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The paper is devoted to the study of asymptotic properties of a real two-dimensional differential system with unbounded
nonconstant delays.The sufficient conditions for the stability and asymptotic stability of solutions are given.Usedmethods are based
on the transformation of the considered real system to one equation with complex-valued coefficients. Asymptotic properties are
studied by means of Lyapunov-Krasovskii functional. The results generalize some previous ones, where the asymptotic properties
for two-dimensional systems with one or more constant delays or one nonconstant delay were studied.

1. Introduction

There are a lot of papers dealing with the stability and asymp-
totic behaviour of 𝑛-dimensional real vector equations with
delay. Among others we should mention the recent results
[1–13]. Since the plane has special topological properties
different from those of 𝑛-dimensional space, where 𝑛 ≥ 3

or 𝑛 = 1, it is interesting to study asymptotic behaviour of
two-dimensional systems by using tools which are typical
and effective for two-dimensional systems. The convenient
tool is the combination of the method of complexification
and the method of Lyapunov-Krasovskii functional. Using
these techniques we obtain new and easy applicable results
on stability, asymptotic stability, or boundedness of solutions
of real two-dimensional differential system
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are locally absolutely continuous on
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,∞), 𝑏
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are locally Lebesgue integrable on [𝑡

0
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the function ℎ satisfies Carathéodory conditions on [𝑡
0
,∞)×

R2(𝑚+1).
Delayed differential equations recently gain more impor-

tance in applications in science and real world. They can be
found in applications in medicine (control of drug therapies
and neurological, physiological, and epidemiological mod-
els), biology (predator-prey models and blowflies lifecycle),
chemistry (chemical kinetics), physics (private communi-
cation and signal masking), and engineering (machining
operation on a lathe). Equation (1) represents a generalization
of many of these models. Particularly, (1) in this general
form has an application in modeling of multiple regenerative
effect in tool chatter. Obtained results on stability give the
possibility to find the best spindle speeds and depth-of-cut
for themachines for chatter-free high-productivity operation.
For more details, see [14].

Themain idea of the investigation, the combination of the
method of complexification and the method of Lyapunov-
Krasovskii functional, was introduced for ordinary dif-
ferential equations in the paper by Ráb and Kalas [15].
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The principle was transferred to differential equations with
delay by Kalas and Baráková [16]. The results for several
constant delays can be found in papers by Rebenda [17, 18].
Differential equations with one nonconstant delay are studied
by Kalas [19] and Rebenda [20].

We extend such type of results to differential equations
with a finite number of nonconstant delays. We introduce the
transformation of the considered real system to one equation
with complex-valued coefficients. We present sufficient con-
ditions for stability and asymptotic stability of a solution and
the conditions under which all solutions tend to zero. The
applicability of the results is demonstrated with an example.

At the end of this introduction we append an overview of
notations used in the paper and the transformation of the real
system to one equation with complex-valued coefficients.

Consider the following:

R: set of all real numbers,

R
+
: set of all positive real numbers,

R0
+
: set of all nonnegative real numbers,

R
−
: set of all negative real numbers,

R0
−
: set of all nonpositive real numbers,

C: set of all complex numbers,

C: class of all continuous functions [−𝑟, 0] → C,

𝐴𝐶loc(𝐼,𝑀): class of all locally absolutely continuous
functions 𝐼 → 𝑀,

𝐿 loc(𝐼,𝑀): class of all locally Lebesgue integrable
functions 𝐼 → 𝑀,

𝐾(𝐼 × Ω,𝑀): class of all functions 𝐼 × Ω → 𝑀

satisfying Carathéodory conditions on 𝐼 × Ω,

Re 𝑧: real part of 𝑧,

Im 𝑧: imaginary part of 𝑧,

𝑧: complex conjugate of 𝑧.

Introducing complex variables 𝑧 = 𝑥
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equivalent equation with complex-valued coefficients:
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∈ 𝐴𝐶loc(𝐽,R) for 𝑘 = 1, . . . , 𝑚, 𝐴
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(3)

Conversely, putting

𝑎
11

(𝑡) = Re [𝑎 (𝑡) + 𝑏 (𝑡)] ,

𝑎
12

(𝑡) = Im [𝑏 (𝑡) − 𝑎 (𝑡)] ,
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𝑘
(𝑡) − 𝐵
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(𝑡)] ,

ℎ
1
(𝑡, 𝑥, 𝑦

1
, . . . , 𝑦

𝑚
)

= Re𝑔 (𝑡, 𝑥
1
+ 𝑖𝑥
2
, 𝑦
11

+ 𝑖𝑦
12
, . . . , 𝑦

𝑚1
+ 𝑖𝑦
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) ,

ℎ
2
(𝑡, 𝑥, 𝑦

1
, . . . , 𝑦

𝑚
)

= Im𝑔 (𝑡, 𝑥
1
+ 𝑖𝑥
2
, 𝑦
11

+ 𝑖𝑦
12
, . . . , 𝑦

𝑚1
+ 𝑖𝑦
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) ,

(4)

equation (2) can be written in real form (1) as well.

2. Preliminaries

We consider (2) in the case when
lim inf
𝑡→∞

(|Im 𝑎 (𝑡)| − |𝑏 (𝑡)|) > 0 (5)

and study the behavior of solutions of (2) under this
assumption. This situation corresponds to the case when the
equilibrium 0 of the autonomous homogeneous system

𝑥

= A𝑥, (6)
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whereA is supposed to be regular constant matrix, is a centre
or a focus.

This case is included in the case lim inf
𝑡→∞

(|𝑎(𝑡)| −

|𝑏(𝑡)|) > 0 considered in [21], but in this special case, we are
able to derive more useful results as we will see later in an
example. The idea is based on the well-known result that the
condition |𝑎| > |𝑏| in an autonomous equation 𝑧


= 𝑎𝑧 + 𝑏𝑧

ensures that zero is a focus, a centre, or a node while under
the condition | Im 𝑎| > |𝑏| zero can be just a focus or a centre.
Details are found in [15].

A simple example shows that, in some cases, the results
of this paper can be applied more suitably than those given in
[21].

Regarding (5) and since the delay functions 𝜃
𝑘
satisfy

lim
𝑡→∞

𝜃
𝑘
(𝑡) = ∞, there are numbers 𝑇

1
≥ 𝑡
0
, 𝑇 ≥ 𝑇

1
, and

𝜇 > 0 such that

|Im 𝑎 (𝑡)| > |𝑏 (𝑡)| + 𝜇 for 𝑡 ≥ 𝑇
1
,

𝑡 ≥ 𝜃
𝑘
(𝑡) ≥ 𝑇

1
for 𝑡 ≥ 𝑇 (𝑘 = 1, . . . , 𝑚) .

(7)

Denote

𝛾 (𝑡) = Im 𝑎 (𝑡) + √(Im 𝑎(𝑡))
2
− |𝑏 (𝑡)|

2sgn (Im 𝑎 (𝑡)) ,

𝑐 (𝑡) = −𝑖𝑏 (𝑡) .

(8)

Notice that, unlike the function 𝛾 introduced in [21], the
previously defined function 𝛾 need not be positive.

