝑥, 𝑡), V(𝑥, 𝑡)], q = (𝑞
1
, . . . , 𝑞

𝑁
) ∈ N𝑁. Then, q2 =

∑
𝑁

𝑖=1
𝑞
𝑖

2 are eigenvalues of −Δ on T𝑁 under the homogeneous
Neumann boundary condition, and the corresponding nor-
malized eigenfunctions are given by

𝑒q (𝑥) =

{{{{{

{{{{{

{

(
1

𝜋
)

𝑁/2

, q = 0,

(
2

𝜋
)

𝑁/2 𝑁

∏

𝑖=1

cos (𝑞
𝑖
𝑥
𝑖
) , q ̸= 0.

(8)

This set of eigenfunctions forms an orthonormal basis in
𝐿
2
(T𝑁).
We look for a normal mode to be the linear system (7) of

the following form:

w (𝑥, 𝑡) = rq𝑒
𝜆q𝑡𝑒q (𝑥) , (9)

where 𝜆q is a complex number and rq is a vector; they depend
on q. Substituting (9) into (7), we have

𝜆qrq = (
−𝑢̃ − 𝑑

1
q2 −𝛽𝑢̃

𝜇
2
− 𝑑
2
𝑑
3
Ṽq2 −𝜇 − 𝑑

2
(1 + 𝑑

3
𝑢̃) q2) rq := 𝐿rq.

(10)

System (7) possesses a nontrivial normal mode if and only if

det(𝜆q + 𝑢̃ + 𝑑
1
q2 𝛽𝑢̃

−𝜇
2
+ 𝑑
2
𝑑
3
Ṽq2 𝜆q + 𝜇 + 𝑑

2
(1 + 𝑑

3
𝑢̃) q2) = 0, (11)

which is equivalent to

𝜆
2

q + {𝑢̃ + 𝜇 + [𝑑
1
+ 𝑑
2
(1 + 𝑑

3
𝑢̃)] q2} 𝜆q + 𝑑

1
𝑑
2
(1 + 𝑑

3
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1
𝜇 + 𝑑
2
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3
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2
𝑑
3
𝑢̃Ṽ] q2 + 𝜇𝑢̃ + 𝛽𝜇

2
𝑢̃ = 0.

(12)

Thus, we deduce the following well-known aggregation (i.e.,
linear instability) criterion by requiring that there exists a q,
such that the constant term in (12) is

𝑑
1
𝑑
2
(1 + 𝑑

3
𝑢̃) q4 + [𝑑

1
𝜇 + 𝑑
2
(1 + 𝑑

3
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2
𝑑
3
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2
𝑢̃ < 0.

(13)

In this paper, we always assume that there exists a q, such that
(13) holds. Then, the discriminant of (12) is

Δ = [𝑑
1
− 𝑑
2
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3
𝑢̃)]
2q4
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1
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2
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3
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1
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2
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3
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2
𝑑
3
𝑢̃Ṽ} q2

+ (𝑢̃ − 𝜇)
2
− 4𝛽𝜇

2
𝑢̃,

(14)
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and the coefficient of q2 is positive, since (13) implies

𝑑
1
𝜇 + 𝑑
2
(1 + 𝑑

3
𝑢̃) 𝑢̃ − 𝛽𝑑

2
𝑑
3
𝑢̃Ṽ < 0. (15)

For given q, we denote the corresponding eigenvalues by
𝜆
±

q and eigenvectors by r
±
(q). We split it into three cases for

the linear analysis.
(1) Δ > 0. LetΛ

1
= {q | Δ > 0}, and let 𝜆±q be two distinct

real roots with 𝜆
+

q > 𝜆
−

q, 𝜆
±

q being the corresponding
(linearly independent) real eigenvectors. It is easy to
see that

r
±
(q) = [1, −

𝜆
±

q + 𝑢̃ + 𝑑
1
q2

𝛽𝑢̃
] . (16)

Denote

Λ
∗
= {q | 𝑑

1
𝑑
2
(1 + 𝑑

3
𝑢̃) q4

+ [𝑑
1
𝜇 + 𝑑
2
(1 + 𝑑

3
𝑢̃) 𝑢̃ − 𝛽𝑑

2
𝑑
3
𝑢̃Ṽ] q2

+𝜇𝑢̃ + 𝛽𝜇
2
𝑢̃ < 0} .

(17)

Clearly, 𝜆+q > 0 for q ∈ Λ
∗
. Note that there are only

finitely many q in Λ
∗
and Λ

∗
⊂ Λ
1
. Therefore, there

are only finitely many linear growing modes, such
that the constant equilibrium (0, 0) of (5) is unstable.
Furthermore, we define

𝜆max = max
𝜆
+

q>0
𝜆
+

q, Λmax = {q | 𝜆
+

q = 𝜆max} . (18)

Then, Λmax ⊂ Λ
∗
⊂ Λ
1
.

(2) Δ = 0. Let Λ
2

= {q | Δ = 0}. In this case, (12)
possesses repeated real eigenvalues. Consider

𝜆q = 𝜆
+

q = 𝜆
−

q = −
1

2
{𝑢̃ + 𝜇 + [𝑑

1
+ 𝑑
2
(1 + 𝑑

3
𝑢̃)] q2} < 0.

(19)

The corresponding eigenvectors are

r (q) = r
+
(q) = r

−
(q) = [1, −

𝜆q + 𝑢̃ + 𝑑
1
q2

𝛽𝑢̃
] , (20)

and we can find another independent vector r󸀠(q) =

[0, −1/(𝛽𝑢̃)], satisfying

(𝐿 − 𝜆q𝐼) r
󸀠
(q) = r (q) . (21)

(3) Δ < 0. The complex case is where (12) possesses a
pair of complex eigenvalues with a negative real part.
Denote Λ

3
= {qΔ < 0}, and for any q ∈ Λ

3
, denote

𝜆
+

q = Re 𝜆q + 𝑖 Im 𝜆q, r
+
(q) = Re r (q) + 𝑖 Im r (q) .

(22)

Then,

𝜆
−

q = Re 𝜆q − 𝑖 Im 𝜆q, r
−
(q) = Re r (q) − 𝑖 Im r (q) ,

(23)

where Re r(q) and Im r(q) are linearly independent
vectors.

Given any initial perturbation w(𝑥, 0), we can expand it
as follows:

w (𝑥, 0) = ∑

q∈Λ
1

{𝑤
−

q r− (q) + 𝑤
+

qr+ (q)} 𝑒q (𝑥)

+ ∑

q∈Λ
2

{𝑤qr (q) + 𝑤
󸀠

qr
󸀠
(q)} 𝑒q (𝑥)

+ ∑

q∈Λ
3

{𝑤
Re
q Re r (q) + 𝑤

Im
q Im r (q)} 𝑒q (𝑥)

:= ∑

q∈N𝑁
wq𝑒q (𝑥) ,

(24)

where 𝑤−q , 𝑤
+

q , 𝑤q, 𝑤
󸀠

q, 𝑤
Re
q , and 𝑤

Im
q are constants, and

wq = 𝑤
−

q r− (q) + 𝑤
+

q r+ (q) , q ∈ Λ
1
,

wq = 𝑤qr (q) + 𝑤
󸀠

qr
󸀠
(q) , q ∈ Λ

2
,

wq = 𝑤
Re
q Re r (q) + 𝑤

Im
q Im r (q) , q ∈ Λ

3
.

(25)

The unique solution w(𝑥, 𝑡) = [𝑢(𝑥, 𝑡), V(𝑥, 𝑡)] to (7) is given
by

w (𝑥, 𝑡) = ∑

q∈Λ
1

{𝑤
−

q r− (q) 𝑒
𝜆
−

q𝑡 + 𝑤
+

qr+ (q) 𝑒
𝜆
+

q𝑡} 𝑒q (𝑥)

+ ∑

q∈Λ
2

{𝑤qr (q) + 𝑤
󸀠

qr
󸀠
(q) + 𝑤

󸀠

qr (q) 𝑡} 𝑒
𝜆q𝑡𝑒q (𝑥)

+ ∑

q∈Λ
3

{𝑤
Re
q (Re r (q) cos [(Im 𝜆q) 𝑡]

− Im r (q) sin [(Im 𝜆q) 𝑡])

+ 𝑤
Im
q (Re r (q) sin [(Im 𝜆q) 𝑡]

+ Im r (q) cos [(Im 𝜆q) 𝑡])}

× 𝑒
(Re𝜆q)𝑡𝑒q (𝑥)

:= 𝑒
𝐿𝑡w (𝑥, 0) .

(26)

In the sequel, the constant 𝐶
0
will only depend on the

domain T𝑁 and the dimension 𝑁, and the generic constants
𝐶
1
, 𝐶
2
, 𝐶
1
, 𝐶
2
, and so forth will depend on T𝑁, 𝑁, and the

parameters 𝜆, 𝛽,𝑚, 𝜇, 𝑑
1
, 𝑑
2
, and 𝑑

3
. Our main result of this

section is the following lemma.

Lemma 1. Assume that the instability criterion (13) is valid.
Suppose that

w (𝑥, 𝑡) = [𝑢 (𝑥, 𝑡) , V (𝑥, 𝑡)] := 𝑒
𝐿𝑡w (𝑥, 0) (27)

is a solution to the linearized system (7) with the initial condi-
tion w(𝑥, 0). Then, there exists a constant 𝐶

1
≥ 1, such that

‖w (⋅, 𝑡)‖𝐿2(T𝑁) ≤ 𝐶
1
𝑒
𝜆max𝑡‖ w (⋅, 0) ‖

𝐿
2
(T𝑁), (28)

for all 𝑡 ≥ 0.
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Proof. We first consider the case for 𝑡 > 1. For any q ∈ Λ
1
,

󵄨󵄨󵄨󵄨det [r− (q) , r+ (q)]
󵄨󵄨󵄨󵄨 =

𝜆
+

q − 𝜆
−

q

𝛽𝑢̃
=

√Δ

𝛽𝑢̃
, (29)

where Δ is given by (14). Applying Cramer’s rule to (25), we
have

󵄨󵄨󵄨󵄨󵄨
𝑤
±

q
󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

det [r
∓
(q) ,wq]

det [r
−
(q) , r
+
(q)]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨r∓ (q)
󵄨󵄨󵄨󵄨 ×

󵄨󵄨󵄨󵄨󵄨
wq

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨det [r− (q) , r+ (q)]

󵄨󵄨󵄨󵄨

=
𝛽𝑢̃

󵄨󵄨󵄨󵄨r∓ (q)
󵄨󵄨󵄨󵄨 ×

󵄨󵄨󵄨󵄨󵄨
wq

󵄨󵄨󵄨󵄨󵄨

√Δ
,

(30)

where

󵄨󵄨󵄨󵄨r± (q)
󵄨󵄨󵄨󵄨 =

√1 +
(𝜆
±

q + 𝑢̃ + 𝑑
1
q2)2

(𝛽𝑢̃)
2

. (31)

