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The thermomechanical behavior of a material is expressed mathematically by means of one or more constitutive equations
representing the response of the body to the history of its deformation and temperature. These settings induce a set of connections
which can express local properties. We replace two of them by a second order connection and prove that the holonomity of this
connection classifies our materials.

1. Introduction

The use of differential geometry in material science is based
on 1-jet calculus. This technique is described in, for exam-
ple, [1, 2]. A material body endowed with a constitutional
equation induces naturally a linear connection, and several
important physical properties of the material are described
by means of its geodesics. The cited books handle one consti-
tutional equation and thus one appropriate linear connection.
In case that a material is endowed with more than one
constitution equation, that is, by more than one connection,
the topic of higher order connections appears. Note that the
topic of higher order connections is widely studied; see, for
example, [3–5]. Such approach is not established so far in the
material science, and this paper thus formulates introductory
principles and problems of the theory of materials endowed
with more than one constitution equation.

2. Geometric Motivation of Higher
Order Connections

To show the compatibility with the geometric concept of
a connection, let us now recall its generalization to higher
order connections; see [6] for general concepts.The following
section is based on [7].

Definition 1. A connection on bundle 𝜋 : 𝑀
1

→ 𝑀

is defined by the structure Δ
ℎ
⊕ Δ
𝑣
on a manifold 𝑀

1

where Δ
𝑣
= ker𝑇𝜋 is vertical distribution tangent to the

fibers and Δ
ℎ
is horizontal distribution complementary to the

distributionΔ
𝑣
.The transport of the fibers along the path 𝛾 ⊂

𝑀 is realized by the horizontal lifts given by the distribution
Δ
ℎ
on the surface 𝜋−1(𝛾). If the bundle is a vector one and the

transport of fibers along an arbitrary path is linear, then the
connection is called linear.

We will assume that the base manifold𝑀 is of dimension
𝑛 and the fibers are of dimension 𝑟. Then

dimΔ
ℎ
= 𝑛, dimΔ

𝑣
= 𝑟. (1)

On the neighborhood 𝑈 ⊂ 𝑀
1
, let us consider local base

and fiber coordinates:

(𝑢
𝑖
, 𝑢
𝛼
) , 𝑖 = 1, 2, . . . , 𝑛; 𝛼 = 𝑛 + 1, . . . , 𝑛 + 𝑟. (2)

Base coordinates (𝑢𝑖) are determined by the projection 𝜋 and
the coordinates (𝑢𝑖) on a neighborhood𝑈 = 𝜋(𝑈), 𝑢𝑖 = 𝑢𝑖 ∘𝜋.

Definition 2. On a neighborhood 𝑈 ⊂ 𝑀
1
we define a local

(adapted) basis of the structure Δ
ℎ
⊕ Δ
𝑣
:

(𝑋
𝑖
𝑋
𝛼
) = (

𝜕

𝜕𝑢
𝑗

𝜕

𝜕𝑢
𝛽
) ⋅ (

𝛿
𝑗

𝑖
0

Γ
𝛽

𝑖
𝛿
𝛽

𝛼

) ,

(
𝜔
𝑖

𝜔
𝛼) =(

𝛿
𝑖

𝑗
0

−Γ
𝛼

𝑗
𝛿
𝛼

𝛽

) ⋅ (

𝑑𝑢
𝑗

𝑑𝑢
𝛽
) .

(3)
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The horizontal distribution Δ
ℎ
is the linear span of the

vector fields (𝑋
𝑖
) and the annihilator of the forms (𝜔𝛼),

𝑋
𝑖
= 𝜕
𝑖
+ Γ
𝛽

𝑖
𝜕
𝛽
, 𝜔

𝛼
= 𝑑𝑢
𝛼
− Γ
𝛼

𝑖
𝑑𝑢
𝑖
. (4)

Definition 3. A classical affine connection on manifold𝑀 is
seen as a linear connection on the bundle𝜋

1
: 𝑇𝑀 → 𝑀. On

the tangent bundle 𝑇𝑀 → 𝑀 one can define the structure
Δ
ℎ
⊕ Δ
𝑣
. The indices in the formulas are denoted by Latin

letters all of them ranging from 1 to 𝑛. The functions Γ𝛼
𝑖
, 𝑋
𝑖
,

and 𝜔𝛼 are of the form (in Γ𝛼
𝑖
the sign is changed to comply

with the classical theory):