Since |𝛾(𝑡)| > | Im 𝑎(𝑡)| and |𝑐(𝑡)| = |𝑏(𝑡)|, the inequality




𝛾 (𝑡)





> |𝑐 (𝑡)| + 𝜇 (9)

is valid for 𝑡 ≥ 𝑇
1
. It can be easily verified that 𝛾, 𝑐 ∈

𝐴𝐶loc([𝑇1,∞),C).
For the rest of this section, denote that

̃
𝜗 (𝑡)

=

Re (𝛾 (𝑡) 𝛾

(𝑡) − 𝑐 (𝑡) 𝑐


(𝑡)) −






𝛾 (𝑡) 𝑐


(𝑡) − 𝛾


(𝑡) 𝑐 (𝑡)







𝛾
2
(𝑡) − |𝑐 (𝑡)|

2
.

(10)

The stability and asymptotic stability are studied under
the following assumptions.

(i) The numbers 𝑇
1
≥ 𝑡
0
, 𝑇 ≥ 𝑇

1
, and 𝜇 > 0 are such that

(7) holds.
(ii) There exist functions 𝜘, 𝜅

𝑘
,  : [𝑇,∞) → R such that





𝛾 (𝑡) 𝑔 (𝑡, 𝑧, 𝑤

1
, . . . , 𝑤

𝑚
)

+𝑐 (𝑡) 𝑔 (𝑡, 𝑧, 𝑤
1
, . . . , 𝑤

𝑚
)





≤ 𝜘 (𝑡)




𝛾 (𝑡) 𝑧 + 𝑐 (𝑡) 𝑧






+

𝑚

∑

𝑘=1

𝜅
𝑘
(𝑡)





𝛾 (𝜃
𝑘
(𝑡)) 𝑤

𝑘

+𝑐 (𝜃
𝑘
(𝑡)) 𝑤

𝑘





+  (𝑡) ,

(11)

for 𝑡 ≥ 𝑇, 𝑧, 𝑤
𝑘

∈ C (𝑘 = 1, . . . , 𝑚), where 𝜘,  ∈

𝐿 loc([𝑇,∞),R).

(iii) ̃
𝛽 ∈ 𝐴𝐶loc([𝑇,∞),R0

+
) is a function satisfying

𝜃


𝑘
(𝑡)

̃
𝛽 (𝑡) ≥

̃
𝜆
𝑘
(𝑡) a.e. on [𝑇,∞) , (12)

where ̃
𝜆
𝑘
is defined for 𝑡 ≥ 𝑇 by

̃
𝜆
𝑘
(𝑡) = 𝜅

𝑘
(𝑡) + (





𝐴
𝑘
(𝑡)





+





𝐵
𝑘
(𝑡)





)

×





𝛾 (𝑡)





+ |𝑐 (𝑡)|





𝛾 (𝜃
𝑘
(𝑡))





−





𝑐 (𝜃
𝑘
(𝑡))






.

(13)

(iv) There exists a function Λ̃ ∈ 𝐿 loc([𝑇,∞),R) which
satisfies the inequalities ̃

𝛽

(𝑡) ≤ Λ̃(𝑡)

̃
𝛽(𝑡), Θ̃(𝑡) ≤ Λ̃(𝑡)

for almost all 𝑡 ∈ [𝑇,∞), where the function Θ̃ is
defined by

Θ̃ (𝑡) = Re 𝑎 (𝑡) +
̃
𝜗 (𝑡) + 𝜘 (𝑡) + 𝑚

̃
𝛽 (𝑡) . (14)

If 𝐴
𝑘
, 𝐵
𝑘
, 𝜅
𝑘
, 𝜃


𝑘
are locally absolutely continuous on

[𝑇,∞) and ̃
𝜆
𝑘
(𝑡) ≥ 0, 𝜃



𝑘
(𝑡) > 0 on [𝑇,∞), the choice ̃

𝛽(𝑡) =

max
𝑘=1,...,𝑚

[
̃
𝜆
𝑘
(𝑡)(𝜃


𝑘
(𝑡))
−1

] is admissible in (iii).
From the assumption (i), it follows that







̃
𝜗






≤






Re (𝛾𝛾


− 𝑐𝑐

)






+






𝛾𝑐

− 𝛾

𝑐







𝛾
2
− |𝑐|
2

≤

(






𝛾






+






𝑐






) (





𝛾




+ |𝑐|)

𝛾
2
− |𝑐|
2

=






𝛾






+






𝑐











𝛾




− |𝑐|

≤

1

𝜇

(






𝛾




+






𝑐




) ;

(15)

hence, the function ̃
𝜗 is locally Lebesgue integrable on [𝑇,∞).

Moreover, if ̃
𝛽 ∈ 𝐴𝐶loc([𝑇,∞),R

+
) and𝜘 ∈ 𝐿 loc([𝑇,∞), then

we can choose

Λ̃ (𝑡) = max(Θ̃ (𝑡) ,

̃
𝛽

(𝑡)

̃
𝛽 (𝑡)

) , (16)

in (iv).
Finally, if (𝑡) ≡ 0 in (ii), then (2) has the trivial solution

𝑧(𝑡) ≡ 0. Notice that in this case the condition (ii) implies
that the functions 𝜘(𝑡), 𝜅

𝑘
(𝑡) are nonnegative on [𝑇,∞) for

𝑘 = 1, . . . , 𝑚, and due to this, ̃𝜆
𝑘
(𝑡) ≥ 0 on [𝑇,∞). The case

(𝑡) < 0 is omitted since it can be replaced by (𝑡) ≡ 0.

3. Main Results

The aim is to generalize the results for ordinary differential
equations published in [15] as well as the results contained
in [16] (one constant delay), [18] (a finite number of constant
delays), and [20] (one nonconstant delay). In the proof of the
crucial theorem, we use the following auxiliary result.
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Lemma 1. Let 𝑎
1
, 𝑎
2
, 𝑏
1
, 𝑏
2
∈ C and |𝑎

2
| > |𝑏
2
|. Then

Re𝑎1𝑧 + 𝑏
1
𝑧

𝑎
2
𝑧 + 𝑏
2
𝑧

≤

Re (𝑎
1
𝑎
2
− 𝑏
1
𝑏
2
) +





𝑎
1
𝑏
2
− 𝑎
2
𝑏
1










𝑎
2






2

−




𝑏
2






2
, (17)

for 𝑧 ∈ C, 𝑧 ̸= 0.

The proof of Lemma 1 can be found, for example, in [15,
page 131] or [17, page 101].

Theorem 2. Let the conditions (i), (ii), (iii), and (iv) hold and
(𝑡) ≡ 0.

(a) If

lim sup
𝑡→∞

∫

𝑡

Λ̃ (𝑠) 𝑑𝑠 < ∞, (18)

then the trivial solution of (2) is stable on [𝑇,∞).

(b) If

lim
𝑡→∞

∫

𝑡

Λ̃ (𝑠) 𝑑𝑠 = −∞, (19)

then the trivial solution of (2) is asymptotically stable
on [𝑇,∞).