It follows from (14) that there exist positive constants𝑀
1
and

𝐶
1
= (𝑢̃ + 𝜇) [𝑑

1
+ 𝑑
2
(1 + 𝑑

3
𝑢̃)]

− 2 [𝑑
1
𝜇 + 𝑑
2
(1 + 𝑑

3
𝑢̃) 𝑢̃] + 2𝛽𝑑

2
𝑑
3
𝑢̃Ṽ,

(32)

such that Δ > 𝐶
1
q2 for all |q| > 𝑀

1
. Hence, for any |q| > 𝑀

1
,

󵄨󵄨󵄨󵄨󵄨
𝑤
±

q
󵄨󵄨󵄨󵄨󵄨
≤

𝛽𝑢̃
󵄨󵄨󵄨󵄨r∓ (q)

󵄨󵄨󵄨󵄨 ×
󵄨󵄨󵄨󵄨󵄨
wq

󵄨󵄨󵄨󵄨󵄨

√𝐶
1 |q|

, (33)

and by (12),

lim
|q|→∞

𝜆
±

q

q2
= −𝑑
1
, −𝑑
2
(1 + 𝑑

3
𝑢̃) . (34)

Thus,

lim
|q|→∞

󵄨󵄨󵄨󵄨r± (q)
󵄨󵄨󵄨󵄨

q2
= lim
|q|→∞

󵄨󵄨󵄨󵄨󵄨
𝜆
±

q + 𝑢̃ + 𝑑
1
q2󵄨󵄨󵄨󵄨󵄨

𝛽𝑢̃q2

=
1

𝛽𝑢̃
( lim
|q|→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆
±

q

q2
+ 𝑑
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

)

≤
𝑑
1
+ 𝑑
2
(1 + 𝑑

3
𝑢̃)

𝛽𝑢̃
.

(35)

Consequently, there exists a positive constant𝑀
2
> 𝑀
1
, such

that

󵄨󵄨󵄨󵄨r± (q)
󵄨󵄨󵄨󵄨 ≤ (

𝑑
1
+ 𝑑
2
(1 + 𝑑

3
𝑢̃)

𝛽𝑢̃
+ 1) q2 (36)

for any |q| > 𝑀
2
. Substituting this into (33) yields

󵄨󵄨󵄨󵄨󵄨
𝑤
±

q
󵄨󵄨󵄨󵄨󵄨
≤ 𝐶
2 |q|

󵄨󵄨󵄨󵄨󵄨
wq

󵄨󵄨󵄨󵄨󵄨
(37)

for any |q| > 𝑀
2
, where 𝐶

2
= (𝑑
1
+ 𝑑
2
(1 + 𝑑

3
𝑢̃) + 𝛽𝑢̃)/√𝐶

1
.

We thus obtain
󵄨󵄨󵄨󵄨󵄨󵄨
𝑤
±

q r± (q) 𝑒
𝜆
±

q𝑡
󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐶
2 |q|

󵄨󵄨󵄨󵄨󵄨
wq

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨r± (q)
󵄨󵄨󵄨󵄨 𝑒
𝜆
±

q𝑡. (38)

Since

lim
|q|→∞

|q| 󵄨󵄨󵄨󵄨r± (q)
󵄨󵄨󵄨󵄨 𝑒
𝜆
±

q𝑡

≤ lim
|q|→∞

|q| √1 +
(𝜆
±

q + 𝑢̃ + 𝑑
1
q2)
2

(𝛽𝑢̃)
2

× 𝑒
−min{𝑑

1
/2,𝑑
2
(1+𝑑
3
𝑢̃)/2}q2𝑡

= 0,

(39)

there exists a constant𝑀
3
> 𝑀
2
, such that

󵄨󵄨󵄨󵄨󵄨󵄨
𝑤
±

q r± (q) 𝑒
𝜆
±

q𝑡
󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐶
2

󵄨󵄨󵄨󵄨󵄨
wq

󵄨󵄨󵄨󵄨󵄨
(40)

for any |q| > 𝑀
3
.

For any q ∈ Λ
1
and |q| ≤ 𝑀

3
, as Δ is an increasing

function of |q|2, we denote

𝑀
∗
= min {|q| Δ (q) > 0} . (41)

With the help of (30) and (31), we get

󵄨󵄨󵄨󵄨󵄨󵄨
𝑤
±

q r± (q) 𝑒
𝜆
±

q𝑡
󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐶
3

󵄨󵄨󵄨󵄨󵄨
wq

󵄨󵄨󵄨󵄨󵄨
𝑒
𝜆max𝑡, (42)

where𝐶
3
only depends on 𝜆, 𝛽, 𝜇,𝑚,𝑀

∗
, and𝑀

3
. Hence, we

conclude that, for any q ∈ Λ
1
, there exists a positive constant

𝐶
4
= max{𝐶

2
, 𝐶
3
}, such that

󵄨󵄨󵄨󵄨󵄨󵄨
𝑤
±

q r± (q) 𝑒
𝜆
±

q𝑡
󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐶
4

󵄨󵄨󵄨󵄨󵄨
wq

󵄨󵄨󵄨󵄨󵄨
𝑒
𝜆max𝑡. (43)

For all q ∈ Λ
2
and q ∈ Λ

3
, by some similar arguments as

above we can show that there exist positive constants 𝐶
5
and

𝐶
6
, such that

󵄨󵄨󵄨󵄨󵄨
𝑤qr (q)

󵄨󵄨󵄨󵄨󵄨
,
󵄨󵄨󵄨󵄨󵄨
𝑤
󸀠

qr
󸀠
(q)󵄨󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨󵄨
𝑤
󸀠

qr (q)
󵄨󵄨󵄨󵄨󵄨
≤ 𝐶
5

󵄨󵄨󵄨󵄨󵄨
wq

󵄨󵄨󵄨󵄨󵄨
, 𝑡𝑒
𝜆q𝑡 ≤ 𝐶

5
,

󵄨󵄨󵄨󵄨󵄨
𝑤

Re
q Re r (q)󵄨󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨󵄨
𝑤

Re
q Im r (q)󵄨󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨󵄨
𝑤

Im
q Re r (q)󵄨󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨󵄨
𝑤

Im
q Im r (q)󵄨󵄨󵄨󵄨󵄨

≤ 𝐶
6

󵄨󵄨󵄨󵄨󵄨
wq

󵄨󵄨󵄨󵄨󵄨
.

(44)

Next, we derive the energy estimate in 𝐿
2 for w(𝑥, 𝑡).

Recall that {𝑒q(𝑥)}q∈N𝑁 is an orthonormal basis in 𝐿
2
(T𝑁).

Then,

‖ w(⋅, 𝑡) ‖2
𝐿
2
(T𝑁) = 𝐴

1
+ 𝐴
2
+ 𝐴
3
, (45)
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where

𝐴
1
= ∑

q∈Λ
1

{𝑤
−

q r−(q)𝑒
𝜆
−

q𝑡 + 𝑤
+

q r+(q)𝑒
𝜆
+

q𝑡}
2

,

𝐴
2
= ∑

q∈Λ
2

{𝑤qr(q) + 𝑤
󸀠

qr
󸀠
(q) + 𝑤

󸀠

qr(q)𝑡}
2

𝑒
2𝜆q𝑡,

𝐴
3
= ∑

q∈Λ
3

{𝑤
Re
q (Re r (q) cos [(Im 𝜆q) 𝑡]

− Im r (q) sin [(Im 𝜆q) 𝑡])

+ 𝑤
Im
q (Re r (q) sin [(Im 𝜆q) 𝑡]

+ Im r (q) cos [(Im 𝜆q) 𝑡])}
2

𝑒
2(Re𝜆q)𝑡.

(46)

From (43) and (44), we obtain

𝐴
1
≤ ∑

q∈Λ
1

{|𝑤
−

q r−(q)𝑒
𝜆
−

q𝑡| + |𝑤
+

q r+(q)𝑒
𝜆
+

q𝑡|}
2

≤ 4𝐶
2

4
∑

q∈Λ
1

|wq|
2
𝑒
2𝜆max𝑡,

𝐴
2
≤ ∑

q∈Λ
2

{
󵄨󵄨󵄨󵄨󵄨
𝑤qr (q) + 𝑤

󸀠

qr
󸀠
(q)󵄨󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨
𝑤
󸀠

qr (q)
󵄨󵄨󵄨󵄨󵄨
𝑡}
2

𝑒
2𝜆q𝑡

≤ 8𝐶
2

5
∑

q∈Λ
2

{
󵄨󵄨󵄨󵄨󵄨
wq

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑤
󸀠

qr (q)
󵄨󵄨󵄨󵄨󵄨

2

𝑡
2
} 𝑒
2𝜆q𝑡

≤ 8𝐶
2

5
∑

q∈Λ
2

{
󵄨󵄨󵄨󵄨󵄨
wq

󵄨󵄨󵄨󵄨󵄨

2

𝑒
2𝜆q𝑡 + 𝐶

2

5

󵄨󵄨󵄨󵄨󵄨
𝑤
󸀠

qr (q)
󵄨󵄨󵄨󵄨󵄨

2

}

≤ 8𝐶
2

5
∑

q∈Λ
2

{
󵄨󵄨󵄨󵄨󵄨
wq

󵄨󵄨󵄨󵄨󵄨

2

𝑒
2𝜆q𝑡 + 𝐶

4

5

󵄨󵄨󵄨󵄨󵄨
wq

󵄨󵄨󵄨󵄨󵄨

2

}

≤ 8𝐶
2

5
(1 + 𝐶

4

5
) ∑

q∈Λ
2

|wq|
2
𝑒
2𝜆max𝑡,

𝐴
3
≤ ∑

q∈Λ
3

{(|Re r (q)| + |Im r (q)|) (󵄨󵄨󵄨󵄨󵄨𝑤
Re
q
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑤

Im
q
󵄨󵄨󵄨󵄨󵄨
)}
2

𝑒
2(Re𝜆q)𝑡

≤ 16𝐶
2

6
∑

q∈Λ
3

|wq|
2
𝑒
2(Re𝜆q)𝑡

≤ 16𝐶
2

6
∑

q∈Λ
3

|wq|
2
𝑒
2𝜆max𝑡.

