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This paper focuses on a multiproject resource allocation problem in a bilevel organization. To solve this problem, a bilevel
multiproject resource allocation model under a fuzzy random environment is proposed. Two levels of decision makers are
considered in the model. On the upper level, the company manager aims to allocate the company’s resources to multiple projects
to achieve the lowest cost, which include resource costs and a tardiness penalty. On the lower level, each project manager attempts
to schedule their resource-constrained project, with minimization of project duration as the main objective. In contrast to prior
studies, uncertainty in resource allocation has been explicitly considered. Specifically, our research uses fuzzy random variables to
model uncertain activity durations and resource costs. To search for the optimal solution of the bilevel model, a hybrid algorithm
made up of an adaptive particle swarm optimization, an adaptive hybrid genetic algorithm, and a fuzzy random simulation
algorithm is also proposed. Finally, the efficiency of the proposedmodel and algorithm is evaluated through a practical case from an
industrial equipment installation company.The results show that the proposed model is efficient in dealing with practical resource
allocation problems in a bilevel organization.

1. Introduction

Because more and more construction companies must deal
with multiple projects at the same time, both the theory
and practice of multiproject resource allocation problems
(MPRAP) are being paid increasing attention in the con-
struction industry. In existing researches, resource allocation
has often been considered only a constraint in multiple
project scheduling problems and thusMPRAP has often been
called a resource-constrained multiple project scheduling
problem [1]. The importance and the wide-ranging appli-
cability of multiproject resource allocation methods have
been more widely accepted in recent years [2–6]. Fricke
and Shenhar [2] investigated the differences associated with
the resource allocation between multiproject management
and single project management. Ben-Zvi and Lechler [5]
tested several multiproject resource allocation strategies in
realistic environments using a heuristic simulation tool. Xu

and Zhang [6] proposed a resource-constrained scheduling
model with multiple projects and applied it to a large-scale
water conservancy and hydropower construction project.

All this research has assisted in the improvement ofmulti-
ple project resource allocation. However, it is still commonly
assumed that a singlemanager oversees all projects. In today’s
industrial climate, managers face an increasingly complicated
decision environment. As a result, a single manager has
difficulties in dealing with across project resource allocation
in addition to resource management within projects. In this
case, a bilevel organizational structure is frequently used for
project management [7]. This type of organization structure
has largely been used in the construction industry and
the software industry. In this bilevel organization, a central
authority (company manager) determines the allocation
across several projects. Once resources have been assigned
to a project, a project manager then schedules the activities
within a single project using the assigned resources. Thus,



2 Journal of Applied Mathematics

the project resource allocation in a bilevel organization is a
bilevel decision-making problem. Jennergren and Müller [8]
originally proposed a bilevel resource allocation problem, in
which they discussed a simple case made up of a headquarter
and two divisions. Yang and Sum [9] discussed a bilevel
resource allocation problem using a systematic analysis,
in which they defined the resource allocation and project
scheduling rules, the performances of which were then eval-
uated through experimentation. Yang and Sum [7] further
extended this research as they examined the performance
of due date, resource allocation, project release, and activity
scheduling rules at the same time. This research had a
positive impact onmultiproject resource allocation as several
resource allocation methods were compared. However, litter
research has focused on an optimization decision-making
problem. As a result, some managers are still confused about
planning for optimal resource allocation in a bilevel and
multiproject environment. Therefore, in this paper we will
discuss a multiproject resource allocation problem using a
bilevel optimization programming model.

