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The thermomechanical behavior of a material is expressed mathematically by means of one or more constitutive equations
representing the response of the body to the history of its deformation and temperature. These settings induce a set of connections
which can express local properties. We replace two of them by a second order connection and prove that the holonomity of this

connection classifies our materials.

1. Introduction

The use of differential geometry in material science is based
on l-jet calculus. This technique is described in, for exam-
ple, [1, 2]. A material body endowed with a constitutional
equation induces naturally a linear connection, and several
important physical properties of the material are described
by means of its geodesics. The cited books handle one consti-
tutional equation and thus one appropriate linear connection.
In case that a material is endowed with more than one
constitution equation, that is, by more than one connection,
the topic of higher order connections appears. Note that the
topic of higher order connections is widely studied; see, for
example, [3-5]. Such approach is not established so far in the
material science, and this paper thus formulates introductory
principles and problems of the theory of materials endowed
with more than one constitution equation.

2. Geometric Motivation of Higher
Order Connections

To show the compatibility with the geometric concept of
a connection, let us now recall its generalization to higher
order connections; see [6] for general concepts. The following
section is based on [7].

Definition 1. A connection on bundle # : M; — M
is defined by the structure A, & A, on a manifold M,

where A, = kerTm is vertical distribution tangent to the
fibers and A, is horizontal distribution complementary to the
distribution A .. The transport of the fibers along the path y ¢
M is realized by the horizontal lifts given by the distribution
A, on the surface 7' (y). If the bundle is a vector one and the
transport of fibers along an arbitrary path is linear, then the
connection is called linear.

We will assume that the base manifold M is of dimension

n and the fibers are of dimension r. Then
dimA, =n, dimA, =r. 1)

On the neighborhood U ¢ M, let us consider local base
and fiber coordinates:

(ui,uo‘), i=1,2,...,ma=n+1,...,n+r. (2)

Base coordinates (u') are determined by the projection 7z and
the coordinates (') on a neighborhood U = n(U), v = u' o7

Definition 2. On a neighborhood U ¢ M, we define a local
(adapted) basis of the structure A, ® A :

o 0 8 0
X. X )= —— . J S
( i oc) (au] 8uﬁ> <1_,1ﬁ 65)

()-(% &) (6)
o® —F;-x 6; duﬁ



The horizontal distribution A}, is the linear span of the
vector fields (X;) and the annihilator of the forms (),
X;=0; + rfaﬁ, " =du® -T]du'. (4)
Definition 3. A classical affine connection on manifold M is
seen as a linear connection on thebundlez; : TM — M. On
the tangent bundle TM — M one can define the structure
A, @ A . The indices in the formulas are denoted by Latin
letters all of them ranging from 1 to ». The functions I7", X;,
and w” are of the form (in I}* the sign is changed to comply
with the classical theory):

ik
IY w T,
X; =0, + {0, w X, = 9, - [}14,3} (5)
w® = du” - Fi“dui " U;z = ”112 +T ku u2

Definition 4. Higher order connections are defined as fol-
lows: on tangent bundle TM the structure A & A | is defined
whereker Tp, = A, on T(T'M) the structure AGBA ®A,®A |,
is defined where ker Tp, = A @ A5, s = 1,2,and so forth

3. Jet Prolongation of a Fibered Manifold and
Higher Order Connections

To compute with second order connections in an efficient
way we have to go deeper in the theory. Structural approach
introduced by C. Ehresmann and developed in, for example,
[3] reads that rth order holonomic prolongation J'Y of Y is a
space of r-jets of local sections M — Y and nonholonomic
prolongation J'Y of Y is defined by the following iteration:

(1) J'Y = J'Y; thatis, J'Yisa space of 1-jets of sections
M — Y over the target space Y;

QTY=7"07'Y - M).