(47)

Thus,

‖w (⋅, 𝑡)‖
2

𝐿
2
(T𝑁)

≤ 𝐶
2

7
( ∑

q∈Λ
1

|wq|
2
+ ∑

q∈Λ
2

|wq|
2
+ ∑

q∈Λ
3

|wq|
2
)𝑒
2𝜆max𝑡

= 𝐶
2

7
‖w(⋅, 0)‖2

𝐿
2
(T𝑁)𝑒
2𝜆max𝑡,

(48)

where 𝐶2
7
= max{4𝐶2

4
, 8𝐶
2

5
(1 + 𝐶

4

5
), 16𝐶

2

6
}. Finally, for any 𝑡 >

1, we have

‖w(⋅, 𝑡)‖𝐿2(T𝑁) ≤ 𝐶
7‖w(⋅, 0)‖𝐿2(T𝑁)𝑒

𝜆max𝑡. (49)

For finite time 𝑡 ≤ 1, we multiply the first and second
equations of (7) by 𝑢 and𝐴V, respectively, then add them and
use the integration by parts to get

1

2

𝑑

𝑑𝑡
∫
T𝑁

{|𝑢|
2
+ 𝐴|V|2} 𝑑𝑥

+∫
T𝑁

{𝑑
1
|∇𝑢|
2
+ 𝐴𝑑
2
(1 + 𝑑

3
𝑢̃) |∇V|2

+𝐴𝑑
2
𝑑
3
Ṽ∇𝑢∇V} 𝑑𝑥

+∫
T𝑁

{𝑢̃𝑢
2
+ 𝐴𝜇V2} 𝑑𝑥

= ∫
T𝑁

(𝐴𝜇
2
− 𝛽𝑢̃) 𝑢V 𝑑𝑥.

(50)

Firstly, we claim that the integrand of the second integral in
(50) satisfies

𝑑
1
|∇𝑢|
2
+ 𝐴𝑑
2
(1 + 𝑑

3
𝑢̃) |∇V|2 + 𝐴𝑑

2
𝑑
3
Ṽ∇𝑢∇V

≥
1

2
(𝑑
1|∇𝑢|
2
+ 𝐴𝑑
2
(1 + 𝑑

3
𝑢̃) |∇V|2)

(51)

for some positive constant 𝐴. Obviously, it suffices to require
that

(𝐴𝑑
2
𝑑
3
Ṽ)2 − 𝐴𝑑

1
𝑑
2
(1 + 𝑑

3
𝑢̃) < 0. (52)

This is equivalent to

𝐴 <
𝑑
1
(1 + 𝑑

3
𝑢̃)

𝑑
2
𝑑2
3
Ṽ2

. (53)

Denote

𝐴
0
=

𝑑
1
(1 + 𝑑

3
𝑢̃)

2𝑑
2
𝑑2
3
Ṽ2

. (54)

On the other hand, the term on the right of (50) is

∫
T𝑁

(𝐴𝜇
2
− 𝛽𝑢̃) 𝑢V 𝑑𝑥 ≤ ∫

T𝑁
(𝐴𝜇
2
+ 𝛽𝑢̃) |𝑢| ⋅ |V| 𝑑𝑥

≤ ∫
T𝑁

(𝐴𝜇
2
+ 𝛽𝑢̃) (

𝑢
2
+ V2

2
)𝑑𝑥

=
𝐴𝜇
2
+ 𝛽𝑢̃

2
∫
T𝑁

(𝑢
2
+ V2) 𝑑𝑥.

(55)

Taking 𝐴 = 𝐴
0
, and substituting (51) and (55) into (50), we

get

𝑑

𝑑𝑡
∫
T𝑁

{|𝑢|
2
+ 𝐴
0|V|
2
} 𝑑𝑥 ≤ (𝐴

0
𝜇
2
+ 𝛽𝑢̃) ∫

T𝑁
(𝑢
2
+ V2) 𝑑𝑥.

(56)
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Integrating (56) from 0 to 𝑡 leads to

∫
T𝑁

{|𝑢 (𝑥, 𝑡)|
2
+ 𝐴
0|V (𝑥, 𝑡)|

2
} 𝑑𝑥

≤ ∫
T𝑁

{|𝑢 (𝑥, 0)|
2
+ 𝐴
0|V (𝑥, 0)|

2
} 𝑑𝑥

+ (𝐴
0
𝜇
2
+ 𝛽𝑢̃) ∫

𝑡

0

∫
T𝑁

(𝑢
2
+ V2) 𝑑𝑥 𝑑𝑡.

(57)

If 𝐴
0
≥ 1, then it follows from (57) that

∫
T𝑁

{|𝑢 (𝑥, 𝑡)|
2
+ |V (𝑥, 𝑡)|2} 𝑑𝑥

≤ 𝐴
0
∫
T𝑁

{|𝑢 (𝑥, 0)|
2
+ |V (𝑥, 0)|2} 𝑑𝑥

+ (𝐴
0
𝜇
2
+ 𝛽𝑢̃) ∫

𝑡

0

∫
T𝑁

(𝑢
2
+ V2) 𝑑𝑥 𝑑𝑡;

(58)

thus, the Gronwall inequality implies

‖w(⋅, 𝑡)‖𝐿2(T𝑁) ≤ √𝐴
0‖w (⋅, 0)‖𝐿2(T𝑁) ⋅ 𝑒

((𝐴
0
𝜇
2
+𝛽𝑢̃)/2)𝑡

. (59)

Consequently, there exists a positive constant 𝐶
8
, such that

‖w(⋅, 𝑡)‖
𝐿
2
(T𝑁) ≤ 𝐶

8
√𝐴
0‖w (⋅, 0)‖𝐿2(T𝑁)𝑒

𝜆max𝑡 (60)

for all 𝑡 ∈ [0, 1] due to the boundedness of

𝑒
((𝐴
0
𝜇
2
+𝛽𝑢̃)/2−𝜆max)𝑡. (61)

If 0 < 𝐴
0
< 1, in the same way as above, there exists a

positive constant 𝐶
9
, such that

‖w (⋅, 𝑡)‖
𝐿
2
(T𝑁) ≤ 𝐶

9‖w (⋅, 0)‖
𝐿
2
(T𝑁)𝑒
𝜆max𝑡. (62)

The proof is completed by taking 𝐶
1
= max{𝐶

7
, 𝐶
8
√𝐴
0
, 𝐶
9
}.

3. The Estimates for the Solutions of
the Full System (5)

The general theory in [21] guarantees that (5) has a unique
nonnegative local solution.The results can be summarized as
follows.

Lemma 2. Suppose thatw(𝑥, 𝑡) = [𝑢, V] is a solution of the full
system (5). For 𝑠 ≥ 1 (𝑁 = 1) and 𝑠 ≥ 2 (𝑁 = 2, 3), there exist
a 𝑇 > 0 and a constant 𝐶, such that

‖w (⋅, 𝑡)‖
𝐻
𝑠
(T𝑁) ≤ 𝐶‖w (⋅, 0)‖

𝐻
𝑠
(T𝑁), 0 ≤ 𝑡 < 𝑇 (63)

if 𝑢
0
(𝑥), V
0
(𝑥) ∈ 𝐻

𝑠
(T𝑁).

Denote

𝜕
𝑖𝑗
𝑢 :=

𝜕
2
𝑢

𝜕𝑥
𝑖
𝜕𝑥
𝑗

, 𝜕
𝑖
𝑢 :=

𝜕𝑢

𝜕𝑥
𝑖

, 𝑖, 𝑗 = 1, . . . , 𝑁. (64)

In order to derive the𝐻2 estimate for the solution of (5), we
first prove the following energy estimates.

Lemma 3. Suppose thatw(𝑥, 𝑡) = [𝑢, V] is a solution of the full
system (5). Then,

1

2

𝑑

𝑑𝑡

𝑁

∑

𝑖,𝑗=1

∫
T𝑁

{
󵄨󵄨󵄨󵄨󵄨
𝜕
𝑖𝑗
𝑢
󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝜕
𝑖𝑗
V
󵄨󵄨󵄨󵄨󵄨

2

} 𝑑𝑥

+

𝑁

∑

𝑖,𝑗=1

∫
T𝑁

{
𝑑
1

4

󵄨󵄨󵄨󵄨󵄨
∇𝜕
𝑖𝑗
𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 +
𝐴
0

2
𝑑
2
(1 + 𝑑

3
𝑢̃)

󵄨󵄨󵄨󵄨󵄨
∇𝜕
𝑖𝑗
V
󵄨󵄨󵄨󵄨󵄨

2

}𝑑𝑥

+ 𝑢̃

𝑁

∑

𝑖,𝑗=1

∫
T𝑁

󵄨󵄨󵄨󵄨󵄨
𝜕
𝑖𝑗
𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 +
𝐴
0
𝜇

2

𝑁

∑

𝑖,𝑗=1

∫
T𝑁

󵄨󵄨󵄨󵄨󵄨
𝜕
𝑖𝑗
V
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤ 𝐶
2
(1 + 𝜂)

2

‖w (⋅, 𝑡)‖
𝐻
2
(T𝑁)

󵄩󵄩󵄩󵄩󵄩
∇
3w (⋅, 𝑡)

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2(T𝑁)

+ 𝐶
2
‖ 𝑢 (⋅, 𝑡) ‖

2

𝐿
2(T𝑁)

(65)

for ‖w‖
𝐻
2
(T𝑁) ≤ 𝜂.

Proof. We first notice that system (5) preserves the evenness
of the solution; that is, if w(𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑡) is a solution to (5),

then w(−𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑡), w(𝑥

1
, −𝑥
2
, 𝑥
3
, 𝑡), and w(𝑥

1
, 𝑥
2
, −𝑥
3
, 𝑡)

are also solutions of (5). We can regard system (5) as a special
case with the evenness of the periodic problem by a reflective
and an even extension. For this reason, we may assume
periodicity at the boundary of the extended 2T𝑁 = (−𝜋, 𝜋)

𝑁.
Taking the second order partial derivative of the first equation
of (5), multiplying 𝜕

𝑖𝑗
𝑢, and integrating over the domain 2T𝑁

to get

1

2

𝑑

𝑑𝑡
∫
2T𝑁

󵄨󵄨󵄨󵄨󵄨
𝜕
𝑖𝑗
𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

= ∫
2T𝑁

𝜕
𝑖𝑗
{𝑑
1
Δ𝑢 + 𝑔

1
(𝑢 + 𝑢̃, V + Ṽ)} 𝜕

𝑖𝑗
𝑢 𝑑𝑥

= ∫
2T𝑁

𝜕
𝑖𝑗
{𝐿
1
(𝑢, V) + 𝑁

1
(𝑢, V)} 𝜕

𝑖𝑗
𝑢 𝑑𝑥,

(66)

where

𝐿
1
(𝑢, V) = 𝑑

1
Δ𝑢 − 𝑢̃𝑢 − 𝛽𝑢̃V, (67)