In addition to the complexities of the bilevel structure,
uncertainty is also frequently considered in resource allo-
cation problems. Methods for dealing with uncertainty in
decision-making mainly include random, fuzzy, and interval
mathematical programming [10]. In resource allocation, the
uncertainty traditionally has been assumed to be random.
Golenko-Ginzburg and Gonik [11, 12] considered a resource-
constrained network project scheduling problem with a
randomactivity duration dependent on the resource amounts
assigned to that activity. Cohen et al. [13] addressed a
resource allocation problem in stochastic, finite-capacity,
multiproject systems using a cross entropy methodology.
Bidot et al. [14] summarized these stochastic methods for
dealing with uncertainty in practical project management.
Though probability theory has been successfully applied to
resource allocation problems, sometimes some uncertain
parameters cannot be modeled using random theory because
of several factors such as the lack of statistical data. In this
case, probability theory can be replaced by fuzzy set theory
as introduced by Zadeh [15]. Mjelde [16] first applied fuzzy
set theory to a resource allocation problem. Following this
research, many papers focus on resource allocation problems
under a fuzzy environment [17–19] where the duration was
oftenmodelled as a fuzzy variable. In the researchmentioned
above, fuzziness and randomness were often considered
separate aspects. But in reality, wemay face a hybrid uncertain
environment where fuzziness and randomness coexist in a
decision-making process. In a project, some activities may
be rarely performed for which the duration times can be
described by fuzzy variables, while some other activities may
have been processed many times before so duration times
can be summarized using random variables. In this case,
the fuzzy random variable, which was first proposed by
Kwakernaak [20], can be a useful tool for the optimization of
a resource assignment with mixed fuzziness and randomness
uncertainty, because it is able to deal with the two types of
uncertainty simultaneously.

Hence, this paper focuses on this type of bilevel mul-
tiproject resource allocation problem (BLMPRAP) under

a fuzzy random environment, in which we attempt to find
an optimal allocation scheme using a bilevel programming
model. In this model, the decision maker on the upper level
is the company manager whose aim is to determine an opti-
mal scheme for the allocation of company resource among
multiple projects. The objective of the company manager
is to minimize total cost which consists of resource cost
and a tardiness penalty, while at the same time considering
the lower-level decision-making. On the lower level, each
project manager attempts to schedule their project in the
most efficient way using the assigned resources. Contrary to
the company manager, the project manager’s objectives are
focused on the project duration and finishing time of the
project, rather than the cost. Therefore, the minimization
of project duration is considered the objective on the lower
level. In addition, the uncertainty associated with activity
duration and resource costs is also explicitly considered in the
model. Specifically, our research uses fuzzy random variables
to model the activity duration and resource costs. Moreover,
we also focus on a solution method for the proposed bilevel
resource allocation model and two main heuristic methods
are discussed in the algorithm section, and a solutionmethod
which integrates these two algorithms is proposed. Finally, a
representative case is used to test the model and algorithm.

The remainder of this paper is organized as follows.
In Section 2, two key problems are discussed: why the
bilevel model is used for this problem and how to model
the uncertain resource allocation environment using fuzzy
random variables. Based on this analysis, the bilevel model
for the considered multiproject resource allocation problem
with fuzzy random variables in a hierarchical organization
is detailed in Section 3. To solve the proposed model in
Section 3, a solution algorithm based on the PSO and GA
is introduced in Section 4. Then in Section 5, this proposed
model and algorithm are applied to a practical case, which
reflects the effectiveness of the proposed methodology in
dealing with practical problems. Finally, concluding remarks
and future research directions are outlined in Section 6.

2. Key Problem Statement

The problem considered in this paper is a bilevel resource
allocation problem with multiple projects under a fuzzy
random environment. In this section we explain why this
problem should be solved using a bilevel programmingmodel
and outline the procedure for modeling uncertain activity
duration and resource cost using fuzzy random variables.

2.1. Bilevel Resource Management Framework. In practice,
more and more companies are concurrently managing mul-
tiple projects with limited resources. In order to service each
project better, a hierarchical (bilevel) organizational structure
which consists of a company level and a project level is being
used by many companies such as construction companies,
software companies, and some production companies. In
these cases, the company managers need to deal with hier-
archical decision-making.