Clearly, we have an inclusion J'Y ¢ J'Y given by jiy -
jL(j""'y). Further, rth semiholonomic prolongation JY c
J'Y is defined by the following induction. First, by 8, = By
we denote the projection J'Y — Y and by 8, = By
the projection J'Y = 'Yy - T, r = 2,3, 0
—1 1 —r—1 -1
weset ] Y = J'Y and assume we have ] Y < J" 'Y such
that the restrlctlon of the projection 8,_; : J'~ ly - ]r 2y
maps] Ylnto] Y, we can construct J ﬁ,_l :] ] Y —
] 17r72Y and define

TYy={ae) Ty =1, el v} (@

Obviously, | ",7 ,and J" are bundle functors on the category
FM,,, of fibered manifolds with m-dimensional bases and
n-dimensional fibres and locally invertible fiber-preserving
mappings.

Alternatively, one can define the rth order semiholo-
nomic prolongation JY by means of natural target projec-
tions of nonholonomic jets; see [4]. For r > g > 0 let us
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: JY — J2Y with

7, being the identity on J'Y. We note that the restriction
of these projections to the subspace of semiholonomic jet
prolongations will be denoted by the same symbol By

applying the functor J* we have also the surjections J rrr k

denote by 7'[ the target surjection 7'[

7Y — JiY, and, consequently, the element X € T Y is
semiholonomic if and only if

(]kn; ﬁ) (X) = 7'[; (X) for any integers 1 <k<g<r.
(7)

In [4], the proof of this property can be found and the author
finds it useful when handling semiholonomic connections
and their prolongations.

Finally, the following functorial definition of semiholo-
nomic prolongation of a fibered manifold can be found.

Assume that the functor 77_1 comes equipped with the

—r-1 —r-2
canonical transformation ] — ] given by the restric-
tion of jet target projections. Then there are two canonical

—r—1 —r=2 —
transformations J* ]r - J ]T , and one can define ]r
as the equalizer of these two transformations. Then this is
equivalent to the definition

TYy=T(77v)n) (7 y). (8)

To define a higher order connection we start with the
definition of general connection; see [3].

Definition 5. A general connection on the fibered manifold
Y — MisasectionT : Y — J'Y ofthe first jet prolongation
J'Y - Y.

By the substitution of the target space by J'Y, TrY, and
J'Y, respectively, one obtains definition of rth order holo-
nomic, semiholonomic, and nonholonomic connections; that
is, a higher order connection is a section of the appropriate jet
prolongation of a fibered manifold.

Let us recall that the semiholonomity condition on a
higher order connection defined in the geometric way is
now transformed into the equality of all projections Tp, from
Definition 4.

Previous approach to connections is suitable for concep-
tual considerations and operations with connections, such as
prolongations of connections, natural operators, and some
classifications. For us the following theorem is quite useful;
see [8] for the proof.

Theorem 6. (1) Second order nonholonomic connections 0 :
Y — J’YonY — M are in bijection with triples (T,, T,, G),
whereT},T, : Y — J'Y arefirst order connectionsonY — M
and G : Y — VY ® ®T*M is a tensor field. (2) Connection
0 is semiholonomic if and only if T; = T,. (3) Connection 0 is
holonomic ifand only if T, =T, and G: Y — VY ® S*T* M.

Now, one can define the following relation ~ on the space
of second order nonholonomic connections.

Definition 7. Let the triples (T}, T,,G), (T,,T,,G) represent
two second order connections in the sense of Theorem 6.
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They belong to the same equivalence class of the relation ~
ifand only if T, =T, and T, = T,.

Remark 8. Itis easyto see that ~ is an equivalence relation and
let us denote [0] = [(I},[,,G)] as the a class of this relation.
Finally, the class [0] consists of semiholonomic connections
ifand only if I} = T, for any (I}, I,,G) € [0] and holonomic
ifG:Y — VY ®S*T*M in addition.

4. Ehresmann Prolongation

Given two higher order connections I' : Y — J'Y and
T:Y — T, the product of T and T is the (r + s)th order
connectionT * T : Y — J™*Y defined by

L« =JTol. 9

Concerning the holonomity, according to [4] if both T
and T are of the first order, then T « T : Y — J?Y is
semiholonomic if and only if T = T and T * T is holonomic if
and only if T is curvature-free in addition, which corresponds
to Theorem 6.