Γ
𝛼

𝑖
󴁄󴀼 −Γ

𝑖

𝑗𝑘
𝑢
𝑘

1
,

𝑋
𝑖
= 𝜕
𝑖
+ Γ
𝛼

𝑖
𝜕
𝛼
󴁄󴀼 𝑋
𝑖
= 𝜕
𝑖
− Γ
𝑘

𝑖𝑗
𝑢
𝑖

1
𝜕
1

𝑘
,

𝜔
𝛼
= 𝑑𝑢
𝛼
− Γ
𝛼

𝑖
𝑑𝑢
𝑖
󴁄󴀼 𝑈
𝑖

12
= 𝑢
𝑖

12
+ Γ
𝑖

𝑗𝑘
𝑢
𝑘

1
𝑢
𝑗

2
.

(5)

Definition 4. Higher order connections are defined as fol-
lows: on tangent bundle 𝑇𝑀 the structure Δ ⊕ Δ

1
is defined

where ker𝑇𝜌
1
= Δ
1
, on𝑇(𝑇𝑀) the structureΔ⊕Δ

1
⊕Δ
2
⊕Δ
12

is defined where ker𝑇𝜌
𝑠
= Δ
𝑠
⊕ Δ
12
, 𝑠 = 1, 2, and so forth.

3. Jet Prolongation of a Fibered Manifold and
Higher Order Connections

To compute with second order connections in an efficient
way we have to go deeper in the theory. Structural approach
introduced by C. Ehresmann and developed in, for example,
[3] reads that 𝑟th order holonomic prolongation 𝐽𝑟𝑌 of 𝑌 is a
space of 𝑟-jets of local sections𝑀 → 𝑌 and nonholonomic
prolongation 𝐽𝑟𝑌 of 𝑌 is defined by the following iteration:

(1) 𝐽1𝑌 = 𝐽1𝑌; that is, 𝐽1𝑌 is a space of 1-jets of sections
𝑀 → 𝑌 over the target space 𝑌;

(2) 𝐽𝑟𝑌 = 𝐽1(𝐽𝑟−1𝑌 → 𝑀).

Clearly, we have an inclusion 𝐽𝑟𝑌 ⊂ 𝐽
𝑟
𝑌 given by 𝑗𝑟

𝑥
𝛾 󳨃→

𝑗
1

𝑥
(𝑗
𝑟−1
𝛾). Further, 𝑟th semiholonomic prolongation 𝐽𝑟𝑌 ⊂

𝐽
𝑟
𝑌 is defined by the following induction. First, by 𝛽

1
= 𝛽
𝑌

we denote the projection 𝐽1𝑌 → 𝑌 and by 𝛽
𝑟
= 𝛽
𝐽
𝑟−1
𝑌

the projection 𝐽𝑟𝑌 = 𝐽
1
𝐽
𝑟−1
𝑌 → 𝐽

𝑟−1
𝑌, 𝑟 = 2, 3, . . .. If

we set 𝐽1𝑌 = 𝐽
1
𝑌 and assume we have 𝐽𝑟−1𝑌 ⊂ 𝐽

𝑟−1
𝑌 such

that the restriction of the projection 𝛽
𝑟−1

: 𝐽
𝑟−1
𝑌 → 𝐽

𝑟−2
𝑌

maps 𝐽𝑟−1𝑌 into 𝐽𝑟−2𝑌, we can construct 𝐽1𝛽
𝑟−1

: 𝐽
1
𝐽

𝑟−1

𝑌 →

𝐽
1
𝐽

𝑟−2

𝑌 and define

𝐽

𝑟

𝑌 = {𝐴 ∈ 𝐽
1
𝐽

𝑟−1

𝑌; 𝛽
𝑟
(𝐴) = 𝐽

1
𝛽
𝑟−1
(𝐴) ∈ 𝐽

𝑟−1

𝑌} . (6)

Obviously, 𝐽𝑟, 𝐽𝑟, and 𝐽𝑟 are bundle functors on the category
FM
𝑚,𝑛

of fibered manifolds with 𝑚-dimensional bases and
𝑛-dimensional fibres and locally invertible fiber-preserving
mappings.