To handle these decentralized optimal planning problems
in a hierarchical (or multiple-level) organization which has
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more than one decision maker, multilevel mathematical
programming has been proposed [21]. Bilevel programming
indicates that the hierarchical organization is composed
of only two levels and is a sequence of two optimization
problems in which the constraints region of one is deter-
mined by the solution of the second [22]. There are some
common features in bilevel programming [23–25]. (1) There
are interactive decision-making units within a hierarchical
or bilevel structure in the organization. (2) The lower-level
executes its decisions after, and in consideration of, the
decisions of the upper level or leader. (3) Both the leader and
the follower independently seek to maximize or minimize
their own objectives, and often these objectives are in conflict.
(4) The mutual influence between the leader and follower
when making a decision is reflected in both the objective
function and the constraints. Therefore, to assist in resolving
the conflict between the two levels, bilevel programming is an
appropriate method for dealing with the decision-making in
a bilevel organization.

In this paper, resource allocation is considered across
multiple projects in a bilevel organization which includes
two levels of managers (i.e., company managers and project
managers). On the upper level, the company managers are
generally responsible for corporate planning and coordina-
tion between themultiple project groupswith the aimofmax-
imizing the company’s income. In the construction industry,
they generally control and manage key company resources,
such as large-scale equipment and senior engineering staff.
However, resources are generally limited and some are also
very expensive. To save costs, company managers have
to make detailed resource assignment plans over multiple
projects. Cost is dependent on the practical project schedule
as a tardiness penalty occurs if the project duration exceeds
its contracted finishing time, so companymanagersmust also
consider the projectmanagers’ decisions when planning their
resource allocation overmultiple projects. On the lower level,
projectmanagers alsomaintain a reasonable level of resources
called the “project resource.” The manager of each project
is responsible for resource allocation (including project
resources and assigned company resources) over multiple
project activities to ensure that the project is completed on
time, so they also have to develop a resource-constrained
project schedule after the company resources assignment
plan has been completed.

Usually, there are different objectives between the com-
pany’s projects and the project managers. The company
managers desire a resources assignment plan that achieves a
lower cost and a shorter duration. However, at the same time,
the achievement of these objectives is dependent on not only
the upper-level decision-making, but also the actions of the
project managers. The project managers pay more attention
to the finishing time or the cost of a single project, which
may be in contradiction to the company’s benefit. Company
managers know that the project managers make decisions
based on the assigned company resources, so to some degree
they have some influence on the project managers’ decisions
through the different resource allocation schemes.Therefore,
the considered multiproject resource allocation is a decision-
making problem in a bilevel organization with a degree of

conflict in terms of benefits. It is appropriate to solve this
problem using bilevel programming. In bilevel program-
ming, the decision maker on the upper level is the company
manager who seeks to allocate company resources tomultiple
projects at the lowest cost. On the lower level, each project
manager attempts to schedule their project with the objective
of project durationminimization under resource constraints.
The bilevel resource assignment problem is illustrated in
Figure 1.

2.2. UncertainActivityDuration andResource Cost. Thefuzzy
random environment has been studied and applied to many
areas such as inventory problem [26], vehicle routing [27],
logistics network design [28], and water resources alloca-
tion [29]. These studies show the necessity of considering
fuzzy random environment in practical problems. With this
background and evidence, there is a strong motivation for
considering a fuzzy random environment for the BLMPRAP.

In real conditions, uncertainty analysis is always an
important consideration for managers in many areas of
operations, such as the uncertainty that exists in activity
durations, resource requirements, and operating costs. In this
paper, ourmain consideration is project activity duration and
unit resource cost uncertainty.

Activity durations are always uncertain because of a
lack of knowledge and in previous studies they have often
modeled these uncertainties as random or fuzzy variables.
However, there are often circumstances where both fuzzy and
random factors exist in a complex uncertain environment.
For example, a company plans to install a boiler in a power
plant construction project in October, but they do not have
enough experience or historical data on this type of project.
In this case, fuzzy variables are used to model the activity
durations. At the same time, some known information
associated with the activity duration, such as the effects of the
weather, can be modeled as a random variable. For example,
a shower may slow down the transportation speed of some
necessary equipment or extreme temperatures may lead to
lower work efficiency. From the local statistical information,
in October, it is predicted with a probability of 0.6 to rain,
with a probability of 0.3 to be fine, and a probability of 0.1
to be cloudy. Therefore, the weather can be modelled as a
discrete random variable. In this situation, activity durations
considering both fuzzy factors and random factors can be
modelled as fuzzy random variables as shown in Figure 2.
This means that more information is modelled into the
variable, so more precise data can be obtained for solving
practical problems through the use of fuzzy random variables
rather than fuzzy variables or randomvariables, which results
in a more precise solution to the model.