As an example we show the coordinate expression of an
arbitrary nonholonomic second order connection and of the
product of two first order connections. The coordinate form
of A:Y — J*Yis

=Ff (x.9),

¥ =Gl (%),  yi=Hf (%)),

(10)

where F, G, and H are arbitrary smooth functions. Further,
if the coordinate expressions of two first order connections
I,T:Y - J'Yare

Tyl =F (xy), T:yf=Gl(xy),
then the second order connection T * T : Y — J°Y has
equations

oF?  oFf
P~ FP PGP Ly i 12
yl Fz 2 yOl Gz > yl] ax] + ayq G]' ( )

For order three see [5]. If we apply the multiplication on just
one connection I, the second order connection I * I is called
the Ehresmann prolongation of connection I'. By iteration we
obtain a connection of an arbitrary order.

In the following proposition we show that concerning
order 2 only the choice of Ehresmann prolongation makes

sense. We use the notation of [3], where the map e : 72Y -
72Y is obtained from the natural exchange mape, : J Uy -

J'J'Y as a restriction to the subbundle 72Y c J'J'Y. Note
that while e, depends on the linear connection A on M,
its restriction e is independent of any auxiliary connections.
We remark that originally the map e, was introduced by M.
Modugno. We also recall that J. Pradines introduced a natural

map 72Y — TZY with the same coordinate expression.
Now we are ready to recall the following assertion; see [9]
for the proof.

Proposition 9. All natural operators transforming first order

connection T : Y — J'Y into second order semiholonomic
-2

connectionY — ]'Y form a one-parameter family:

T—k-T*D)+(1-k) -eT*T), keR. (13)

To meet the classical theory mentioned in Section 2 let
us note that the corresponding operation is the following; see
also [10]. If we apply the tangent functor T two times on a
projection: E — M and asectiono : M — E we obtain

Tr: TE — TM, T’n: T*E — T°M,  (14)

To: TM — TE, T?*0: T*M — TE, (15)

respectively. The mappings o, To, and T?o are defined by the
sections of fibered manifolds 7z, T, and T*7.
Let us consider local coordinates on the following mani-

folds in the form
(xi),( ) (x’ xl,xz,xlz)
p

on M,TM,T*M:
on ETETE: (*),(y"y").(s" ¥ 32 35).

(16)
Let us also consider a function f defined on a manifold

M, whose local coordinate form is derived by means of
differentials to fit the coordinates on T>M

fiz=fixy, fi=fixy fn= fijx’lxé + fix1p

17)

af o’ f
where f; = EE fij= EREIE

Furthermore, f, = df o p,, f, = df o p,, f;, = d*f. We use
this notation in the following formulae.

If the section o is defined by local functions I'?, then the
sections To and To are defined by its differentials I7, T¥, and
l“ioz:

P:I*P)
w (v o7) = (T5.17),
T2o: (x',x, x5, %0, (vF vl v v ) = (P01, T ),

where T lp

g:x' wy

To: (xi,xi)

=Tfx, IF =Tfxh, Tf =Thxix] + IFx),.

(18)

The case when the coefficients l"ip and 1"5 in (18) are arbi-
trary functions corresponds to a nonholonomic connection
on the fibered manifold 7. ‘

The case when Fi? = OI7/ox/, where I? are arbitrary
functions corresponds to a semiholonomic connection on the
fibered manifold 7.

The case when I = dI? o p,, IY = dI? o p,, T}, =
d’I'? corresponds to a holonomic connection on the fibered
manifold 7.

The functions FI.P and 1"5 define nonholonomic, semi-
holonomic, or holonomic Ehresmann prolongation of a
connection, respectively.