Alternatively, one can define the 𝑟th order semiholo-
nomic prolongation 𝐽𝑟𝑌 by means of natural target projec-
tions of nonholonomic jets; see [4]. For 𝑟 ≥ 𝑞 ≥ 0 let us

denote by 𝜋𝑟
𝑞
the target surjection 𝜋𝑟

𝑞
: 𝐽
𝑟
𝑌 → 𝐽

𝑞
𝑌 with

𝜋
𝑟

𝑟
being the identity on 𝐽𝑟𝑌. We note that the restriction

of these projections to the subspace of semiholonomic jet
prolongations will be denoted by the same symbol. By
applying the functor 𝐽𝑘 we have also the surjections 𝐽𝑘𝜋𝑟−𝑘

𝑞−𝑘
:

𝐽
𝑟
𝑌 → 𝐽

𝑞
𝑌, and, consequently, the element 𝑋 ∈ 𝐽

𝑟
𝑌 is

semiholonomic if and only if

(𝐽
𝑘
𝜋
𝑟−𝑘

𝑞−𝑘
) (𝑋) = 𝜋

𝑟

𝑞
(𝑋) for any integers 1 ≤ 𝑘 ≤ 𝑞 ≤ 𝑟.

(7)

In [4], the proof of this property can be found and the author
finds it useful when handling semiholonomic connections
and their prolongations.

Finally, the following functorial definition of semiholo-
nomic prolongation of a fibered manifold can be found.
Assume that the functor 𝐽𝑟−1 comes equipped with the
canonical transformation 𝐽𝑟−1 → 𝐽

𝑟−2 given by the restric-
tion of jet target projections. Then there are two canonical
transformations 𝐽1𝐽𝑟−1 → 𝐽

1
𝐽

𝑟−2, and one can define 𝐽𝑟

as the equalizer of these two transformations. Then this is
equivalent to the definition

𝐽

𝑟

𝑌 = 𝐽

2

(𝐽

𝑟−2

𝑌) ∩ 𝐽
1
(𝐽

𝑟−1

𝑌) . (8)

To define a higher order connection we start with the
definition of general connection; see [3].

Definition 5. A general connection on the fibered manifold
𝑌 → 𝑀 is a section Γ : 𝑌 → 𝐽

1
𝑌 of the first jet prolongation

𝐽
1
𝑌 → 𝑌.

By the substitution of the target space by 𝐽𝑟𝑌, 𝐽𝑟𝑌, and
𝐽
𝑟
𝑌, respectively, one obtains definition of 𝑟th order holo-

nomic, semiholonomic, and nonholonomic connections; that
is, a higher order connection is a section of the appropriate jet
prolongation of a fibered manifold.

Let us recall that the semiholonomity condition on a
higher order connection defined in the geometric way is
now transformed into the equality of all projections 𝑇𝜌

𝑠
from

Definition 4.
Previous approach to connections is suitable for concep-

tual considerations and operations with connections, such as
prolongations of connections, natural operators, and some
classifications. For us the following theorem is quite useful;
see [8] for the proof.

Theorem 6. (1) Second order nonholonomic connections 𝜃 :
𝑌 → 𝐽

2
𝑌 on 𝑌 → 𝑀 are in bijection with triples (Γ

1
, Γ
2
, 𝐺),

where Γ
1
, Γ
2
: 𝑌 → 𝐽

1
𝑌 are first order connections on𝑌 → 𝑀

and 𝐺 : 𝑌 → 𝑉𝑌 ⊗ ⊗
2
𝑇
∗
𝑀 is a tensor field. (2) Connection

𝜃 is semiholonomic if and only if Γ
1
= Γ
2
. (3) Connection 𝜃 is

holonomic if and only if Γ
1
= Γ
2
and 𝐺 : 𝑌 → 𝑉𝑌 ⊗ 𝑆

2
𝑇
∗
𝑀.

Now, one can define the following relation ∼ on the space
of second order nonholonomic connections.