𝑁
1
(𝑢, V) = 𝑔

1
(𝑢 + 𝑢̃, V + Ṽ) + 𝑢̃𝑢 + 𝛽𝑢̃V = −𝑢

2
− 𝛽𝑢V (68)

are the linear and nonlinear terms, respectively, then, we have

∫
2T𝑁

(𝜕
𝑖𝑗
𝐿
1
(𝑢, V)) 𝜕

𝑖𝑗
𝑢 𝑑𝑥

= − 𝑑
1
∫
2T𝑁

󵄨󵄨󵄨󵄨󵄨
∇𝜕
𝑖𝑗
𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 − 𝑢̃ ∫
2T𝑁

󵄨󵄨󵄨󵄨󵄨
𝜕
𝑖𝑗
𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

− 𝛽𝑢̃ ∫
2T𝑁

𝜕
𝑖𝑗
𝑢𝜕
𝑖𝑗
V 𝑑𝑥,
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∫
2T𝑁

(𝜕
𝑖𝑗
𝑁
1
(𝑢, V)) 𝜕

𝑖𝑗
𝑢 𝑑𝑥

= − ∫
2T𝑁

𝜕
𝑖𝑗
{𝑢
2
+ 𝛽𝑢V} 𝜕

𝑖𝑗
𝑢 𝑑𝑥,

= − ∫
2T𝑁

{2𝜕
𝑖
𝑢𝜕
𝑗
𝑢 + 2𝑢𝜕

𝑖𝑗
𝑢 + 𝛽V𝜕

𝑖𝑗
𝑢 + 𝛽𝜕

𝑖
𝑢𝜕
𝑗
V

+𝛽𝜕
𝑗
𝑢𝜕
𝑖
V + 𝛽𝑢𝜕

𝑖𝑗
V} 𝜕
𝑖𝑗
𝑢 𝑑𝑥

= − ∫
2T𝑁

{(2𝑢 + 𝛽V) 𝜕
𝑖𝑗
𝑢 + 𝛽𝑢𝜕

𝑖𝑗
V

+ (2𝜕
𝑖
𝑢𝜕
𝑗
𝑢 + 𝛽𝜕

𝑖
𝑢𝜕
𝑗
V + 𝛽𝜕

𝑗
𝑢𝜕
𝑖
V)} 𝜕
𝑖𝑗
𝑢 𝑑𝑥

≤ (2 + 2𝛽) ‖w‖𝐿∞(2T𝑁)
󵄩󵄩󵄩󵄩󵄩
𝜕
𝑖𝑗
w󵄩󵄩󵄩󵄩󵄩
2

𝐿
2(2T𝑁)

+ (2 + 2𝛽) ‖∇w‖𝐿∞(2T𝑁)‖∇w‖𝐿2(2T𝑁)
󵄩󵄩󵄩󵄩󵄩
𝜕
𝑖𝑗
w󵄩󵄩󵄩󵄩󵄩𝐿2(2T𝑁).

(69)

Similarly, taking the second order partial derivative of the
second equation of (5), multiplying 𝜕

𝑖𝑗
V, and integrating over

the domain 2T𝑁 to get

1

2

𝑑

𝑑𝑡
∫
2T𝑁

󵄨󵄨󵄨󵄨󵄨
𝜕
𝑖𝑗
V
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

= ∫
2T𝑁

𝜕
𝑖𝑗
{𝑑
2
Δ [(1 + 𝑑

3
(𝑢 + 𝑢̃)) (V + Ṽ)]

+𝑔
2
(𝑢 + 𝑢̃, V + Ṽ)} 𝜕

𝑖𝑗
V 𝑑𝑥

= ∫
2T𝑁

𝜕
𝑖𝑗
{𝐿
2
(𝑢, V) + 𝑁

2
(𝑢, V)} 𝜕

𝑖𝑗
V 𝑑𝑥,

(70)

where

𝐿
2
(𝑢, V) = 𝑑

2
𝑑
3
ṼΔ𝑢 + 𝑑

2
(1 + 𝑑

3
𝑢̃) ΔV + 𝜇

2
𝑢 − 𝜇V, (71)

𝑁
2
(𝑢, V) = 𝑑

2
Δ [(1 + 𝑑

3
(𝑢 + 𝑢̃)) (V + Ṽ)]

+ 𝑔
2
(𝑢 + 𝑢̃, V + Ṽ) − 𝐿

2
(𝑢, V)

= 𝑑
2
𝑑
3
(VΔ𝑢 + 2∇𝑢∇V + 𝑢ΔV) −

(𝜇𝑢 − V)2

𝑚 + 𝑢 + 𝑢̃

:= 𝑁
(1)

2
(𝑢, V) + 𝑁

(2)

2
(𝑢, V) ,

(72)

thus,

∫
2T𝑁

(𝜕
𝑖𝑗
𝐿
2
(𝑢, V)) 𝜕

𝑖𝑗
V 𝑑𝑥

= − 𝑑
2
𝑑
3
Ṽ∫
2T𝑁

∇𝜕
𝑖𝑗
𝑢∇𝜕
𝑖𝑗
V 𝑑𝑥

− 𝑑
2
(1 + 𝑑

3
𝑢̃) ∫
2T𝑁

󵄨󵄨󵄨󵄨󵄨
∇𝜕
𝑖𝑗
V
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

+ 𝜇
2
∫
2T𝑁

𝜕
𝑖𝑗
𝑢𝜕
𝑖𝑗
V 𝑑𝑥 − 𝜇∫

2T𝑁
|𝜕
𝑖𝑗
V|2𝑑𝑥,

∫
2T𝑁

(𝜕
𝑖𝑗
𝑁
(1)

2
(𝑢, V)) 𝜕

𝑖𝑗
V 𝑑𝑥

= 𝑑
2
𝑑
3
∫
2T𝑁

𝜕
𝑖𝑗
(VΔ𝑢 + 2∇𝑢∇V + 𝑢ΔV) 𝜕

𝑖𝑗
V 𝑑𝑥

= 𝑑
2
𝑑
3
∫
2T𝑁

{(𝜕
𝑖𝑗
V) Δ𝑢 + V (Δ𝜕

𝑖𝑗
𝑢) + (𝜕

𝑖
V) (Δ𝜕

𝑗
𝑢)

+ (𝜕
𝑗
V) (Δ𝜕

𝑖
𝑢)} 𝜕
𝑖𝑗
V 𝑑𝑥

+ 2𝑑
2
𝑑
3
∫
2T𝑁

{(∇𝜕
𝑖𝑗
𝑢)∇V + ∇𝑢 (∇𝜕

𝑖𝑗
V)

+ (∇𝜕
𝑖
𝑢) (∇𝜕

𝑗
V)

+ (∇𝜕
𝑗
𝑢) (∇𝜕

𝑖
V)} 𝜕
𝑖𝑗
V 𝑑𝑥

+ 𝑑
2
𝑑
3
∫
2T𝑁

{(𝜕
𝑖𝑗
𝑢)ΔV + 𝑢 (Δ𝜕

𝑖𝑗
V)

+ (𝜕
𝑖
𝑢) (Δ𝜕

𝑗
V)

+ (𝜕
𝑗
𝑢) (Δ𝜕

𝑖
V)} 𝜕
𝑖𝑗
V 𝑑𝑥

= − 𝑑
2
𝑑
3
∫
2T𝑁

(𝜕
𝑖𝑗
V) (∇𝜕

𝑖𝑗
V) ∇𝑢 𝑑𝑥

− 𝑑
2
𝑑
3
∫
2T𝑁

∇V (𝜕
𝑖𝑗
𝑢) (∇𝜕

𝑖𝑗
V) 𝑑𝑥

− 𝑑
2
𝑑
3
∫
2T𝑁

V (∇𝜕
𝑖𝑗
V) (∇𝜕

𝑖𝑗
𝑢) 𝑑𝑥 + 𝑑

2
𝑑
3

× ∫
2T𝑁

{(𝜕
𝑖
V) (Δ𝜕

𝑗
𝑢) + (𝜕

𝑗
V) (Δ𝜕

𝑖
𝑢)} 𝜕
𝑖𝑗
V 𝑑𝑥

− 2𝑑
2
𝑑
3
∫
2T𝑁

{(Δ𝜕
𝑖
𝑢) 𝜕
𝑖𝑗
V𝜕
𝑗
V

+ (∇𝜕
𝑖
𝑢) (∇𝜕

𝑖𝑗
V) 𝜕
𝑗
V

+ (Δ𝜕
𝑗
𝑢) 𝜕
𝑖𝑗
V𝜕
𝑖
V

+ (∇𝜕
𝑗
𝑢) (∇𝜕

𝑖𝑗
V) 𝜕
𝑖
V} 𝑑𝑥

− 𝑑
2
𝑑
3
∫
2T𝑁

𝑢|∇𝜕
𝑖𝑗
V|2𝑑𝑥 + 𝑑

2
𝑑
3

× ∫
2T𝑁

{(𝜕
𝑖
𝑢) (Δ𝜕

𝑗
V) + (𝜕

𝑗
𝑢) (Δ𝜕

𝑖
V)} 𝜕
𝑖𝑗
V 𝑑𝑥

≤ 14𝑑
2
𝑑
3‖∇w‖𝐿∞(2T𝑁)

󵄩󵄩󵄩󵄩󵄩
𝜕
𝑖𝑗
w󵄩󵄩󵄩󵄩󵄩𝐿2(2T𝑁)

󵄩󵄩󵄩󵄩󵄩
∇
3w󵄩󵄩󵄩󵄩󵄩𝐿2(2T𝑁)

+ 2𝑑
2
𝑑
3‖w‖𝐿∞(2T𝑁)

󵄩󵄩󵄩󵄩󵄩
∇
3w󵄩󵄩󵄩󵄩󵄩
2

𝐿
2(2T𝑁)

,

∫
2T𝑁

(𝜕
𝑖𝑗
𝑁
(2)

2
(𝑢, V)) 𝜕

𝑖𝑗
V 𝑑𝑥

= − ∫
2T𝑁

𝜕
𝑖𝑗
(

(𝜇𝑢 − V)2

𝑚 + 𝑢 + 𝑢̃
) 𝜕
𝑖𝑗
V 𝑑𝑥
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= ∫
2T𝑁

{− (2 (𝜇𝑢 − V) (𝜇𝜕
𝑖𝑗
𝑢 − 𝜕
𝑖𝑗
V)

+2 (𝜇𝜕
𝑖
𝑢 − 𝜕
𝑖
V) (𝜇𝜕

𝑗
𝑢 − 𝜕
𝑗
V)) × (𝑚 + 𝑢 + 𝑢̃)

−1

− (𝜇𝑢 − V)2 [
2𝜕
𝑖
𝑢𝜕
𝑗
𝑢

(𝑚 + 𝑢 + 𝑢̃)
3
−

𝜕
𝑖𝑗
𝑢

(𝑚 + 𝑢 + 𝑢̃)
2
]