5. Material Connection

Following the books [1, 2], the material body 2 is a trivial
manifold without boundary. A coordinate chart x, : B —
R? is identified as a reference configuration, a configuration
of a material body 9 is an embedding

x: B — E. (19)

Choosing a frame in [, we can identify E> with R*. Now, one
can associate with any given configuration « the deformation
x defined as the composition:

X:iKoK, L (20)
In coordinates,

ox'

K=y (XI,XZ)X_%), Fi

For a simple hyperelastic body, the constitutive equation

is of the form: v = y(F, X). Two points X, X, € 3B are

materially isomorphic if there exists a non-singular linear
map P,,, between their tangent spaces:

Py Ty B — Ty, B, (22)
such that

v (FPy, X,) = v (F. X,) (23)

identically for all deformation gradients F. A body & is
materially uniform if, and only if, there exists a material
isomorphism P(X) from a fixed point X, € 9B to each point
X €3

We shall call the point X, an archetypal material point,
and the material isomorphisms P(X) from the archetypal
material point to the body points will be referred to as
implants. A collection of such implants is a uniformity field.

A material archetype will be defined as a frame at X,. We
will say that two vectors at two different points X, and X, of
an open set U C B are materially parallel with respect to the
given uniformity field, if they have the same components in
the respective local bases of the uniformity field.

A material symmetry at a point X, € 98 is material
automorphism. A material symmetry G at a point X, can be
seen as a transformation such that

v (FG, Xo) = v (F. X,). (24)

The collection &, of all material symmetries in X, constitutes
group called material symmetry group.

In coordinates, let E, be the natural basis of R>. By means
of the uniformity maps P(X) this basis induces a smooth field
of bases in U, which we will denote by p,(X). We now adopt
a coordinate system in U, which we call X', with natural basis
e;; then

P = Pley. (25)
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The vector field w can be expressed in terms of components
in either basis, namely:
w=w"p, =we. (26)

Defining the Christoffel symbols of the local material paral-
lelism as

—
X = pK oP;
1 o a X] 4
we can write material covariant derivative of the field w wit
respect to the given material parallelism

(27)

™
VIK = W + Fgwl. (28)

If the symmetry group &, is trivial identity group, the
material implants are unique. The local material connection
is unique if the symmetry group &, is discrete (i.e., consisting
of a finite number of elements).

Recall, that the body is locally homogeneous if and only
if there exists local material connection where Christoffel
symbols are symmetric, for each point.

To apply the multiplication of connections on the material
connections, we have to modify (12) for linear connections.
The rest would be done by substitution of the previous
characteristics in the equations. If two linear connections I
and T on the same base manifold M are by coordinate formula
(11), thenT = T'is given by (12). Should the connections T and
I be linear, the result would be obtained by substitution

P _ P
F; —Fl.qu,
) (29)
b=
G =Ty

1

in (11), where FI.Z and 1_";.1; are functions of the base manifold

coordinates x;. The equations of T' * ' would therefore look
like

P _ P p _ TP
i = riqu’ Yoi = riqu’
—p (30)
p_ _iq TP ra TP .4
Yij = qu + Fiqrjryr + 1505

Theorem 10. Let B be a material body and let [0] be a class of
second order connections. The constitutive equations are in the
same projective class if and only if [0] is semiholonomic.

Proof. The class [0] of nonholonomic connections was intro-
duced in Definition 7. If the element (I}, I, G) belongs to [0],
then from Theorem 6 the semiholonomity is equivalent to
the property I', = I,. In particular, two constitutive equations
determine two projectively equivalent connections of the first
order. O

Remark 11. The projective class of connections shares the
same geodesics. In particular, if we describe “least energy
deformation” of the material body based on two constitu-
tive equations which lead to second order semiholonomic
connection, then it is based on geodesics of one material
connection of the first order.
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In fact, in our setting there is no extension of our result
to connections of higher order than two (for explanation
see [11]). This is the reason why the material equipped
with two constitutive equations plays an interesting role in
the theory of material bodies. Let us finally remark that
the reformulation of the whole theory to the concept of
infinitesimal connections on Lie groupoids can help; see [4].

6. Conclusions

We showed that if we represent the material properties by
means of a second order connection, then its holonomity
corresponds to the type of the material. Our ideas were moti-
vated by handling materials with two constitution equations
and it occurred that for more than two constitution equations
a change of mathematical approach is needed.
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