The situation is similar for resource costs. For example, as
the gasoline price and the crane operators’ wages are expected
to rise, the cost of crane operationswill also go up.However, it
is very difficult to obtain a precise value because of the many
uncertainties. In this case, an interval [𝑎, 𝑏] is used to model
the changing cost. Further, based on the analysis of historical
data, the cost is most possibly at around 𝜌, which is an
expected value of a random variable which follows a normal
distribution 𝑁(𝜇, 𝜎). Then, the cost of the crane operations
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Figure 1: Flow chart for the considered bilevel resource assignment problem.
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can be described as a fuzzy random variable �̃� = (𝑎, 𝜌, 𝑏)with
𝜌 ∼ 𝑁(𝜇, 𝜎) as Figure 3.

Considering the bilevel structure and uncertain environ-
ment simultaneously, the BLMPRAP under a fuzzy random
environment can be stated as follows. A company has con-
tracted n projects at the same time, though the company
managers are unable to fully manage these projects, so
for effective management they take charge of only some
key resources and establish project groups to manage the
projects. The problem the company managers face is how

to assign the company resources to each project group,
while the project manager has to schedule their project with
some resource constraints. To deal with this uncertainty, the
activity durations and resource costs are modeled as fuzzy
random variables. The decision-making framework for the
proposed bilevel multiproject resource assignment problem
is illustrated in Figure 4.

3. Modelling

To solve the multiproject resource allocation problem in a
bilevel organization, a bilevel programming model under a
fuzzy random environment is constructed.Themathematical
description for this problem is given as follows.

3.1. Assumptions. To model the problem more efficiently, the
following assumptions are adopted.

(1) The bilevel resource assignment problem consists of
multiple resources andmultiple projects.There are no
newprojects during the scheduled resource allocation
periods.

(2) The problem has two levels of decision makers, that
is, company managers on the upper level and project
managers on the lower level.Themanagerial objective
on the upper level is to minimize the total cost for
all projects, and the objective on the lower level is to
minimize the project duration.

(3) A single project consists of a number of activities
each with several optional execution modes. Each
mode is a combination of duration and resource
requirements [30]. Activities cannot be interrupted,
and every activity must be performed in only one
mode.

(4) Each activity needs multiple types of resources. The
unit cost for each company resource and the duration
for each activity are modelled as fuzzy random vari-
ables.
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(5) The company manager is responsible for resource
allocation during multiple projects. Resources
assigned to all projects do not exceed the limited
quantities in any time period.

3.2. Notations

Indices

𝑛: the project index, 𝑛 = 1, 2, . . . , 𝑁;
𝑖: the activity index, 𝑖 = 1, 2, . . . , 𝐼

𝑛
;

𝑗: the mode index, 𝑗 = 1, 2, . . . , 𝐽
𝑖
;

𝑘: the resource index, 𝑘 = 1, 2, . . . , 𝐾;
𝑡: the project time period index, 𝑡 = 1, 2, . . . , 𝑇;
𝑝: the resource assignment time period index, 𝑝 =

1, 2, . . . , 𝑃.