+ (2 (𝜇𝑢 − V) [(𝜇𝜕
𝑖
𝑢 − 𝜕
𝑖
V) 𝜕
𝑗
𝑢

+ (𝜇𝜕
𝑗
𝑢 − 𝜕
𝑗
V) 𝜕
𝑖
𝑢])

× (𝑚 + 𝑢 + 𝑢̃)
−2
}𝜕
𝑖𝑗
V 𝑑𝑥

≤
2(𝜇 + 1)

2

𝑚
‖w‖
𝐿
∞
(2T𝑁)

󵄩󵄩󵄩󵄩󵄩
𝜕
𝑖𝑗
w󵄩󵄩󵄩󵄩󵄩
2

𝐿
2(2T𝑁)

+
2(𝜇 + 1)

2

𝑚
‖∇w‖
𝐿
∞
(2T𝑁)‖∇w‖𝐿2(2T𝑁)

󵄩󵄩󵄩󵄩󵄩
𝜕
𝑖𝑗
w󵄩󵄩󵄩󵄩󵄩𝐿2(2T𝑁)

+
2(𝜇 + 1)

2

𝑚3
‖w‖2
𝐿
∞(2T𝑁)

‖∇w‖𝐿∞(2T𝑁)

× ‖∇w‖𝐿2(2T𝑁)
󵄩󵄩󵄩󵄩󵄩
𝜕
𝑖𝑗
w󵄩󵄩󵄩󵄩󵄩𝐿2(2T𝑁)

+
(𝜇 + 1)

2

𝑚2
‖w‖2
𝐿
∞(2T𝑁)

󵄩󵄩󵄩󵄩󵄩
𝜕
𝑖𝑗
w󵄩󵄩󵄩󵄩󵄩
2

𝐿
2(2T𝑁)

+
4(𝜇 + 1)

2

𝑚2
‖w‖𝐿∞(2T𝑁)‖∇w‖𝐿∞(2T𝑁)

× ‖∇w‖𝐿2(2T𝑁)
󵄩󵄩󵄩󵄩󵄩
𝜕
𝑖𝑗
w󵄩󵄩󵄩󵄩󵄩𝐿2(2T𝑁)

≤
(𝜇 + 1)

2

𝑚
(2 +

‖w‖𝐿∞(2T𝑁)
𝑚

)‖w‖𝐿∞(2T𝑁)
󵄩󵄩󵄩󵄩󵄩
𝜕
𝑖𝑗
w󵄩󵄩󵄩󵄩󵄩
2

𝐿
2(2T𝑁)

+
2(𝜇 + 1)

2

𝑚
(1 +

‖w‖𝐿∞(2T𝑁)
𝑚

)

2

‖∇w‖𝐿∞(2T𝑁)

× ‖∇w‖𝐿2(2T𝑁)
󵄩󵄩󵄩󵄩󵄩
𝜕
𝑖𝑗
w󵄩󵄩󵄩󵄩󵄩𝐿2(2T𝑁).

(73)

Substituting (70) ×𝐴
0
+ (66) into (69) and (73) to get

1

2

𝑑

𝑑𝑡
∫
2T𝑁

{
󵄨󵄨󵄨󵄨󵄨
𝜕
𝑖𝑗
𝑢
󵄨󵄨󵄨󵄨󵄨

2

+ 𝐴
0

󵄨󵄨󵄨󵄨󵄨
𝜕
𝑖𝑗
V
󵄨󵄨󵄨󵄨󵄨

2

} 𝑑𝑥

+ ∫
2T𝑁

{𝑑
1

󵄨󵄨󵄨󵄨󵄨
∇𝜕
𝑖𝑗
𝑢
󵄨󵄨󵄨󵄨󵄨

2

+ 𝐴
0
𝑑
2
𝑑
3
Ṽ∇𝜕
𝑖𝑗
𝑢∇𝜕
𝑖𝑗
V

+𝐴
0
𝑑
2
(1 + 𝑑

3
𝑢̃)

󵄨󵄨󵄨󵄨󵄨
∇𝜕
𝑖𝑗
V
󵄨󵄨󵄨󵄨󵄨

2

} 𝑑𝑥

+ 𝑢̃ ∫
2T𝑁

󵄨󵄨󵄨󵄨󵄨
𝜕
𝑖𝑗
𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 + 𝐴
0
𝜇∫
2T𝑁

󵄨󵄨󵄨󵄨󵄨
𝜕
𝑖𝑗
V
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤ 𝐼
1
+ 𝐼
2
,

(74)

where

𝐼
1
= 𝐶
10
(1 + 𝜂) ‖w‖𝐿∞(2T𝑁)

󵄩󵄩󵄩󵄩󵄩
𝜕
𝑖𝑗
w󵄩󵄩󵄩󵄩󵄩
2

𝐿
2(2T𝑁)

+ 𝐶
11
(1 + 𝜂)

2

‖∇w‖𝐿∞(2T𝑁)‖∇w‖𝐿2(2T𝑁)
󵄩󵄩󵄩󵄩󵄩
𝜕
𝑖𝑗
w󵄩󵄩󵄩󵄩󵄩𝐿2(2T𝑁)

+ 𝐶
12‖∇w‖𝐿∞(2T𝑁)

󵄩󵄩󵄩󵄩󵄩
𝜕
𝑖𝑗
w󵄩󵄩󵄩󵄩󵄩𝐿2(2T𝑁)

󵄩󵄩󵄩󵄩󵄩
∇
3w󵄩󵄩󵄩󵄩󵄩𝐿2(2T𝑁)

+ 𝐶
13‖w‖𝐿∞(2T𝑁)

󵄩󵄩󵄩󵄩󵄩
∇
3w󵄩󵄩󵄩󵄩󵄩
2

𝐿
2(2T𝑁)

,

𝐼
2
= (𝐴
0
𝜇
2
− 𝛽𝑢̃) ∫

2T𝑁
𝜕
𝑖𝑗
𝑢𝜕
𝑖𝑗
V 𝑑𝑥,

(75)

we apply the Sobolev imbedding to control the 𝐿∞ norm by
󵄩󵄩󵄩󵄩𝑔

󵄩󵄩󵄩󵄩𝐿∞(2T𝑁) ≤ 𝐶
0

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐻2(2T𝑁) (76)

for𝑁 ≤ 3. From the Hölder inequality, the Poincaré inequal-
ity, and the Sobolev imbedding theorem, it follows that

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿2(2T𝑁) ≤ (2𝜋)

𝑁/4󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿4(2T𝑁) ≤ 𝐶

0

󵄩󵄩󵄩󵄩∇𝑔
󵄩󵄩󵄩󵄩𝐿2(2T𝑁) (77)

for ∫
2T𝑁

𝑔𝑑𝑥 = 0. Recall the even extension of (5), and the
solution [𝑢, V] satisfies

∫
2T𝑁

∇𝑢𝑑𝑥 = ∫
2T𝑁

∇V 𝑑𝑥 = 0,

∫
2T𝑁

𝜕
𝑖𝑗
𝑢 𝑑𝑥 = ∫

2T𝑁
𝜕
𝑖𝑗
V 𝑑𝑥 = 0, 𝑖, 𝑗 = 1, . . . , 𝑁.

(78)

By (76) and (77), we find that

‖∇w‖𝐿∞(2T𝑁) ≤ 𝐶
0‖∇w‖𝐻2(2T𝑁) ≤ 𝐶

0

󵄩󵄩󵄩󵄩󵄩
∇
3w󵄩󵄩󵄩󵄩󵄩𝐿2(2T𝑁), (79)

where 𝐶
0
is a universal constant. Therefore, when 𝑁 ≤ 3, it

follows from (76) and (79) that

𝐼
1
≤ 𝐶
14
(1 + 𝜂)

2
‖w‖𝐻2(2T𝑁)

󵄩󵄩󵄩󵄩󵄩
∇
3w󵄩󵄩󵄩󵄩󵄩
2

𝐿
2(2T𝑁)

. (80)

Applying the Young inequality to get

𝐼
2
≤

(𝐴
0
𝜇
2
+ 𝛽𝑢̃)

2

2𝐴
0
𝜇

∫
2T𝑁

󵄨󵄨󵄨󵄨󵄨
𝜕
𝑖𝑗
𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 +
𝐴
0
𝜇

2
∫
2T𝑁

|𝜕
𝑖𝑗
V|2𝑑𝑥,

(81)

which is combined with the interpolation inequality and the
𝜀-Young inequality to imply

∫
2T𝑁

|𝜕
𝑖𝑗
𝑢|
2
𝑑𝑥 ≤ 𝐶

0
(𝑎

󵄩󵄩󵄩󵄩󵄩
∇𝜕
𝑖𝑗
𝑢
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2(2T𝑁)

) +
1

4𝑎2
‖𝑢‖
2

𝐿
2(2T𝑁)

,

(82)

where 𝑎 is a positive constant, in the same way as above, we
obtain that the second integral satisfies

∫
2T𝑁

{𝑑
1

󵄨󵄨󵄨󵄨󵄨
∇𝜕
𝑖𝑗
𝑢
󵄨󵄨󵄨󵄨󵄨

2

+ 𝐴
0
𝑑
2
𝑑
3
Ṽ∇𝜕
𝑖𝑗
𝑢∇𝜕
𝑖𝑗
V

+𝐴
0
𝑑
2
(1 + 𝑑

3
𝑢̃)

󵄨󵄨󵄨󵄨󵄨
∇𝜕
𝑖𝑗
V
󵄨󵄨󵄨󵄨󵄨

2

} 𝑑𝑥

≥ {
𝑑
1

2

󵄨󵄨󵄨󵄨󵄨
∇𝜕
𝑖𝑗
𝑢
󵄨󵄨󵄨󵄨󵄨

2

+
𝐴
0
𝑑
2
(1 + 𝑑

3
𝑢̃)

2

󵄨󵄨󵄨󵄨󵄨
∇𝜕
𝑖𝑗
V
󵄨󵄨󵄨󵄨󵄨

2

}𝑑𝑥.