Proof. Choose arbitrary 𝑡
1

≥ 𝑇. Let 𝑧(𝑡) be any solution of
(2) satisfying the condition 𝑧(𝑡) = 𝑧

0
(𝑡) for 𝑡 ∈ [𝑇

1
, 𝑡
1
], where

𝑧
0
(𝑡) is a continuous complex-valued initial function defined

on 𝑡 ∈ [𝑇
1
, 𝑡
1
]. Consider the Lyapunov functional

𝑉 (𝑡) = 𝑈 (𝑡) +
̃
𝛽 (𝑡)

𝑚

∑

𝑘=1

∫

𝑡

𝜃𝑘(𝑡)

𝑈 (𝑠) 𝑑𝑠, (20)

where

𝑈 (𝑡) =




𝛾 (𝑡) 𝑧 (𝑡) + 𝑐 (𝑡) 𝑧 (𝑡)





. (21)

To simplify the computations, denote that 𝑤
𝑘
(𝑡) =

𝑧(𝜃
𝑘
(𝑡)) andwrite the functions of variable 𝑡without brackets,

for example, 𝑧 instead of 𝑧(𝑡).
From (20) we get

𝑉

= 𝑈

+

̃
𝛽


𝑚

∑

𝑘=1

∫

𝑡

𝜃𝑘(𝑡)

𝑈 (𝑠) 𝑑𝑠 + 𝑚
̃
𝛽





𝛾𝑧 + 𝑐 𝑧






−

𝑚

∑

𝑘=1

𝜃


𝑘

̃
𝛽





𝛾 (𝜃
𝑘
) 𝑤
𝑘
+ 𝑐 (𝜃

𝑘
) 𝑤
𝑘





,

(22)

for almost all 𝑡 ≥ 𝑡
1
for which 𝑧(𝑡) is defined and𝑈


(𝑡) exists.

Denote thatK = {𝑡 ≥ 𝑡
1
: 𝑧(𝑡) exists, 𝑈(𝑡) ̸= 0} andM =

{𝑡 ≥ 𝑡
1

: 𝑧(𝑡) exists, 𝑈(𝑡) = 0}. It is clear that the derivative
𝑈

(𝑡) exists for almost all 𝑡 ∈ K; hence, we focus on the set

M.

In view of (9) we have 𝑧(𝑡) = 0 for 𝑡 ∈ M. For almost all
𝑡 ∈ M, we compute

𝑈


±
(𝑡) = lim
𝜏→ 𝑡±

𝑈 (𝜏) − 𝑈 (𝑡)

𝜏 − 𝑡

= lim
𝜏→ 𝑡±

𝑈 (𝜏)

𝜏 − 𝑡

= lim
𝜏→ 𝑡±





𝛾 (𝜏) [𝑧 (𝜏) − 𝑧 (𝑡)] − 𝑐 (𝜏) [𝑧 (𝜏) − 𝑧 (𝑡)]






𝜏 − 𝑡

= ±






𝛾 (𝑡) 𝑧



(𝑡) + 𝑐 (𝑡) 𝑧


(𝑡)







= ±




𝛾 (𝑡) 𝑔

∗

(𝑡) + 𝑐 (𝑡) 𝑔
∗

(𝑡)




,

(23)

where

𝑔
∗

(𝑡) =

𝑚

∑

𝑘=1

(𝐴
𝑘
(𝑡) 𝑤
𝑘
(𝑡) + 𝐵

𝑘
(𝑡) 𝑤
𝑘
(𝑡))

+ 𝑔 (𝑡, 0, 𝑤
1
(𝑡) , . . . , 𝑤

𝑚
(𝑡)) .

(24)

Hence, 𝑈 has one-sided derivatives a.e. inM. According
to [22, Chapter IX., Theorem (1.1)] or [23], the set of all 𝑡

such that 𝑈


+
(𝑡) ̸= 𝑈



−
(𝑡) can be at most countable; thus, the

derivative 𝑈
 exists for almost all 𝑡 ∈ M, and for these 𝑡,

𝑈

(𝑡) = 0.
In particular, the derivative 𝑈

 exists for almost all 𝑡 ≥ 𝑡
1

for which 𝑧(𝑡) is defined; thus, (22) holds for almost all 𝑡 ≥ 𝑡
1

for which 𝑧(𝑡) is defined.
Now return the attention to the setK. For almost all 𝑡 ∈

K, it holds that𝑈𝑈

= 𝑈(√(𝛾𝑧 + 𝑐 𝑧)(𝛾 𝑧 + 𝑐𝑧))



= Re[(𝛾 𝑧+

𝑐𝑧)(𝛾

𝑧+𝛾𝑧


+𝑐

𝑧+𝑐 𝑧


)]. As 𝑧(𝑡) is a solution of (2), we have

𝑈𝑈

= Re{(𝛾 𝑧 + 𝑐𝑧)

× [𝛾

𝑧 + 𝑐

𝑧

+ 𝛾(𝑎𝑧 + 𝑏𝑧 +

𝑚

∑

𝑘=1

(𝐴
𝑘
𝑤
𝑘
+ 𝐵
𝑘
𝑤
𝑘
) + 𝑔)

+𝑐(𝑎 𝑧 + 𝑏𝑧 +

𝑚

∑

𝑘=1

(𝐴
𝑘
𝑤
𝑘
+ 𝐵
𝑘
𝑤
𝑘
) + 𝑔)]}

= Re{(𝛾𝑧 + 𝑐𝑧)

× [𝛾

𝑧 + 𝑐

𝑧 + (𝛾𝑎 + 𝑐𝑏) 𝑧

+ (𝛾𝑏 + 𝑐𝑎) 𝑧
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+ 𝛾(

𝑚

∑

𝑘=1

(𝐴
𝑘
𝑤
𝑘
+ 𝐵
𝑘
𝑤
𝑘
) + 𝑔)

+𝑐(

𝑚

∑

𝑘=1

(𝐴
𝑘
𝑤
𝑘
+ 𝐵
𝑘
𝑤
𝑘
) + 𝑔)]} ,

(25)

for almost all 𝑡 ∈ K.
Short computation gives (𝛾𝑎+𝑐𝑏)𝑐 = (𝛾𝑏+𝑐𝑎)𝛾, and from

this we get

𝑈𝑈

≤ Re{(𝛾𝑧 + 𝑐𝑧) (𝛾𝑎 + 𝑐𝑏) (𝑧 +

𝑐

𝛾

𝑧)}

+ Re{(𝛾𝑧 + 𝑐𝑧) [𝛾

𝑚

∑

𝑘=1

(𝐴
𝑘
𝑤
𝑘
+ 𝐵
𝑘
𝑤
𝑘
)

+ 𝑐

𝑚

∑

𝑘=1

(𝐴
𝑘
𝑤
𝑘
+ 𝐵
𝑘
𝑤
𝑘
)]}

+ Re [(𝛾𝑧 + 𝑐𝑧) (𝛾𝑔 + 𝑐𝑔)]

+ Re [(𝛾𝑧 + 𝑐𝑧) (𝛾

𝑧 + 𝑐

𝑧)]

≤ 𝑈
2 Re(𝑎 +

𝑐

𝛾

𝑏)

+ 𝑈 (




𝛾




+ |𝑐|) (

𝑚

∑

𝑘=1





𝐴
𝑘
𝑤
𝑘
+ 𝐵
𝑘
𝑤
𝑘





)

+ 𝑈




𝛾𝑔 + 𝑐𝑔





+ 𝑈
2R𝑒

𝛾

𝑧 + 𝑐

𝑧

𝛾𝑧 + 𝑐𝑧

,

(26)

for almost all 𝑡 ∈ K.
Applying Lemma 1 to the last term, we obtain

Re
𝛾

𝑧 + 𝑐

𝑧

𝛾𝑧 + 𝑐𝑧

≤
̃
𝜗. (27)