Definition 7. Let the triples (Γ
1
, Γ
2
, 𝐺), (Γ

1
, Γ
2
, 𝐺) represent

two second order connections in the sense of Theorem 6.
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They belong to the same equivalence class of the relation ∼
if and only if Γ

1
= Γ
1
and Γ
2
= Γ
2
.

Remark 8. It is easy to see that∼ is an equivalence relation and
let us denote [𝜃] = [(Γ

1
, Γ
2
, 𝐺)] as the a class of this relation.

Finally, the class [𝜃] consists of semiholonomic connections
if and only if Γ

1
= Γ
2
for any (Γ

1
, Γ
2
, 𝐺) ∈ [𝜃] and holonomic

if 𝐺 : 𝑌 → 𝑉𝑌 ⊗ 𝑆
2
𝑇
∗
𝑀 in addition.

4. Ehresmann Prolongation

Given two higher order connections Γ : 𝑌 → 𝐽
𝑟
𝑌 and

Γ : 𝑌 → 𝐽
𝑠
𝑌, the product of Γ and Γ is the (𝑟 + 𝑠)th order

connection Γ ∗ Γ : 𝑌 → 𝐽
𝑟+𝑠
𝑌 defined by

Γ ∗ Γ = 𝐽
𝑠
Γ ∘ Γ. (9)

Concerning the holonomity, according to [4] if both Γ
and Γ are of the first order, then Γ ∗ Γ : 𝑌 → 𝐽

2
𝑌 is

semiholonomic if and only if Γ = Γ and Γ ∗ Γ is holonomic if
and only if Γ is curvature-free in addition, which corresponds
to Theorem 6.

As an example we show the coordinate expression of an
arbitrary nonholonomic second order connection and of the
product of two first order connections. The coordinate form
of Δ : 𝑌 → 𝐽

2
𝑌 is

𝑦
𝑝

𝑖
= 𝐹
𝑝

𝑖
(𝑥, 𝑦) , 𝑦

𝑝

0𝑖
= 𝐺
𝑝

𝑖
(𝑥, 𝑦) , 𝑦

𝑝

𝑖𝑗
= 𝐻
𝑝

𝑖𝑗
(𝑥, 𝑦) ,

(10)

where 𝐹, 𝐺, and 𝐻 are arbitrary smooth functions. Further,
if the coordinate expressions of two first order connections
Γ, Γ : 𝑌 → 𝐽

1
𝑌 are

Γ : 𝑦
𝑝

𝑖
= 𝐹
𝑝

𝑖
(𝑥, 𝑦) , Γ : 𝑦

𝑝

𝑖
= 𝐺
𝑝

𝑖
(𝑥, 𝑦) , (11)

then the second order connection Γ ∗ Γ : 𝑌 → 𝐽
2
𝑌 has

equations

𝑦
𝑝

𝑖
= 𝐹
𝑝

𝑖
, 𝑦

𝑝

0𝑖
= 𝐺
𝑝

𝑖
, 𝑦

𝑝

𝑖𝑗
=

𝜕𝐹
𝑝

𝑖

𝜕𝑥
𝑗
+

𝜕𝐹
𝑝

𝑖

𝜕𝑦
𝑞
𝐺
𝑞

𝑗
. (12)

For order three see [5]. If we apply the multiplication on just
one connection Γ, the second order connection Γ∗Γ is called
the Ehresmann prolongation of connection Γ. By iteration we
obtain a connection of an arbitrary order.

In the following proposition we show that concerning
order 2 only the choice of Ehresmann prolongation makes
sense. We use the notation of [3], where the map 𝑒 : 𝐽2𝑌 →

𝐽

2

𝑌 is obtained from the natural exchangemap 𝑒
Λ
: 𝐽
1
𝐽
1
𝑌 →

𝐽
1
𝐽
1
𝑌 as a restriction to the subbundle 𝐽2𝑌 ⊂ 𝐽

1
𝐽
1
𝑌. Note

that while 𝑒
Λ
depends on the linear connection Λ on 𝑀,

its restriction 𝑒 is independent of any auxiliary connections.
We remark that originally the map 𝑒

Λ
was introduced by M.