(83)
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Substituting (80)–(83) into (74), take ((𝐴
0
𝜇
2
+ 𝛽𝑢̃)

2

/2𝐴
0
𝜇)

𝐶
0
𝑎 = 𝑑
1
/4 to get

1

2

𝑑

𝑑𝑡
∫
2T𝑁

{
󵄨󵄨󵄨󵄨󵄨
𝜕
𝑖𝑗
𝑢
󵄨󵄨󵄨󵄨󵄨

2

+ 𝐴
0

󵄨󵄨󵄨󵄨󵄨
𝜕
𝑖𝑗
V
󵄨󵄨󵄨󵄨󵄨

2

} 𝑑𝑥

+ ∫
2T𝑁

{
𝑑
1

4

󵄨󵄨󵄨󵄨󵄨
∇𝜕
𝑖𝑗
𝑢
󵄨󵄨󵄨󵄨󵄨

2

+
𝐴
0

2
𝑑
2
(1 + 𝑑

3
𝑢̃)

󵄨󵄨󵄨󵄨󵄨
∇𝜕
𝑖𝑗
V
󵄨󵄨󵄨󵄨󵄨

2

}𝑑𝑥

+ 𝑢̃ ∫
2T𝑁

󵄨󵄨󵄨󵄨󵄨
𝜕
𝑖𝑗
𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 +
𝐴
0
𝜇

2
∫
2T𝑁

󵄨󵄨󵄨󵄨󵄨
𝜕
𝑖𝑗
V
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤ 𝐶
14
(1 + 𝜂)

2

‖w‖𝐻2(2T𝑁)
󵄩󵄩󵄩󵄩󵄩
∇
3w󵄩󵄩󵄩󵄩󵄩
2

𝐿
2(2T𝑁)

+ 𝐶
15‖𝑢‖
2

𝐿
2(2T𝑁)

.

(84)

Similar as the proof of Lemma 1, we proceed in the two
cases: 𝐴

0
≥ 1 and 0 < 𝐴

0
< 1. Then, we conclude

1

2

𝑑

𝑑𝑡
∫
2T𝑁

{
󵄨󵄨󵄨󵄨󵄨
𝜕
𝑖𝑗
𝑢
󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝜕
𝑖𝑗
V
󵄨󵄨󵄨󵄨󵄨

2

} 𝑑𝑥

+ ∫
2T𝑁

{
𝑑
1

4

󵄨󵄨󵄨󵄨󵄨
∇𝜕
𝑖𝑗
𝑢
󵄨󵄨󵄨󵄨󵄨

2

+
𝐴
0

2
𝑑
2
(1 + 𝑑

3
𝑢̃)

󵄨󵄨󵄨󵄨󵄨
∇𝜕
𝑖𝑗
V
󵄨󵄨󵄨󵄨󵄨

2

}𝑑𝑥

+ 𝑢̃ ∫
2T𝑁

󵄨󵄨󵄨󵄨󵄨
𝜕
𝑖𝑗
𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 +
𝐴
0
𝜇

2
∫
2T𝑁

󵄨󵄨󵄨󵄨󵄨
𝜕
𝑖𝑗
V
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤ 𝐶
16
(1 + 𝜂)

2

‖w‖𝐻2(2T𝑁)
󵄩󵄩󵄩󵄩󵄩
∇
3w󵄩󵄩󵄩󵄩󵄩
2

𝐿
2(2T𝑁)

+ 𝐶
17‖𝑢‖
2

𝐿
2(2T𝑁)

.

(85)

So, the even extension implies

1

2

𝑑

𝑑𝑡

𝑁

∑

𝑖,𝑗=1

∫
T𝑁

{
󵄨󵄨󵄨󵄨󵄨
𝜕
𝑖𝑗
𝑢
󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝜕
𝑖𝑗
V
󵄨󵄨󵄨󵄨󵄨

2

} 𝑑𝑥

+

𝑁

∑

𝑖,𝑗=1

∫
T𝑁

{
𝑑
1

4

󵄨󵄨󵄨󵄨󵄨
∇𝜕
𝑖𝑗
𝑢
󵄨󵄨󵄨󵄨󵄨

2

+
𝐴
0

2
𝑑
2
(1 + 𝑑

3
𝑢̃)

󵄨󵄨󵄨󵄨󵄨
∇𝜕
𝑖𝑗
V
󵄨󵄨󵄨󵄨󵄨

2

}𝑑𝑥

+ 𝑢̃

𝑁

∑

𝑖,𝑗=1

∫
T𝑁

󵄨󵄨󵄨󵄨󵄨
𝜕
𝑖𝑗
𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 +
𝐴
0
𝜇

2

𝑁

∑

𝑖,𝑗=1

∫
T𝑁

󵄨󵄨󵄨󵄨󵄨
𝜕
𝑖𝑗
V
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤ 𝐶
2
(1 + 𝜂)

2
‖w‖𝐻2(T𝑁)

󵄩󵄩󵄩󵄩󵄩
∇
3w󵄩󵄩󵄩󵄩󵄩
2

𝐿
2(T𝑁)

+ 𝐶
2‖𝑢‖
2

𝐿
2(T𝑁)

.

(86)

Next, we control the 𝐻2 growth of w(𝑥, 𝑡) in terms of its
𝐿
2 growth.

Lemma 4. Suppose that w(𝑥, 𝑡) is a solution of the full system
(5), such that

‖w(⋅, 𝑡)‖𝐻2(T𝑁) ≤ min{𝜂,
𝑑
1

4𝐶
2
(1 + 𝜂)

2
,
𝐴
0
𝑑
2
(1 + 𝑑

3
𝑢̃)

2𝐶
2
(1 + 𝜂)

2
} ,

(87)

‖w(⋅, 𝑡)‖
𝐿
2
(T𝑁) ≤ 2𝐶

1
𝑒
𝜆max𝑡‖w(⋅, 0)‖𝐿2(T𝑁). (88)

Then,

‖w(⋅, 𝑡)‖2
𝐻
2(T𝑁)

≤ 𝐶
3
{‖w (⋅, 0)‖

2

𝐻
2(T𝑁)

+𝑒
2𝜆max𝑡‖w (⋅, 0)‖

2

𝐿
2(T𝑁)

} ,

(89)

where 𝐶
3
= 2max{4𝐶2

1
, 4(𝐶
0
+ 1)𝐶

2

1
𝐶
2
/𝜆max, (𝐶0 + 1)/2}.

Proof. We first consider the second-order derivatives of
w(𝑥, 𝑡). FromLemmas 3 and 4 andour assumption forw(𝑥, 𝑡),
we have

1

2

𝑑

𝑑𝑡

𝑁

∑

𝑖,𝑗=1

∫
T𝑁

{
󵄨󵄨󵄨󵄨󵄨
𝜕
𝑖𝑗
𝑢
󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝜕
𝑖𝑗
V
󵄨󵄨󵄨󵄨󵄨

2

} 𝑑𝑥 ≤ 𝐶
2‖𝑢‖
2

𝐿
2(T𝑁)

≤ 4𝐶
2

1
𝐶
2
𝑒
2𝜆max𝑡‖w(⋅, 0)‖2

𝐿
2(T𝑁)

.

(90)

By an integration from 0 to 𝑡, we deduce that

𝑁

∑

𝑖,𝑗=1

∫
T𝑁

{
󵄨󵄨󵄨󵄨󵄨
𝜕
𝑖𝑗
𝑢 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝜕
𝑖𝑗
V (𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨

2

} 𝑑𝑥

≤

𝑁

∑

𝑖,𝑗=1

∫
T𝑁

{
󵄨󵄨󵄨󵄨󵄨
𝜕
𝑖𝑗
𝑢 (𝑥, 0)

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝜕
𝑖𝑗
V (𝑥, 0)

󵄨󵄨󵄨󵄨󵄨

2

} 𝑑𝑥

+
4𝐶
2

1
𝐶
2

𝜆max
𝑒
2𝜆max𝑡‖w(⋅, 0)‖2

𝐿
2(T𝑁)

.

(91)

For the first derivations of w(𝑥, 𝑡), we apply the Poincaré
inequality to get

‖∇w‖𝐿2(2T𝑁) ≤ 𝐶
0

󵄩󵄩󵄩󵄩󵄩
∇
2w󵄩󵄩󵄩󵄩󵄩𝐿2(2T𝑁). (92)

Applying the even extension, we have

‖∇w‖
𝐿
2
(T𝑁) ≤ 𝐶

0

󵄩󵄩󵄩󵄩󵄩
∇
2w󵄩󵄩󵄩󵄩󵄩𝐿2(T𝑁). (93)

It follows from (88)–(93) that

‖w(⋅, t)‖2
𝐻
2(T𝑁)

= ‖w(⋅, t)‖2
𝐿
2(T𝑁)

+ ‖∇w‖2
𝐿
2(T𝑁)

+
󵄩󵄩󵄩󵄩󵄩
∇
2w󵄩󵄩󵄩󵄩󵄩
2

𝐿
2(T𝑁)

≤ ‖w(⋅, t)‖2
𝐿
2(T𝑁)

+ (𝐶
0
+ 1)

󵄩󵄩󵄩󵄩󵄩
∇
2w󵄩󵄩󵄩󵄩󵄩
2

𝐿
2(T𝑁)

≤ 4𝐶
2

1
𝑒
2𝜆max𝑡‖w(⋅, 0)‖2

𝐿
2(T𝑁)

+ (𝐶
0
+ 1) ‖w(⋅, 0)‖2

𝐻
2(T𝑁)

+
4 (𝐶
0
+ 1)𝐶

2

1
𝐶
2

𝜆max
𝑒
2𝜆max𝑡‖w(⋅, 0)‖2

𝐿
2(T𝑁)

≤ 𝐶
3
{‖w (⋅, 0)‖2

𝐻
2(T𝑁)

+ 𝑒
2𝜆max𝑡‖w (⋅, 0)‖2

𝐿
2(T𝑁)

} ,

(94)

where𝐶
3
= 2max{4𝐶2

1
, 4(𝐶
0
+1)𝐶
2

1
𝐶
2
/𝜆max, (𝐶0+1)/2}.
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4. Nonlinear Instability and
Pattern Formation

Let 𝜃 be a fixed constant. For an arbitrary positive number 𝛿,
we define the escape time 𝑇𝛿 by

𝜃 = 𝛿𝑒
𝜆max𝑇

𝛿 (95)

or equivalently

𝑇
𝛿
=

1

𝜆max
ln 𝜃

𝛿
. (96)

Theorem 5. Assume that there exists a q, such that the insta-
bility criterion (13) holds. Let

w
0
(𝑥) = ∑

q∈Λ
1

{𝑤
−

q r− (q) + 𝑤
+

q r+ (q)} 𝑒q (𝑥)

+ ∑

q∈Λ
2

{𝑤qr (q) + 𝑤
󸀠

qr
󸀠
(q)} 𝑒q (𝑥)

+ ∑

q∈Λ
3

{𝑤
Re
q Re r (q) + 𝑤

Im
q Im r (q)} 𝑒q (𝑥) ,

(97)

such that w
0
(𝑥) ∈ 𝐻

2
(T𝑁), ‖w0‖𝐿2(T𝑁) = 1. Then, there exist

𝜃
0
> 0, 𝛿

0
> 0, and 𝐶 > 0, such that for all 𝜃 ∈ (0, 𝜃

0
) and 𝛿 ∈

(0, 𝛿
0
], the nonlinear evolution w𝛿(𝑥, 𝑡) of (5) with the initial

perturbation w𝛿(𝑥, 0) = 𝛿w
0
(𝑥) satisfies

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

w𝛿 (⋅, 𝑡) − 𝛿𝑒
𝜆max𝑡 ∑

q∈Λmax

𝑤
+

q r+ (q) 𝑒q (𝑥)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(T𝑁)