Using this inequality together with (13), assumption (ii),
and the relation Re (𝑎 + (𝑐/𝛾)𝑏) = Re 𝑎, we obtain

𝑈𝑈

≤ 𝑈
2
(Re 𝑎 +

̃
𝜗 + 𝜘)

+ 𝑈

𝑚

∑

𝑘=1

(𝜅
𝑘





𝛾 (𝜃
𝑘
) 𝑤
𝑘
+ 𝑐 (𝜃

𝑘
) 𝑤
𝑘





)

+ 𝑈 (




𝛾




+ |𝑐|)

× (

𝑚

∑

𝑘=1





𝐴
𝑘










𝑤
𝑘





+





𝐵
𝑘










𝑤
𝑘










𝛾 (𝜃
𝑘
)




−





𝑐 (𝜃
𝑘
)





(




𝛾 (𝜃
𝑘
)




−





𝑐 (𝜃
𝑘
)




))

≤ 𝑈
2
(Re 𝑎 +

̃
𝜗 + 𝜘)

+ 𝑈{

𝑚

∑

𝑘=1

[𝜅
𝑘
+ (





𝐴
𝑘





+





𝐵
𝑘





)





𝛾




+ |𝑐|





𝛾 (𝜃
𝑘
)




−





𝑐 (𝜃
𝑘
)





]

×




𝛾 (𝜃
𝑘
) 𝑤
𝑘
+ 𝑐 (𝜃

𝑘
) 𝑤
𝑘





}

≤ 𝑈
2
(Re 𝑎 +

̃
𝜗 + 𝜘)

+ 𝑈

𝑚

∑

𝑘=1

̃
𝜆
𝑘





𝛾 (𝜃
𝑘
) 𝑤
𝑘
+ 𝑐 (𝜃
𝑘
) 𝑤
𝑘





,

(28)

for almost all 𝑡 ∈ K.
Consequently,

𝑈

≤ 𝑈 (Re 𝑎 +

̃
𝜗 + 𝜘) +

𝑚

∑

𝑘=1

̃
𝜆
𝑘





𝛾 (𝜃
𝑘
) 𝑤
𝑘
+ 𝑐 (𝜃

𝑘
) 𝑤
𝑘





,

(29)

for almost all 𝑡 ∈ K.
Recalling that 𝑈(𝑡) = 0 for almost all 𝑡 ∈ M, we can see

that inequality (29) is valid for almost all 𝑡 ≥ 𝑡
1
for which 𝑧(𝑡)

is defined.
From (29) we have

𝑉

≤ 𝑈 (Re 𝑎 +

̃
𝜗 + 𝜘 + 𝑚

̃
𝛽)

+

𝑚

∑

𝑘=1

(
̃
𝜆
𝑘
− 𝜃


𝑘

̃
𝛽)





𝛾 (𝜃
𝑘
) 𝑤
𝑘
+ 𝑐 (𝜃

𝑘
) 𝑤
𝑘






+
̃
𝛽


𝑚

∑

𝑘=1

∫

𝑡

𝜃𝑘(𝑡)





𝛾 (𝑠) 𝑧 (𝑠) + 𝑐 (𝑠) 𝑧 (𝑠)





𝑑𝑠.

(30)

As ̃
𝛽(𝑡) fulfills condition (12), we obtain

𝑉


(𝑡) ≤ 𝑈 (𝑡) Θ̃ (𝑡)

+
̃
𝛽


(𝑡)

𝑚

∑

𝑘=1

∫

𝑡

𝜃𝑘(𝑡)





𝛾 (𝑠) 𝑧 (𝑠) + 𝑐 (𝑠) 𝑧 (𝑠)





𝑑𝑠,

(31)

Hence,

𝑉


(𝑡) − Λ̃ (𝑡) 𝑉 (𝑡) ≤ 0, (32)

for almost all 𝑡 ≥ 𝑡
1
for which the solution 𝑧(𝑡) exists.

Notice that, with respect to (9),

𝑉 (𝑡) ≥ (




𝛾 (𝑡)





− |𝑐 (𝑡)|) |𝑧 (𝑡)| ≥ 𝜇 |𝑧 (𝑡)| , (33)

for all 𝑡 ≥ 𝑡
1
for which 𝑧(𝑡) is defined.

Suppose that condition (18) holds, and choose arbitrary
𝜀 > 0. Put

Δ = max
𝑠∈[𝑇1 ,𝑡1]

(




𝛾 (𝑠)





+ |𝑐 (𝑠)|) , 𝐿 = sup

𝑇≤𝑡<∞

∫

𝑡

𝑇

Λ̃ (𝑠) 𝑑𝑠,

𝛿 = 𝜇𝜀Δ
−1

(1 + 𝑚
̃
𝛽 (𝑡
1
) (𝑡
1
− 𝑇
1
))

−1

exp{∫

𝑡1

𝑇

Λ̃ (𝑠) 𝑑𝑠 − 𝐿} ,

(34)
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where 𝜇 > 0, 𝑇
1

≥ 𝑡
0
, and 𝑇 ≥ 𝑇

1
are the numbers from

condition (i).
If the initial function 𝑧

0
(𝑡) of the solution 𝑧(𝑡) satisfies

max
𝑠∈[𝑇1 ,𝑡1]

|𝑧
0
(𝑠)| < 𝛿, then the multiplication of (32) by

exp{− ∫

𝑡

𝑡1

Λ̃(𝑠)𝑑𝑠} and the integration over [𝑡
1
, 𝑡] yield

𝑉 (𝑡) exp{−∫

𝑡

𝑡1

Λ̃ (𝑠) 𝑑𝑠} − 𝑉 (𝑡
1
) ≤ 0, (35)

for all 𝑡 ≥ 𝑡
1
for which 𝑧(𝑡) is defined. From (33) and (35) we

get

𝜇 |𝑧 (𝑡)| ≤ 𝑉 (𝑡) ≤ 𝑉 (𝑡
1
) exp{∫

𝑡

𝑡1

Λ̃ (𝑠) 𝑑𝑠}

≤ [ (




𝛾 (𝑡
1
)




+





𝑐 (𝑡
1
)




)




𝑧 (𝑡
1
)





+
̃
𝛽 (𝑡
1
) max
𝑠∈[𝑇1 ,𝑡1]

|𝑧 (𝑠)|

×(

𝑚

∑

𝑘=1

∫

𝑡1

𝜃𝑘(𝑡1)

(




𝛾 (𝑠)





+ |𝑐 (𝑠)|) 𝑑𝑠)]

× exp{∫

𝑡

𝑡1

Λ̃ (𝑠) 𝑑𝑠}

≤ [Δ max
𝑠∈[𝑇1,𝑡1]





𝑧
0
(𝑠)






+
̃
𝛽 (𝑡
1
) max
𝑠∈[𝑇1 ,𝑡1]





𝑧
0
(𝑠)





Δ

×

𝑚

∑

𝑘=1

(𝑡
1
− 𝜃
𝑘
(𝑡
1
))]

× exp{∫

𝑡

𝑡1

Λ̃ (𝑠) 𝑑𝑠} ;

(36)

that is,

𝜇 |𝑧 (𝑡)| ≤ Δ max
𝑠∈[𝑇1 ,𝑡1]





𝑧
0
(𝑠)





(1 + 𝑚

̃
𝛽 (𝑡
1
) (𝑡
1
− 𝑇
1
))

× exp{𝐿 − ∫

𝑡1

𝑇

Λ̃ (𝑠) 𝑑𝑠} < 𝜇𝜀.