Parameters

𝑅
𝑘𝑝
: the total quantity of resource 𝑘 in time period 𝑝;

̃
𝑑

𝑛𝑖𝑗
: duration of activity 𝑖 executed in mode 𝑗 in

project 𝑛;
𝑃𝑟

𝑛
(𝑖): set of immediate predecessors of activity 𝑖 in

project 𝑛;
𝑟
𝑛𝑖𝑗𝑘

: amount of resource 𝑘 required to execute activity
𝑖 in mode 𝑗 in project 𝑛;

𝑇
𝑛
: the scheduled finishing time of project 𝑛;

𝑇
∗

𝑛
: the predetermined finishing time of project 𝑛;

𝑡
𝑛
𝑖
EF: the early finishing time of activity 𝑖 in project 𝑛;

𝑡
𝑛
𝑖
LF: the late finishing time of activity 𝑖 in project 𝑛;

𝐷𝑇
𝑛
: the overdue time of project 𝑛;

𝑡
𝑛𝑖𝑗
: the processing finishing time of activity 𝑖 in mode

𝑗 in project 𝑛;
�̃�
𝑘𝑝
: the unit cost of resource 𝑘 in period 𝑝;

𝑐𝑝
𝑛
: the unit overdue penalty cost of project 𝑛.

Decision Variables

𝑅
𝑛𝑘𝑝

: the quantity of resource 𝑘 assigned to project 𝑛
in time period 𝑝;

𝑥
𝑛𝑖𝑗𝑡

=

{{

{{

{

1, if activity 𝑖 is executed in mode 𝑗 and is
scheduled to be finished in time 𝑡

0, otherwise.
(1)

3.3. Multiproject Resource Allocation. The problem the com-
pany manager on the upper level faces is how to allocate
the limited company resources over several projects in each
period (generally the period is oneweek); in otherwords, they
need to decide the quantity to be allocated to each project in
each period for each type of resource. With this in mind, the
decision variables for the upper level are 𝑅

𝑛𝑘𝑝
.
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For resource allocation problems, minimization of the
total cost or maximization of the total profit is often con-
sidered as the decision objective [5]. The cost is made up
of the resource costs and the total tardiness penalty for the
multiple projects. Resource costs occur when resources are
allocated to a project group, so the resource cost can be stated
as ∑𝑁

𝑛=1
�̃�
𝑘
𝑅

𝑛𝑘𝑝
for each type of resource in every period. The

project tardiness penalty occurs when a project finishing time
exceeds its predetermined finishing time.𝐷𝑇

𝑛
represents the

overdue time of project 𝑛. It is a function on the finish time
as in

𝐷𝑇
𝑛
= {

𝑇
𝑛
− 𝑇

∗

𝑛
, if 𝑇

𝑛
≥ 𝑇

∗

𝑛

0, otherwise.
(2)

Therefore, the total tardiness penalty can be stated as
∑

𝑁

𝑛=1
𝑐𝑝

𝑛
𝐷𝑇

𝑛
, and the total cost can be described as

𝑁

∑
𝑛=1

𝑐𝑝
𝑛
𝐷𝑇

𝑛
+

𝑃

∑
𝑝=1

𝐾

∑
𝑘=1

𝑁

∑
𝑛=1

�̃�
𝑘𝑝
𝑅

𝑛𝑘𝑝
. (3)

In this equation, the unit resource cost �̃�
𝑘𝑝

is uncertain
because of the many changing influences such as gasoline
prices and wages. In this paper, we consider a hybrid uncer-
tain environment involving both fuzziness and randomness.
To deal with this uncertainty, �̃�

𝑘𝑝
is modelled as a fuzzy

random variable which means that the total cost is also a
fuzzy random variable. Technically, it is not possible to derive
a precise minimum total cost and an optimal solution. In
a practical decision-making process, the decision makers
usually choose a satisfactory solution with a certain deviation
rather than an optimal solution. In these cases, chance-
constrained programming, which was first introduced by
Charnes and Cooper [31], is often used. It is assumed that the
goal of decision makers is to minimize the objective value on
the condition of chance level 𝛼, where 𝛼 is the predetermined
confidence level which is provided as an appropriate safety
margin by the decision maker. Generally, the value of 𝛼 is
bigger than 0.5 [32].