≤ 𝐶{𝑒
−𝜎𝑡

+ 𝛿
󵄩󵄩󵄩󵄩w0

󵄩󵄩󵄩󵄩
2

𝐻
2(T𝑁)

+ 𝛿𝑒
𝜆max𝑡} 𝛿𝑒

𝜆max𝑡,

∀𝑡 ∈ [0, 𝑇
𝛿
] ,

(98)

where the constant 𝜎, called the gap between 𝜆max and the rest
of eigenvalues, is positive, and

𝛿
0
= min

{

{

{

1

2√𝐶
3

󵄩󵄩󵄩󵄩w0
󵄩󵄩󵄩󵄩𝐻2(𝑇𝑁)

,

min{𝜂,
𝑑
1

4𝐶2(1 + 𝜂)
2
,
𝐴
0
𝑑
2
(1 + 𝑑

3
𝑢̃)

2𝐶
1
(1 + 𝜂)

2
} ,

𝜆max

4𝐶
3
𝐶
4

󵄩󵄩󵄩󵄩w0
󵄩󵄩󵄩󵄩
2

𝐻
2(𝑇𝑁)

}

}

}

,

𝜃
0
= min

{{

{{

{

𝜆max

4𝐶
3
𝐶
4

,
𝜂

2√𝐶
3

,

𝑑
1

8𝐶
2
√𝐶
3
(1 + 𝜂)

2

,
𝐴
0
𝑑
2
(1 + 𝑑

3
𝑢̃)

4𝐶
2
√𝐶
3
(1 + 𝜂)

2

}}

}}

}

.

(99)

Remark 6. First, we notice that the part of the fastest growing
modes

𝛿𝑒
𝜆max𝑡 ∑

q∈Λmax

𝑤
+

q r+ (q) 𝑒q (𝑥) (100)

in (98) is nontrivial. Recall that the initial profilew
0
(𝑥) is any

𝐻
2 function satisfying ‖w0‖𝐿2(T𝑁) = 1. Thus, we can choose

w
0
(𝑥), such that there is at least one q0 ∈ Λmax with 𝑤

+

q0 ̸= 0.
Consequently,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛿𝑒
𝜆max𝑡 ∑

q∈Λmax

𝑤
+

q r+ (q) 𝑒q (𝑥)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(T𝑁)

≥ 𝛿𝑒
𝜆max𝑡 󵄨󵄨󵄨󵄨󵄨

𝑤
+

q0
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨r+ (q0)
󵄨󵄨󵄨󵄨 > 0.

(101)

Remark 7. Fix 𝜃 to be a positive small number. If 𝛿 is small
sufficiently, then 𝑇

𝛿 is large, and for 0 ≤ 𝑡 ≤ 𝑇
𝛿, 𝛿𝑒𝜆max𝑡 ≤

𝜃. Our estimate (98) implies that the dynamics of a general
perturbation can be characterized by such linear dynamics
over a long time period (0, 𝑇

𝛿
], when the initial perturbation

is small.

Remark 8. In particular, if we take

w
0
(𝑥) =

r
+
(q0)

󵄨󵄨󵄨󵄨r+ (q0)
󵄨󵄨󵄨󵄨

𝑒q0 (𝑥) (102)

in Remark 6, then, at the time 𝑡 = 𝑇
𝛿, the estimate (98) gives

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

w𝛿 (⋅, 𝑇𝛿) − 𝛿𝑒
𝜆max𝑇

𝛿 r
+
(q0)

󵄨󵄨󵄨󵄨r+ (q0)
󵄨󵄨󵄨󵄨

𝑒q0 (⋅)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(T𝑁)

≤ 𝐶{𝑒
−𝜎𝑇
𝛿

+ 𝛿
󵄩󵄩󵄩󵄩w0

󵄩󵄩󵄩󵄩
2

𝐻
2(T𝑁)

+ 𝜃} 𝜃,

= 𝐶 {𝜃
1−𝜎/𝜆max𝛿

𝜎/𝜆max + 𝛿𝜃
󵄩󵄩󵄩󵄩w0

󵄩󵄩󵄩󵄩
2

𝐻
2(T𝑁)

+ 𝜃
2
} .

(103)

Therefore,

󵄩󵄩󵄩󵄩󵄩
w𝛿 (⋅, 𝑇𝛿)󵄩󵄩󵄩󵄩󵄩 ≥ 𝜃 − 𝐶 {𝜃

1−𝜎/𝜆max𝛿
𝜎/𝜆max

+ 𝛿𝜃
󵄩󵄩󵄩󵄩w0

󵄩󵄩󵄩󵄩
2

𝐻
2(T𝑁)

+ 𝜃
2
} .

(104)

For 𝜃 sufficiently small, ‖w𝛿(., 𝑇𝛿)‖ ≥ 𝜃/2 as 𝛿 → 0, which
implies that nonlinear instability occurs.

Remark 9. From a view of pattern formation, Theorem 5
shows that if the unique positive equilibrium (𝑢̃, Ṽ) of (2) is
linear unstable, then a general small perturbation near (𝑢̃, Ṽ)
can induce pattern formation. Furthermore, the patterns
can be characterized by the fastest growing modes in the
corresponding linear dynamics over a long time period
(0, 𝑇
𝛿
].
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Proof of Theorem 5. Define

𝑇
∗
= sup{𝑡 | 󵄩󵄩󵄩󵄩󵄩w

𝛿
(⋅, 𝑡) − 𝛿𝑒

𝐿𝑡w
0

󵄩󵄩󵄩󵄩󵄩𝐿2(T𝑁)
≤

𝐶
1

2
𝛿𝑒
𝜆max𝑡} ,

(105)

𝑇
∗∗

= sup{𝑡 | 󵄩󵄩󵄩󵄩󵄩w
𝛿
(⋅, 𝑡)

󵄩󵄩󵄩󵄩󵄩𝐻2(T𝑁)

≤ min{𝜂,
𝑑
1

4𝐶
2
(1 + 𝜂)

2
,
𝐴
0
𝑑
2
(1 + 𝑑

3
𝑢̃)

2𝐶
2
(1 + 𝜂)

2
}} .

(106)

Now, we proceed in the following four steps.

Step 1. We establish 𝐻
2 estimate for the solution w𝛿(𝑥, 𝑡) of

0 ≤ 𝑡 ≤ min{𝑇𝛿, 𝑇∗, 𝑇∗∗}.
From Lemma 1, for any 𝑡 ≥ 0, we have

󵄩󵄩󵄩󵄩󵄩
𝛿𝑒
𝐿𝑡w
0

󵄩󵄩󵄩󵄩󵄩𝐿2(T𝑁)
≤ 𝛿𝐶
1
𝑒
𝜆max𝑡. (107)

By the definition of 𝑇∗, for any 0 ≤ 𝑡 ≤ 𝑇
∗, it follows that

󵄩󵄩󵄩󵄩󵄩
w𝛿(⋅, 𝑡)󵄩󵄩󵄩󵄩󵄩𝐿2(T𝑁) −

󵄩󵄩󵄩󵄩󵄩
𝛿𝑒
𝐿𝑡w
0

󵄩󵄩󵄩󵄩󵄩𝐿2(T𝑁)
≤

𝐶
1

2
𝛿𝑒
𝜆max𝑡. (108)

Substituting (107) into (108), we obtain

󵄩󵄩󵄩󵄩󵄩
w𝛿(⋅, 𝑡)󵄩󵄩󵄩󵄩󵄩𝐿2(T𝑁) ≤

3𝐶
1

2
𝛿𝑒
𝜆max𝑡. (109)

Furthermore, it follows from (109) and Lemma 4 that

󵄩󵄩󵄩󵄩󵄩
w𝛿(⋅, 𝑡)󵄩󵄩󵄩󵄩󵄩𝐻2(T𝑁) ≤ √𝐶

3
⋅ √𝛿2

󵄩󵄩󵄩󵄩w0
󵄩󵄩󵄩󵄩
2

𝐻
2(T𝑁)

+ 𝛿2𝑒2𝜆max𝑡 (110)

≤ √𝐶
3
⋅ (𝛿

󵄩󵄩󵄩󵄩w0
󵄩󵄩󵄩󵄩𝐻2(T𝑁) + 𝛿𝑒

𝜆max𝑡) (111)

for any 𝑡 ≤ 𝑇
∗∗.

Step 2. We establish 𝐿
2 estimate for w𝛿(𝑥, 𝑡) of 0 ≤ 𝑡 ≤

min{𝑇𝛿, 𝑇∗, 𝑇∗∗}. Applying Duhamel’s principle, we have

w𝛿 (𝑥, 𝑡) = 𝛿𝑒
𝐿𝑡w
0
− ∫

𝑡

0

𝑒
𝐿(𝑡−𝜏)

𝑁(w𝛿 (𝑥, 𝜏)) 𝑑𝜏, (112)

where𝑁[w𝛿(𝑥, 𝜏)] = (𝑁
1
(w𝛿(𝑥, 𝜏)),𝑁

2
(w𝛿(𝑥, 𝜏))),𝑁

1
(w𝛿(𝑥,

𝜏)), and 𝑁
2
(w𝛿(𝑥, 𝜏)) are given by (68) and (72). Using

Lemma 1, it follows that

󵄩󵄩󵄩󵄩󵄩
w𝛿(⋅, 𝑡) − 𝛿𝑒

𝐿𝑡w
0

󵄩󵄩󵄩󵄩󵄩𝐿2(T𝑁)

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

𝑒
𝐿(𝑡−𝜏)

𝑁(w𝛿 (𝑥, 𝜏)) 𝑑𝜏
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(T𝑁)

≤ ∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝑒
𝐿(𝑡−𝜏)

𝑁(w𝛿 (𝑥, 𝜏))󵄩󵄩󵄩󵄩󵄩𝐿2(T𝑁)𝑑𝜏

≤ 𝐶
1
∫

𝑡

0

𝑒
𝜆max(𝑡−𝜏)󵄩󵄩󵄩󵄩󵄩

𝑁 (w𝛿 (𝑥, 𝜏))󵄩󵄩󵄩󵄩󵄩𝐿2(T𝑁)𝑑𝜏,

󵄩󵄩󵄩󵄩󵄩
𝑁(w𝛿(𝑥, 𝜏))󵄩󵄩󵄩󵄩󵄩𝐿2(T𝑁)

≤
󵄩󵄩󵄩󵄩󵄩
𝑁
1
(w𝛿 (𝑥, 𝜏))󵄩󵄩󵄩󵄩󵄩𝐿2(T𝑁) +

󵄩󵄩󵄩󵄩󵄩
𝑁
2
(w𝛿(𝑥, 𝜏))󵄩󵄩󵄩󵄩󵄩𝐿2(T𝑁)