(37)

Thus, we have |𝑧(𝑡)| < 𝜀 for all 𝑡 ≥ 𝑡
1
, and we conclude

that the trivial solution of (2) is stable.
Now suppose that condition (19) is valid. Then, in view

of the first part of Theorem 2, for 𝐾 > 0, there is a 𝜌 > 0

such that max
𝑠∈[𝑇1 ,𝑡1]

|𝑧
0
(𝑠)| < 𝜌 implies that the solution 𝑧(𝑡)

of (2) exists for all 𝑡 ≥ 𝑡
1
and satisfies |𝑧(𝑡)| < 𝐾, where 𝐾 is

arbitrary real constant. Hence, from this and (33), we have

|𝑧 (𝑡)| ≤ 𝜇
−1

𝑉 (𝑡) ≤ 𝜇
−1

𝑉 (𝑡
1
) exp{∫

𝑡

𝑡1

Λ̃ (𝑠) 𝑑𝑠} , (38)

for all 𝑡 ≥ 𝑡
1
. This inequality, with condition (19), gives

lim
𝑡→∞

𝑧 (𝑡) = 0, (39)

which completes the proof.

Remark 3. Theorem 2 represents a generalization of previous
results.

If we take 𝐴
1
(𝑡) = 𝐴(𝑡), 𝐴

𝑘
≡ 0, for 𝑘 = 2, . . . , 𝑚, 𝐵

1
(𝑡) =

𝐵(𝑡), 𝐵
𝑘
≡ 0, for 𝑘 = 2, . . . , 𝑚, and 𝜃

1
(𝑡) = 𝑡 − 𝑟, where 𝑟 > 0,

we get Theorem 4 from [16].
If we take 𝜃

𝑘
(𝑡) = 𝑡 − 𝑟

𝑘
, where 𝑟

𝑘
> 0, 𝑘 = 1, . . . , 𝑚, we

obtainTheorem 1 from [18].
If we take 𝐴

1
(𝑡) = 𝐴(𝑡), 𝐴

𝑘
≡ 0, for 𝑘 = 2, . . . , 𝑚,

𝐵
1
(𝑡) = 𝐵(𝑡), 𝐵

𝑘
≡ 0, for 𝑘 = 2, . . . , 𝑚, and 𝜃

1
(𝑡) = 𝜃(𝑡),

we get Theorem 2.2 from [20].

The next theorem involves the function  in (ii); thus,
it is more general than Theorem 2. A part of the proof of
Theorem 2 is utilized in the proof of Theorem 4.

Theorem 4. Let the assumptions (i), (ii), (iii), and (iv) hold
and

𝑉 (𝑡) =




𝛾 (𝑡) 𝑧 (𝑡) + 𝑐 (𝑡) 𝑧 (𝑡)






+
̃
𝛽 (𝑡)

𝑚

∑

𝑘=1

∫

𝑡

𝜃𝑘(𝑡)





𝛾 (𝑠) 𝑧 (𝑠) + 𝑐 (𝑠) 𝑧 (𝑠)





𝑑𝑠,

(40)

where 𝑧(𝑡) is any solution of (2) defined for 𝑡 → ∞. Then

𝜇 |𝑧 (𝑡)| ≤ 𝑉 (𝑠) exp(∫

𝑡

𝑠

Λ̃ (𝜉) 𝑑𝜉)

+ ∫

𝑡

𝑠

 (𝜉) exp(∫

𝑡

𝜉

Λ̃ (𝜎) 𝑑𝜎)𝑑𝜉,

(41)

for 𝑡 ≥ 𝑠 ≥ 𝑡
1
, where 𝑡

1
≥ 𝑇.

Proof. Following the proof of Theorem 2, we have

𝑉


(𝑡) ≤




𝛾 (𝑡) 𝑧 (𝑡) + 𝑐 (𝑡) 𝑧 (𝑡)





Θ (𝑡)

+
̃
𝛽


(𝑡)

𝑚

∑

𝑘=1

∫

𝑡

𝜃𝑘(𝑡)





𝛾 (𝑠) 𝑧 (𝑠) + 𝑐 (𝑠) 𝑧 (𝑠)





𝑑𝑠

+  (𝑡)

≤ Λ̃ (𝑡) 𝑉 (𝑡) +  (𝑡) ,

(42)

a.e. on [𝑡
1
,∞). Using this inequality, we get

𝑉


(𝑡) − Λ̃ (𝑡) 𝑉 (𝑡) ≤  (𝑡) , (43)

a.e. on [𝑡
1
,∞). Multiplying (43) by exp(− ∫

𝑡

𝑠
Λ̃(𝜉)𝑑𝜉) gives

[𝑉 (𝑡) exp(−∫

𝑡

𝑠

Λ̃ (𝜉) 𝑑𝜉)] ≤  (𝑡) exp(−∫

𝑡

𝑠

Λ̃ (𝜉) 𝑑𝜉) ,

(44)

a.e. on [𝑡
1
,∞). Integration over [𝑠, 𝑡] yields

𝑉 (𝑡) exp(−∫

𝑡

𝑠

Λ̃ (𝜉) 𝑑𝜉) − 𝑉 (𝑠)

≤ ∫

𝑡

𝑠

 (𝜉) exp(−∫

𝜉

𝑠

Λ̃ (𝜎) 𝑑𝜎)𝑑𝜉,

(45)
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and multiplying (45) by exp(∫𝑡
𝑠
Λ̃(𝜉)𝑑𝜉), we obtain

𝑉 (𝑡) ≤ 𝑉 (𝑠) exp(∫

𝑡

𝑠

Λ̃ (𝜉) 𝑑𝜉)

+ ∫

𝑡

𝑠

 (𝜉) exp(∫

𝑡

𝜉

Λ̃ (𝜎) 𝑑𝜎)𝑑𝜉.

(46)

The statement now follows from (33).

Remark 5. Theorem 4 generalizes theorems contained in
previous papers.

If we take 𝐴
1
(𝑡) = 𝐴(𝑡), 𝐴

𝑘
≡ 0, for 𝑘 = 2, . . . , 𝑚, 𝐵

1
(𝑡) =

𝐵(𝑡), 𝐵
𝑘
≡ 0, for 𝑘 = 2, . . . , 𝑚, and 𝜃

1
(𝑡) = 𝑡 − 𝑟, where 𝑟 > 0,

we get Theorem 2 from [16].
If we take 𝜃

𝑘
(𝑡) = 𝑡 − 𝑟

𝑘
, where 𝑟

𝑘
> 0, 𝑘 = 1, . . . , 𝑚, we

obtainTheorem 2 from [18].
If we take 𝐴

1
(𝑡) = 𝐴(𝑡), 𝐴

𝑘
≡ 0, for 𝑘 = 2, . . . , 𝑚,

𝐵
1
(𝑡) = 𝐵(𝑡), 𝐵

𝑘
≡ 0, for 𝑘 = 2, . . . , 𝑚, and 𝜃

1
(𝑡) = 𝜃(𝑡),

we get Theorem 2.7 from [20].

The last of the main propositions gives the conditions
under which all solutions of (2) tend to zero.