Modugno.We also recall that J. Pradines introduced a natural
map 𝐽2𝑌 → 𝐽

2

𝑌 with the same coordinate expression.
Now we are ready to recall the following assertion; see [9]

for the proof.

Proposition 9. All natural operators transforming first order
connection Γ : 𝑌 → 𝐽

1
𝑌 into second order semiholonomic

connection 𝑌 → 𝐽

2

𝑌 form a one-parameter family:

Γ 󳨃󳨀→ 𝑘 ⋅ (Γ ∗ Γ) + (1 − 𝑘) ⋅ 𝑒 (Γ ∗ Γ) , 𝑘 ∈ R. (13)

To meet the classical theory mentioned in Section 2 let
us note that the corresponding operation is the following; see
also [10]. If we apply the tangent functor 𝑇 two times on a
projection 𝜋 : 𝐸 → 𝑀 and a section 𝜎 : 𝑀 → 𝐸 we obtain

𝑇𝜋: 𝑇𝐸 󳨀→ 𝑇𝑀, 𝑇
2
𝜋: 𝑇
2
𝐸 󳨀→ 𝑇

2
𝑀, (14)

𝑇𝜎: 𝑇𝑀 󳨀→ 𝑇𝐸, 𝑇
2
𝜎: 𝑇
2
𝑀 󳨀→ 𝑇

2
𝐸, (15)

respectively. The mappings 𝜎, 𝑇𝜎, and 𝑇2𝜎 are defined by the
sections of fibered manifolds 𝜋, 𝑇𝜋, and 𝑇2𝜋.

Let us consider local coordinates on the following mani-
folds in the form

on 𝑀,𝑇𝑀,𝑇
2
𝑀: (𝑥

𝑖
) , (𝑥
𝑖
, 𝑥
𝑖

1
) , (𝑥
𝑖
, 𝑥
𝑖

1
, 𝑥
𝑖

2
, 𝑥
𝑖

12
) ,

on 𝐸, 𝑇𝐸, 𝑇
2
𝐸: (𝑦

𝑝
) , (𝑦
𝑝
, 𝑦
𝑝

1
) , (𝑦
𝑝
, 𝑦
𝑝

1
, 𝑦
𝑝

2
, 𝑦
𝑝

12
) .

(16)

Let us also consider a function 𝑓 defined on a manifold
𝑀, whose local coordinate form is derived by means of
differentials to fit the coordinates on 𝑇2𝑀:

𝑓
1
≐ 𝑓
𝑖
𝑥
𝑖

1
, 𝑓
2
≐ 𝑓
𝑖
𝑥
𝑖

2
, 𝑓
12
≐ 𝑓
𝑖𝑗
𝑥
𝑖

1
𝑥
𝑗

2
+ 𝑓
𝑖
𝑥
𝑖

12
,

where 𝑓
𝑖
=

𝜕𝑓

𝜕𝑥
𝑖
, 𝑓
𝑖𝑗
=

𝜕
2
𝑓

𝜕𝑥
𝑖
𝜕𝑥
𝑗
.

(17)

Furthermore, 𝑓
1
= d𝑓 ∘ 𝜌

1
, 𝑓
2
= d𝑓 ∘ 𝜌

2
, 𝑓
12
= d2𝑓. We use

this notation in the following formulae.
If the section 𝜎 is defined by local functions Γ𝑝, then the

sections𝑇𝜎 and𝑇2𝜎 are defined by its differentials Γ𝑝
1
, Γ𝑝
2
, and

Γ
𝑝

12
:

𝜎: 𝑥
𝑖
󴁄󴀼 𝑦
𝑝
= Γ
𝑝
,

𝑇𝜎 : (𝑥
𝑖
, 𝑥
𝑖

1
) 󴁄󴀼 (𝑦

𝑝
, 𝑦
𝑝

1
) = (Γ

𝑝
, Γ
𝑝

1
) ,

𝑇
2
𝜎: (𝑥
𝑖
, 𝑥
𝑖

1
, 𝑥
𝑖

2
, 𝑥
𝑖

12
)󴁄󴀼(𝑦

𝑝
, 𝑦
𝑝

1
, 𝑦
𝑝

2
, 𝑦
𝑝

12
)=(Γ
𝑝
, Γ
𝑝

1
, Γ
𝑝

2
, Γ
𝑝

12
) ,

where Γ𝑝
1
= Γ
𝑝

𝑖
𝑥
𝑖

1
, Γ
𝑝

2
= Γ
𝑝

𝑖
𝑥
𝑖

2
, Γ
𝑝

12
= Γ
𝑝

𝑖𝑗
𝑥
𝑖

1
𝑥
𝑗

2
+ Γ
𝑝

𝑖
𝑥
𝑖

12
.