=
󵄩󵄩󵄩󵄩󵄩
−(𝑢
𝛿
)
2
− 𝛽𝑢
𝛿V𝛿

󵄩󵄩󵄩󵄩󵄩𝐿2(T𝑁)

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑
2
𝑑
3
V𝛿Δ𝑢𝛿 + 2𝑑

2
𝑑
3
∇𝑢
𝛿
∇V𝛿 + 𝑑

2
𝑑
3
𝑢
𝛿
ΔV𝛿

−
(𝜇𝑢
𝛿
− V𝛿)
2

𝑚 + 𝑢𝛿 + 𝑢̃

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(T𝑁)

≤ (𝛽 + 1)
󵄩󵄩󵄩󵄩󵄩
w𝛿󵄩󵄩󵄩󵄩󵄩𝐿∞(T𝑁)

󵄩󵄩󵄩󵄩󵄩
w𝛿󵄩󵄩󵄩󵄩󵄩𝐿2(T𝑁) + 2𝑑

2
𝑑
3

󵄩󵄩󵄩󵄩󵄩
w𝛿󵄩󵄩󵄩󵄩󵄩𝐿∞(T𝑁)

×
󵄩󵄩󵄩󵄩󵄩
w𝛿󵄩󵄩󵄩󵄩󵄩𝐻2(T𝑁) + 2𝑑

2
𝑑
3

󵄩󵄩󵄩󵄩󵄩
∇w𝛿󵄩󵄩󵄩󵄩󵄩
2

𝐿
4
(T𝑁)

+
(𝜇 + 1)

2

𝑚

󵄩󵄩󵄩󵄩󵄩
w𝛿󵄩󵄩󵄩󵄩󵄩𝐿∞(T𝑁)

󵄩󵄩󵄩󵄩󵄩
w𝛿󵄩󵄩󵄩󵄩󵄩𝐿2(T𝑁)

≤ 𝐶
4

󵄩󵄩󵄩󵄩󵄩
w𝛿󵄩󵄩󵄩󵄩󵄩
2

𝐻
2
(T𝑁)

,

(113)

where 𝐶
4
= 𝛽 + 1 + 4𝑑

2
𝑑
3
+ (𝜇 + 1)

2
/𝑚. Therefore,

󵄩󵄩󵄩󵄩󵄩
w𝛿(⋅, 𝑡) − 𝛿𝑒

𝐿𝑡w
0

󵄩󵄩󵄩󵄩󵄩𝐿2(T𝑁)

≤ 𝐶
1
𝐶
4
∫

𝑡

0

𝑒
𝜆max(𝑡−𝜏)‖ w𝛿(𝜏) ‖

2

𝐻
2(T𝑁)

𝑑𝜏.

(114)

Substituting (110) into (114), we obtain

󵄩󵄩󵄩󵄩󵄩
w𝛿(⋅, 𝑡) − 𝛿𝑒

𝐿𝑡w
0

󵄩󵄩󵄩󵄩󵄩𝐿2(T𝑁)

≤ 𝐶
1
𝐶
3
𝐶
4
∫

𝑡

0

𝑒
𝜆max(𝑡−𝜏)

× (𝛿
2󵄩󵄩󵄩󵄩w0

󵄩󵄩󵄩󵄩
2

𝐻
2(T𝑁)

+ 𝛿
2
𝑒
2𝜆max𝜏) 𝑑𝜏

≤ 𝐶
1
𝐶
3
𝐶
4

{

{

{

𝛿
󵄩󵄩󵄩󵄩w0

󵄩󵄩󵄩󵄩
2

𝐻
2(T𝑁)

𝜆max
+
𝛿𝑒
𝜆max𝑡

𝜆max

}

}

}

𝛿𝑒
𝜆max𝑡.

(115)
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Step 3.We prove by contradiction that

𝑇
𝛿
= min {𝑇

𝛿
, 𝑇
∗
, 𝑇
∗∗
} (116)

for 𝛿 sufficiently small and

𝜃 < min
{{

{{

{

𝜆max

4𝐶
3
𝐶
4

,
𝜂

2√𝐶
3

,
𝑑
1

8𝐶
2
√𝐶
3
(1 + 𝜂)

2

,

𝐴
0
𝑑
2
(1 + 𝑑

3
𝑢̃)

4𝐶
2
√𝐶
3
(1 + 𝜂)

2

}}

}}

}

.

(117)

If 𝑇∗∗ = min{𝑇𝛿, 𝑇∗, 𝑇∗∗}, we can let 𝑡 = 𝑇
∗∗

≤ 𝑇
𝛿 in

(111) to obtain

󵄩󵄩󵄩󵄩󵄩
w𝛿 (⋅, 𝑇∗∗)󵄩󵄩󵄩󵄩󵄩𝐻2(T𝑁) ≤ √𝐶

3
(𝛿

󵄩󵄩󵄩󵄩w0
󵄩󵄩󵄩󵄩𝐻2(T𝑁) + 𝛿𝑒

𝜆max𝑇
∗∗

)

≤ √𝐶
3
(𝛿

󵄩󵄩󵄩󵄩w0
󵄩󵄩󵄩󵄩𝐻2(T𝑁) + 𝜃) .

(118)

By choosing 𝛿 sufficiently small, such that

√𝐶
3
𝛿
󵄩󵄩󵄩󵄩w0

󵄩󵄩󵄩󵄩𝐻2(T𝑁)

≤
1

2
min{𝜂,

𝑑
1

4𝐶
2
(1 + 𝜂)

2
,
𝐴
0
𝑑
2
(1 + 𝑑

3
𝑢̃)

2𝐶
2
(1 + 𝜂)

2
} ,

(119)

and the choice of 𝜃 in (117), we have

󵄩󵄩󵄩󵄩󵄩
w𝛿(⋅, 𝑇∗∗)󵄩󵄩󵄩󵄩󵄩𝐻2(T𝑁)

< min{𝜂,
𝑑
1

4𝐶
2
(1 + 𝜂)

2
,
𝐴
0
𝑑
2
(1 + 𝑑

3
𝑢̃)

2𝐶
2
(1 + 𝜂)

2
} .

(120)

This is a contradiction to the definition of 𝑇∗∗.
On the other hand, if 𝑇∗ = min{𝑇𝛿, 𝑇∗, 𝑇∗∗}, we can let

𝑡 = 𝑇
∗ in (115) to get

󵄩󵄩󵄩󵄩󵄩󵄩
w𝛿 (⋅, 𝑇∗) − 𝛿𝑒

𝐿𝑇
∗

w
0

󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(T𝑁)

≤ 𝐶
1
𝐶
3
𝐶
4

{

{

{

𝛿
󵄩󵄩󵄩󵄩w0

󵄩󵄩󵄩󵄩
2

𝐻
2(T𝑁)

𝜆max
+

𝜃

𝜆max

}

}

}

𝛿𝑒
𝜆max𝑇

∗

.

(121)

By choosing 𝛿 sufficiently small, such that

𝐶
3
𝐶
4

𝛿
󵄩󵄩󵄩󵄩w0

󵄩󵄩󵄩󵄩
2

𝐻
2(T𝑁)

𝜆max
≤

1

4
, (122)

and the choice of 𝜃 in (117), we have

󵄩󵄩󵄩󵄩󵄩󵄩
w𝛿(⋅, 𝑇∗) − 𝛿𝑒

𝐿𝑇
∗

w
0

󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(T𝑁)
<

𝐶
1

2
𝛿𝑒
𝜆max𝑇

∗

. (123)

This again contradicts the definition of 𝑇∗. From these argu-
ments, (116) holds.

Step 4. Rewriting the left-hand term in (115) as the form of
(26), and separating q ∈ Λmax and moving q ∉ Λmax to the
right-hand side, it follows that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

w𝛿 (⋅, 𝑡) − 𝛿𝑒
𝜆max𝑡 ∑

q∈Λmax

𝑤
+

q r+ (q) 𝑒q (𝑥)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(T𝑁)

≤ 𝛿

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∑

q∈Λmax

𝑤
−

q r− (q) 𝑒
𝜆
−

q𝑡𝑒q (𝑥)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(T𝑁)

+ 𝛿

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∑

q∈Λ
1
\Λmax

{𝑤
−

q r− (q) 𝑒
𝜆
−

q𝑡

+𝑤
+

q r+ (q) 𝑒
𝜆
+

q𝑡} 𝑒q (𝑥)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(T𝑁)

+ 𝛿

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∑

q∈Λ
2

{𝑤qr (q) + 𝑤
󸀠

qr
󸀠
(q)

+𝑤
󸀠

qr (q) 𝑡} 𝑒
𝜆q𝑡𝑒q (𝑥)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(T𝑁)

+ 𝛿

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∑

q∈Λ
3

{𝑤
Re
q (Re r (q) cos [(Im 𝜆q) 𝑡]

− Im r (q) sin [(Im 𝜆q) 𝑡])

+ 𝑤
Im
q (Re r (q) sin [(Im 𝜆q) 𝑡]

+ Im r (q) cos [(Im 𝜆q) 𝑡])}

× 𝑒
(Re𝜆q)𝑡𝑒q (𝑥)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(T𝑁)

+ 𝐶
1
𝐶
3
𝐶
4

{

{

{

𝛿
󵄩󵄩󵄩󵄩w0

󵄩󵄩󵄩󵄩
2

𝐻
2(T𝑁)

𝜆max
+
𝛿𝑒
𝜆max𝑡

𝜆max

}

}

}

𝛿𝑒
𝜆max𝑡.

(124)

Next, we process the first term on the right side of (124)
to get

𝛿

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∑

q∈Λmax

𝑤
−

q r−(q)𝑒
𝜆
−

q𝑡𝑒q(𝑥)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(T𝑁)

= 𝛿( ∑

q∈Λmax

(𝑤
−

q )
2󵄨󵄨󵄨󵄨r− (q)

󵄨󵄨󵄨󵄨
2

𝑒
2𝜆
−

q𝑡𝑑𝑥)

1/2

.

(125)
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Recall that there are only finite elements in Λmax and for any
q ∈ Λmax, there exists a constant𝑀0, such that 0 < |q| < 𝑀

0
.

Therefore,

𝛿

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∑

q∈Λmax

𝑤
−

q r− (q) 𝑒
𝜆
−

q𝑡𝑒q (𝑥)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(T𝑁)

≤ 𝐶𝛿𝑒
(𝜆max−𝜎)𝑡. (126)

Similar to the arguments in the proof of Lemma 1,we can treat
the second, third, and fourth terms to obtain some similar
estimates as (126), and our theorem follows.
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