Theorem 6. Let the assumptions (i), (ii), (iii), and (iv) be sat-
isfied. Let Λ̃(𝑡) ≤ 0 a.e. on [𝑇

∗
,∞), where 𝑇

∗
∈ [𝑇,∞). If

lim
𝑡→∞

∫

𝑡

Λ̃ (𝑠) 𝑑𝑠 = −∞,  (𝑡) = 𝑜 (Λ̃ (𝑡)) , (47)

then any solution 𝑧(𝑡) of (2) existing for 𝑡 → ∞ satisfies

lim
𝑡→∞

𝑧 (𝑡) = 0. (48)

Proof. Choose arbitrary 𝜀 > 0. According to (47), there is 𝑠 ≥

𝑇
∗ such that (𝑡) ≤ (1/2)𝜇𝜀|Λ̃(𝑡)| for 𝑡 ≥ 𝑠 and

∫

𝑡

𝑠

 (𝜏) exp(∫

𝑡

𝜏

Λ̃ (𝜎) 𝑑𝜎)𝑑𝜏

≤

𝜇𝜀

2

∫

𝑡

𝑠

[−Λ̃ (𝜏)] exp(∫

𝑡

𝜏

Λ̃ (𝜎) 𝑑𝜎)𝑑𝜏

=

𝜇𝜀

2

∫

𝑡

𝑠

(

𝑑

𝑑𝜏

[exp(∫

𝑡

𝜏

Λ̃ (𝜎) 𝑑𝜎)])𝑑𝜏

=

𝜇𝜀

2

[exp(∫

𝑡

𝜏

Λ̃ (𝜎) 𝑑𝜎)]

𝑡

𝑠

=

𝜇𝜀

2

[1 − exp(∫

𝑡

𝑠

Λ̃ (𝜏) 𝑑𝜏)] <

𝜇𝜀

2

,

(49)

for 𝑡 ≥ 𝑠. From (47) we have exp(∫𝑡
𝑠
Λ̃(𝜏)𝑑𝜏) → 0 as 𝑡 → ∞;

hence, there is 𝑆 ≥ 𝑠 such that exp(∫𝑡
𝑠
Λ̃(𝜏)𝑑𝜏) < 𝜇𝜀(2𝑉(𝑠))

−1

for 𝑡 ≥ 𝑆. Considering this fact and (41), we get

𝜇 |𝑧 (𝑡)| < 𝑉 (𝑠)

𝜇𝜀

2𝑉 (𝑠)

+

𝜇𝜀

2

= 𝜇𝜀, (50)

for 𝑡 ≥ 𝑆. This completes the proof.

Remark 7. Theorem 6 is a generalization of results published
in the papers [16, 18, 20].

If we take 𝐴
1
(𝑡) = 𝐴(𝑡), 𝐴

𝑘
≡ 0, for 𝑘 = 2, . . . , 𝑚, 𝐵

1
(𝑡) =

𝐵(𝑡), 𝐵
𝑘
≡ 0, for 𝑘 = 2, . . . , 𝑚, and 𝜃

1
(𝑡) = 𝑡 − 𝑟, where 𝑟 > 0,

we get Theorem 3 from [16].
If we take 𝜃

𝑘
(𝑡) = 𝑡 − 𝑟

𝑘
, where 𝑟

𝑘
> 0, 𝑘 = 1, . . . , 𝑚, we

obtainTheorem 3 from [18].
If we take 𝐴

1
(𝑡) = 𝐴(𝑡), 𝐴

𝑘
≡ 0, for 𝑘 = 2, . . . , 𝑚,

𝐵
1
(𝑡) = 𝐵(𝑡), 𝐵

𝑘
≡ 0, for 𝑘 = 2, . . . , 𝑚, and 𝜃

1
(𝑡) = 𝜃(𝑡),

we get Theorem 2.14 from [20].

4. Corollaries and Examples

FromTheorem 2 we easily obtain several corollaries. We give
an example which shows that it is worth to consider the case
(5).

Corollary 8. Let 𝑎(𝑡) ≡ 𝑎 ∈ C, 𝑏(𝑡) ≡ 𝑏 ∈ C, | Im 𝑎| > |𝑏|.
Suppose that lim

𝑡→∞
𝜃
𝑘
(𝑡) = ∞, 𝜃

𝑘
(𝑡) ≤ 𝑡, for 𝑡 ≥ 𝑇

1
, where

𝑇
1
≥ 𝑡
0
. Let 𝜌

0
, 𝜌
1
, . . . , 𝜌

𝑚
: [𝑇
1
,∞) → R be such that





𝑔 (𝑡, 𝑧, 𝑤

1
, . . . , 𝑤

𝑚
)




≤ 𝜌
0
(𝑡) |𝑧| +

𝑚

∑

𝑘=1

𝜌
𝑘
(𝑡)





𝑤
𝑘





, (51)

for 𝑡 ≥ 𝑇
1
, |𝑧| < 𝑅, |𝑤

𝑘
| < 𝑅, 𝑘 = 1, . . . , 𝑚, 𝑅 > 0 and 𝜌

0
∈

𝐿 loc([𝑇1,∞),R).
Let ̃

𝛽 ∈ 𝐴𝐶loc([𝑇1,∞),R
+
) satisfy

𝜃


𝑘
(𝑡)

̃
𝛽 (𝑡)

≥ (

|Im 𝑎| + |𝑏|

|Im 𝑎| − |𝑏|

)

1/2

(𝜌
𝑘
(𝑡) +





𝐴
𝑘
(𝑡)





+





𝐵
𝑘
(𝑡)





) ,

(52)

a.e. on [𝑇
1
,∞) for 𝑘 = 1, . . . , 𝑚. If

lim sup
𝑡→∞

∫

𝑡

max(Re 𝑎 + (

|Im 𝑎| + |𝑏|

|Im 𝑎| − |𝑏|

)

1/2

𝜌
0
(𝑠)

+𝑚
̃
𝛽 (𝑠) ,

̃
𝛽

(𝑠)

̃
𝛽 (𝑠)

) 𝑑𝑠 < ∞,

(53)

then the trivial solution of (2) is stable. If

lim
𝑡→∞

∫

𝑡

max(Re 𝑎 + (

|Im 𝑎| + |𝑏|

|Im 𝑎| − |𝑏|

)

1/2

𝜌
0
(𝑠)

+𝑚
̃
𝛽 (𝑠) ,

̃
𝛽

(𝑠)

̃
𝛽 (𝑠)

) 𝑑𝑠 = −∞,

(54)

then the trivial solution of (2) is asymptotically stable.