(18)

The case when the coefficients Γ𝑝
𝑖
and Γ𝑝
𝑖𝑗
in (18) are arbi-

trary functions corresponds to a nonholonomic connection
on the fibered manifold 𝜋.

The case when Γ𝑝
𝑖𝑗
= 𝜕Γ

𝑝

𝑖
/𝜕𝑥
𝑗, where Γ𝑝

𝑖
are arbitrary

functions corresponds to a semiholonomic connection on the
fibered manifold 𝜋.

The case when Γ𝑝
1
= dΓ𝑝 ∘ 𝜌

1
, Γ
𝑝

2
= dΓ𝑝 ∘ 𝜌

2
, Γ
𝑝

12
=

d2Γ𝑝 corresponds to a holonomic connection on the fibered
manifold 𝜋.

The functions Γ𝑝
𝑖
and Γ𝑝

𝑖𝑗
define nonholonomic, semi-

holonomic, or holonomic Ehresmann prolongation of a
connection, respectively.
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5. Material Connection

Following the books [1, 2], the material body B is a trivial
manifold without boundary. A coordinate chart 𝜅

0
: B →

R3 is identified as a reference configuration, a configuration
of a material bodyB is an embedding

𝜅 :B 󳨀→ E
3
. (19)

Choosing a frame inE3, we can identifyE3 withR3. Now, one
can associate with any given configuration 𝜅 the deformation
𝜒 defined as the composition:

𝜒: 𝜅 ∘ 𝜅
−1

0
. (20)

In coordinates,

𝑥
𝑖
= 𝜒
𝑖
(𝑋
1
, 𝑋
2
, 𝑋
3
) , 𝐹

𝑖

𝐼
=

𝜕𝑥
𝑖

𝜕𝑋
𝐼
. (21)

For a simple hyperelastic body, the constitutive equation
is of the form: 𝜓 = 𝜓(𝐹,𝑋). Two points 𝑋

1
, 𝑋
2
∈ B are

materially isomorphic if there exists a non-singular linear
map 𝑃

12
, between their tangent spaces:

𝑃
12
: 𝑇
𝑋
1

B 󳨀→ 𝑇
𝑋
2

B, (22)

such that

𝜓 (𝐹𝑃
12
, 𝑋
1
) = 𝜓 (𝐹,𝑋

2
) (23)

identically for all deformation gradients 𝐹. A body B is
materially uniform if, and only if, there exists a material
isomorphism 𝑃(𝑋) from a fixed point 𝑋

0
∈ B to each point

𝑋 ∈B.
We shall call the point 𝑋

0
an archetypal material point,

and the material isomorphisms 𝑃(𝑋) from the archetypal
material point to the body points will be referred to as
implants. A collection of such implants is a uniformity field.

A material archetype will be defined as a frame at𝑋
0
. We

will say that two vectors at two different points𝑋
1
and 𝑋

2
of

an open set 𝑈 ⊂B are materially parallel with respect to the
given uniformity field, if they have the same components in
the respective local bases of the uniformity field.