Proof. Choose 𝑇 ≥ 𝑇
1
such that 𝜃

𝑘
(𝑡) ≥ 𝑇

1
for 𝑡 ≥ 𝑇, 𝑘 =

1, . . . , 𝑚. Denote that 𝑧 = 𝑧(𝑡) and 𝑤
𝑘
= 𝑧(𝜃
𝑘
(𝑡)) again. Since
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𝑎, 𝑏 ∈ C are constants, then also 𝛾 and 𝑐 are constants, and we
have ̃

𝜗(𝑡) ≡ 0. Using condition (51) we get





𝛾𝑔 (𝑡, 𝑧, 𝑤

1
, . . . , 𝑤

𝑚
) + 𝑐𝑔 (𝑡, 𝑧, 𝑤

1
, . . . , 𝑤

𝑚
)





≤ (




𝛾




+ |𝑐|) (𝜌

0
(𝑡) |𝑧| +

𝑚

∑

𝑘=1

𝜌
𝑘
(𝑡)





𝑤
𝑘





)

=





𝛾




+ |𝑐|





𝛾




− |𝑐|

(




𝛾




− |𝑐|) (𝜌

0
(𝑡) |𝑧| +

𝑚

∑

𝑘=1

𝜌
𝑘
(𝑡)





𝑤
𝑘





)

≤





𝛾




+ |𝑐|





𝛾




− |𝑐|

(𝜌
0
(𝑡)





𝛾𝑧 + 𝑐𝑧





+

𝑚

∑

𝑘=1

𝜌
𝑘
(𝑡)





𝛾𝑤
𝑘
+ 𝑐𝑤
𝑘





) ,

(55)

and it follows that condition (ii) holds with

𝜘 (𝑡) =





𝛾




+ |𝑐|





𝛾




− |𝑐|

𝜌
0
(𝑡) , 𝜅

𝑘
(𝑡) =





𝛾




+ |𝑐|





𝛾




− |𝑐|

𝜌
𝑘
(𝑡) , (56)

and (𝑡) ≡ 0.
Condition (53) implies that Re 𝑎 ≤ 0. Since





𝛾




+ |𝑐|





𝛾




− |𝑐|

=

|Im 𝑎| + √|Im 𝑎|
2
− |𝑏|
2
+ |𝑏|

|Im 𝑎| + √|Im 𝑎|
2
− |𝑏|
2
− |𝑏|

= (

|Im 𝑎| + |𝑏|

|Im 𝑎| − |𝑏|

)

1/2

,

(57)

in view of (14) we obtain

̃
𝜆
𝑘
(𝑡) = (

|Im 𝑎| + |𝑏|

|Im 𝑎| − |𝑏|

)

1/2

× {𝜌
𝑘
(𝑡) +





𝐴
𝑘
(𝑡)





+





𝐵
𝑘
(𝑡)





} ,

Θ̃ (𝑡) =Re 𝑎 +





𝛾




+ |𝑐|





𝛾




− |𝑐|

𝜌
0
(𝑡) + 𝑚

̃
𝛽 (𝑡)

=Re 𝑎 + (

|Im 𝑎| + |𝑏|

|Im 𝑎| − |𝑏|

)

1/2

𝜌
0
(𝑡) + 𝑚

̃
𝛽 (𝑡) ,

(58)

and the assertion follows from (16) andTheorem 2.

Now we show an example that, under certain circum-
stances, Corollary 8 is more useful than Corollary 1 from [21].

Example 9. Consider (2), where 𝑎(𝑡) ≡ −√5 + 2𝑖, 𝑏(𝑡) ≡ 1,
𝐴
𝑘
(𝑡) ≡ 0, 𝐵

𝑘
(𝑡) ≡ 0, for 𝑘 = 1, . . . , 𝑚, and

𝑔 (𝑡, 𝑧, 𝑤
1
, . . . , 𝑤

𝑚
) =

2

√3

𝑒
𝑖𝑡
𝑧 +

𝑚

∑

𝑘=1

𝑘

2𝑚𝑡

(√15 − √14) 𝑒
−𝑡
𝑤
𝑘
.

(59)

Assume that 𝑡
0

= 𝑚 and 𝑅 = ∞, 𝜃
𝑘
(𝑡) = 𝑘 ln 𝑡. Put 𝑇 =

𝑒
𝑡0

= 𝑒
𝑚.Then, 𝜌

0
(𝑡) ≡ 2/√3, 𝜌

𝑘
(𝑡) = (𝑘/2𝑚𝑡)(√15−√14)𝑒

−𝑡.
We have

max(

|𝑎| − |𝑏|

|𝑎|

Re 𝑎 + (

|𝑎| + |𝑏|

|𝑎| − |𝑏|

)

1/2

𝜌
0
(𝑡) + 𝑚𝛽 (𝑡) ,

𝛽

(𝑡)

𝛽 (𝑡)

)

= max(−

2

3

√5 + √2

2

√3

+ 𝑚𝛽 (𝑡) ,

𝛽

(𝑡)

𝛽 (𝑡)

)

≥

2

3

(√6 − √5) > 0,

(60)

for

𝜃


𝑘
(𝑡) 𝛽 (𝑡) =

𝑘

𝑡

𝛽 (𝑡) ≥ (

|𝑎| + |𝑏|

|𝑎| − |𝑏|

)

1/2

× {𝜌
𝑘
(𝑡) +





𝐴
𝑘
(𝑡)





+





𝐵
𝑘
(𝑡)





}

=

𝑘

𝑚𝑡√2

(√15 − √14) 𝑒
−𝑡
,

(61)

where 𝑘 ∈ {1, . . . , 𝑚}; hence, we cannot apply Corollary 1
from [21].

On the other hand, if we use

𝜃


𝑘
(𝑡)

̃
𝛽 (𝑡) =

𝑘

𝑡

̃
𝛽 (𝑡) =

𝑘√3

2𝑚𝑡

(√15 − √14) 𝑒
−𝑡

≥ (

|Im 𝑎| + |𝑏|

|Im 𝑎| − |𝑏|

)

1/2

{𝜌
𝑘
(𝑡) +





𝐴
𝑘
(𝑡)





+





𝐵
𝑘
(𝑡)





} ,

(62)

where 𝑘 ∈ {1, . . . , 𝑚}, we have

max(Re 𝑎 + (

|Im 𝑎| + |𝑏|

|Im 𝑎| − |𝑏|

)

1/2

𝜌
0
(𝑡) + 𝑚

̃
𝛽 (𝑡) ,

̃
𝛽

(𝑡)

̃
𝛽 (𝑡)

)

= max(−√5 + 2 + 𝑚

√3

2𝑚

(√15 − √14) 𝑒
−𝑡
, −1)

≤ −√5 + 2 +

√3

2

(√15 − √14) < −

12

100

< 0;

(63)

thus, Corollary 8 guarantees the stability and also asymptotic
stability of the trivial solution of the considered equation.

The following corollary gives sufficient conditions for
stability of the trivial solution of (2).

Corollary 10. Assume that the conditions (i), (ii), and (iii) are
valid with (𝑡) ≡ 0. If ̃

𝛽(𝑡) is monotone and bounded on [𝑇,∞)

and if

lim sup
𝑡→∞

∫

𝑡

[Θ̃ (𝑠)]
+
𝑑𝑠 < ∞, (64)

where [Θ̃(𝑡)]
+

= max{Θ̃(𝑡), 0}, then the trivial solution of (2)
is stable.
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Proof. Suppose firstly that ̃
𝛽 is nonincreasing on [𝑇,∞).

Then, ̃
𝛽

≤ 0 a.e. on [𝑇,∞).

If ̃
𝛽(𝑇
2
) = 0 for some 𝑇

2
≥ 𝑇, then ̃

𝛽(𝑡) ≡ 0 on [𝑇
2
,∞).

Consequently, Λ̃ has to satisfy only the inequality Θ̃(𝑡) ≤ Λ̃(𝑡)

a.e. on [𝑇
2
,∞), so we may choose Λ̃(𝑡) = Θ̃(𝑡) on [𝑇

2
,∞). It

follows that Λ̃(𝑡) = Θ̃(𝑡) ≤ max{Θ̃(𝑡), 0} = [Θ̃(𝑡)]
+
.

On the other hand, if ̃
𝛽(𝑡) > 0 on [𝑇,∞), we may put

Λ̃(𝑡) = max{Θ̃(𝑡),
̃
𝛽

(𝑡)/

̃
𝛽(𝑡)}. Then,

Λ̃ (𝑡) = max{Θ̃ (𝑡) ,

̃
𝛽

(𝑡)

̃
𝛽 (𝑡)

} ≤ max {Θ̃ (𝑡) , 0} = [Θ̃ (𝑡)]
+
.

(65)

In both cases, Λ̃ satisfies condition (iv) and the inequality
Λ̃(𝑡) ≤ [Θ̃(𝑡)]

+
on [𝑇
2
,∞); hence,

lim sup
𝑡→∞

∫

𝑡

Λ̃ (𝑠) 𝑑𝑠 ≤ lim sup
𝑡→∞

∫

𝑡

[Θ̃ (𝑠)]
+
𝑑𝑠 < ∞. (66)

Now assume that ̃
𝛽 is nondecreasing on [𝑇,∞). Then,

̃
𝛽

≥ 0 a.e. on [𝑇,∞).
If ̃

𝛽(𝑡) ≡ 0 on [𝑇,∞), we may treat it as previously
mentioned.

Otherwise, there is some 𝑇
3

≥ 𝑇 such that ̃
𝛽(𝑡) > 0 on

[𝑇
3
,∞), and we may choose Λ̃(𝑡) = max{Θ̃(𝑡),

̃
𝛽

(𝑡)/

̃
𝛽(𝑡)} on

[𝑇
3
,∞). Clearly Λ̃ satisfies condition (iv) on [𝑇

3
,∞). Since

̃
𝛽

≥ 0 a.e. on [𝑇,∞), it follows that ̃

𝛽

/
̃
𝛽 ≥ 0 a.e. on [𝑇

3
,∞).

Hence,

Λ̃ (𝑡) = max{Θ̃ (𝑡) ,

̃
𝛽

(𝑡)

̃
𝛽 (𝑡)

}

≤ max{[Θ̃ (𝑡)]
+
,

̃
𝛽

(𝑡)

̃
𝛽 (𝑡)

}

≤ [Θ̃ (𝑡)]
+
+

̃
𝛽

(𝑡)

̃
𝛽 (𝑡)

,

(67)

and then

lim sup
𝑡→∞

∫

𝑡

Λ̃ (𝑠) 𝑑𝑠

≤ lim sup
𝑡→∞

∫

𝑡

[Θ̃ (𝑠)]
+
𝑑𝑠 + lim sup

𝑡→∞

∫

𝑡 ̃
𝛽

(𝑡)

̃
𝛽 (𝑡)

𝑑𝑠

≤ lim sup
𝑡→∞

∫

𝑡

[Θ̃ (𝑠)]
+
𝑑𝑠 + lim sup

𝑡→∞

(ln (
̃
𝛽 (𝑡)))

− ln (
̃
𝛽 (𝑇
3
)) < ∞,

(68)

since ̃
𝛽 is bounded on [𝑇,∞).

The statement follows fromTheorem 2.

We can derive several consequences fromTheorem 4.

Corollary 11. Let the conditions (i), (ii), (iii), and (iv) be
fulfilled and

lim sup
𝑡→∞

∫

𝑡

𝑠

 (𝜉) exp(−∫

𝜉

𝑠

Λ̃ (𝜎) 𝑑𝜎)𝑑𝜉 < ∞, (69)

for some 𝑠 ≥ 𝑇.
If 𝑧(𝑡) is any solution of (2) existing for 𝑡 → ∞, then

𝑧 (𝑡) = 𝑂[exp(∫

𝑡

𝑠

Λ̃ (𝜉) 𝑑𝜉)] . (70)

Proof. From the assumptions and (45) we can see that there
are 𝐾 > 0 and 𝑆 ≥ 𝑠 such that for 𝑡 ≥ 𝑆 we have

𝑉 (𝑡) exp(−∫

𝑡

𝑠

Λ̃ (𝜉) 𝑑𝜉) − 𝑉 (𝑠)

≤ ∫

𝑡

𝑠

 (𝜉) exp(−∫

𝜉

𝑠

Λ̃ (𝜎) 𝑑𝜎)𝑑𝜉

≤ 𝐾 < ∞.

(71)

Then,

𝜇 |𝑧 (𝑡)| ≤ 𝑉 (𝑡) ≤ (𝐾 + 𝑉 (𝑠)) exp(∫

𝑡

𝑠

Λ̃ (𝜉) 𝑑𝜉) . (72)

Corollary 12. Let the assumptions (i), (ii), (iii), and (iv) hold,
and let

lim sup
𝑡→∞

Λ̃ (𝑡) < ∞,  (𝑡) = 𝑂 (𝑒
𝜂𝑡
) , (73)

where 𝜂 > lim sup
𝑡→∞

Λ̃(𝑡). If 𝑧(𝑡) is any solution of (2)
existing for 𝑡 → ∞, then 𝑧(𝑡) = 𝑂(𝑒

𝜂𝑡
).

Proof. In view of (73), there are 𝐿 > 0, 𝜂∗ < 𝜂, and 𝑠 > 𝑇 such
that 𝜂∗ > Λ̃(𝑡) for 𝑡 ≥ 𝑠 and (𝑡)𝑒

−𝜂𝑡
< 𝐿 for 𝑡 ≥ 𝑠. From (41)

we get

𝜇 |𝑧 (𝑡)| ≤ 𝑉 (𝑠) 𝑒
𝜂
∗
(𝑡−𝑠)

+ 𝐿∫

𝑡

𝑠

𝑒
𝜂𝜏

𝑒
𝜂
∗
(𝑡−𝜏)

𝑑𝜏

≤ 𝑉 (𝑠) 𝑒
𝜂
∗
(𝑡−𝑠)

+ 𝐿𝑒
𝜂
∗
𝑡 𝑒
(𝜂−𝜂
∗
)𝑡

− 𝑒
(𝜂−𝜂
∗
)𝑠

𝜂 − 𝜂
∗

≤ 𝑉 (𝑠) 𝑒
𝜂
∗
(𝑡−𝑠)

+

𝐿

𝜂 − 𝜂
∗
𝑒
𝜂𝑡

= 𝑂 (𝑒
𝜂𝑡
) .

(74)

Remark 13. If 𝜌(𝑡) ≡ 0, we can take 𝐿 = 0 in the proof
of Corollary 12, and taking inequalities (74) into account we
obtain the following statement: there is an 𝜂

∗
< 𝜂
0
< 𝜂 such

that 𝑧(𝑡) = 𝑜(𝑒
𝜂0𝑡

) holds for the solution 𝑧(𝑡) of (2).

5. Conclusion

We studied asymptotic behavior of real two-dimensional
differential system with a finite number of nonconstant
delays.We considered the case corresponding to the situation
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when the equilibrium point 0 of autonomous system (6) is
a stable focus or a stable centre. We utilized the method
of complexification and the method of Lyapunov-Krasovskii
functional. Criteria for stability and asymptotic stability of the
solutions as well as conditions ensuring that all solutions of
(2) tend to zero are derived. At the end we supplied several
corollaries and an example which shows that in some cases
the criteria obtained in this paper are more applicable than
the criteria presented in [21].
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