A material symmetry at a point 𝑋
0
∈ B is material

automorphism. A material symmetry 𝐺 at a point 𝑋
0
can be

seen as a transformation such that

𝜓 (𝐹𝐺,𝑋
0
) = 𝜓 (𝐹,𝑋

0
) . (24)

The collectionG
0
of all material symmetries in𝑋

0
constitutes

group called material symmetry group.
In coordinates, let𝐸

𝛼
be the natural basis of R3. Bymeans

of the uniformitymaps𝑃(𝑋) this basis induces a smooth field
of bases in 𝑈, which we will denote by 𝑝

𝛼
(𝑋). We now adopt

a coordinate system in𝑈, which we call𝑋𝐼, with natural basis
𝑒
𝑖
; then

𝑝
𝛼
= 𝑃
𝐼

𝛼
𝑒
𝐼
. (25)

The vector field 𝑤 can be expressed in terms of components
in either basis, namely:

𝑤 = 𝜔
𝛼
𝑝
𝛼
= 𝜔
𝐼
𝑒
𝐼
. (26)

Defining the Christoffel symbols of the local material paral-
lelism as

Γ
𝐾

𝐼𝐽
= 𝑃
𝐾

𝛼

𝜕𝑃
−𝛼

𝐼

𝜕𝑋
𝐽
, (27)

we can write material covariant derivative of the field 𝑤 wit
respect to the given material parallelism

∇
𝐾

𝐼𝐽
=

𝜕𝜔
𝐾

𝜕𝑋
𝐽
+ Γ
𝐾

𝐼𝐽
𝜔
𝐼
. (28)

If the symmetry group G
0
is trivial identity group, the

material implants are unique. The local material connection
is unique if the symmetry groupG

0
is discrete (i.e., consisting

of a finite number of elements).
Recall, that the body is locally homogeneous if and only

if there exists local material connection where Christoffel
symbols are symmetric, for each point.

To apply themultiplication of connections on thematerial
connections, we have to modify (12) for linear connections.
The rest would be done by substitution of the previous
characteristics in the equations. If two linear connections Γ
and Γ on the same basemanifold𝑀 are by coordinate formula
(11), then Γ ∗ Γ is given by (12). Should the connections Γ and
Γ be linear, the result would be obtained by substitution

𝐹
𝑝

𝑖
= Γ
𝑝

𝑖𝑞
𝑦
𝑞
,

𝐺
𝑝

𝑖
= Γ

𝑝

𝑖𝑞
𝑦
𝑞

(29)

in (11), where Γ𝑝
𝑖𝑞
and Γ𝑝

𝑖𝑞
are functions of the base manifold

coordinates 𝑥
𝑖
. The equations of Γ ∗ Γ would therefore look

like

𝑦
𝑝

𝑖
= Γ
𝑝

𝑖𝑞
𝑦
𝑞
, 𝑦

𝑝

0𝑖
= Γ

𝑝

𝑖𝑞
𝑦
𝑞
,

𝑦
𝑝

𝑖𝑗
=

𝜕Γ

𝑝

𝑖𝑞

𝜕𝑥
𝑗
𝑦
𝑞
+ Γ

𝑝

𝑖𝑞
Γ
𝑞

𝑗𝑟
𝑦
𝑟
+ Γ

𝑝

𝑖𝑞
𝑦
𝑞

𝑗
.

(30)

Theorem 10. LetB be a material body and let [𝜃] be a class of
second order connections. The constitutive equations are in the
same projective class if and only if [𝜃] is semiholonomic.

Proof. The class [𝜃] of nonholonomic connections was intro-
duced in Definition 7. If the element (Γ

1
, Γ
2
, 𝐺) belongs to [𝜃],

then from Theorem 6 the semiholonomity is equivalent to
the property Γ

1
= Γ
2
. In particular, two constitutive equations

determine two projectively equivalent connections of the first
order.

Remark 11. The projective class of connections shares the
same geodesics. In particular, if we describe “least energy
deformation” of the material body based on two constitu-
tive equations which lead to second order semiholonomic
connection, then it is based on geodesics of one material
connection of the first order.
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In fact, in our setting there is no extension of our result
to connections of higher order than two (for explanation
see [11]). This is the reason why the material equipped
with two constitutive equations plays an interesting role in
the theory of material bodies. Let us finally remark that
the reformulation of the whole theory to the concept of
infinitesimal connections on Lie groupoids can help; see [4].

6. Conclusions

We showed that if we represent the material properties by
means of a second order connection, then its holonomity
corresponds to the type of the material. Our ideas were moti-
vated by handling materials with two constitution equations
and it occurred that formore than two constitution equations
a change of mathematical approach is needed.
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201/09/0981, and the second author by Grant no. FSI-S-11-3.

References
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