In order to introduce the chance-constrained program-
ming, the concept of a chance measure for the fuzzy random
variables is first explained. Let 𝜉 be a fuzzy random variable
defined on (Ω,A,Pr), and 𝑓 : R → R is a real-valued
continuous function. Then a primitive chance of a fuzzy
random event characterized by 𝑓(𝜉) ≤ 0 is a function from
(0, 1] to [0, 1], defined as in the following [33] equation:

𝐶ℎ {𝑓 (𝜉) ≤ 0} (𝛽)

= sup
𝛽∈[0,1]

{𝜔 | Pr {𝜔 ∈ Ω | Pos {𝑓 (𝜉) ≤ 0} ≥ 𝛼} ≥ 𝛽} ,

(4)

where Pos{⋅} is the possibility of the fuzzy event and Pr{⋅}
is the probability of the random event. 𝛽 is referred to
as the predetermined confidence levels associated with the
probability measure of the random event Pos{𝑓(𝜉) ≤ 0} ≥ 𝛼.
Generally, decision makers tend to take the same confidence
levels between the parameters 𝛼 and 𝛽.

From the definition of the chance measure, we can derive
the following equation:

𝐶ℎ {𝑓 (𝜉) ≤ 0} (𝛽)

≥ 𝛼 ⇐⇒ Pr {𝜔 ∈ Ω | Pos {𝑓 (𝜉) ≤ 0} ≥ 𝛼} ≥ 𝛽.
(5)

Since it is not possible to derive a precise minimum
objective, the decision makers descend to seek a minimum
objective value 𝐹

1
on the condition of possibility level 𝛼 at

probability level 𝛽. Then, the fuzzy random objective can be
transformed into the chance constraint 𝐶ℎ{∑𝑁

𝑛=1
𝑐𝑝

𝑛
𝐷𝑇

𝑛
+

∑
𝑃

𝑝=1
∑

𝐾

𝑘=1
∑

𝑁

𝑛=1
�̃�
𝑘𝑝
𝑅

𝑛𝑘𝑝
≤ 𝐹

1
}(𝛽) ≥ 𝛼. That is, Pr{𝜔 |

Pos{∑𝑁

𝑛=1
𝑐𝑝

𝑛
𝐷𝑇

𝑛
+ ∑

𝑃

𝑝=1
∑

𝐾

𝑘=1
∑

𝑁

𝑛=1
�̃�
𝑘𝑝
𝑅

𝑛𝑘𝑝
≤ 𝐹

1
} ≥ 𝛼} ≥

𝛽. Finally, the uncertain model is transformed to a chance-
constrained model, and the following objective function and
constraint are obtained:

min𝐹
1

(6)

subject to (s.t.)

Pr{𝜔 | Pos {
𝑁

∑
𝑛=1

𝑐𝑝
𝑛
𝐷𝑇

𝑛
+

𝑃

∑
𝑝=1

𝐾

∑
𝑘=1

𝑁

∑
𝑛=1

�̃�
𝑘𝑝
𝑅

𝑛𝑘𝑝
≤ 𝐹

1
}

≥ 𝛼} ≥ 𝛽.

(7)

Resource constraints must bemet for all types of resource
allocation problems. That is, for each type of resource, the
total quantity allocated to every project cannot exceed the
ownership quantity of the company in each period. This
constraint is described as

𝑁

∑
𝑛=1

𝑅
𝑛𝑘𝑝

≤ 𝑅
𝑘𝑝
, ∀𝑘 = 1, . . . , 𝐾; 𝑝 = 1, . . . , 𝑃. (8)

Equations ((4)–(6)) make up the resource allocation
model as in (9). In this model, the project finishing time is
determined by solving the lower-level model. It can also be
seen that the decisions on the lower level have an effect on
the resource allocation on the upper level as follows:

min 𝐹
1

s.t. Pr{𝜔 | Pos{
𝑁

∑
𝑛=1

𝑐𝑝
𝑛
𝐷𝑇

𝑛
+

𝑃

∑
𝑝=1

𝐾

∑
𝑘=1

𝑁

∑
𝑛=1

�̃�
𝑘𝑝
𝑅

𝑛𝑘𝑝
≤ 𝐹

1
}

≥ 𝛼} ≥ 𝛽

𝑁

∑
𝑛=1

𝑅
𝑛𝑘𝑝

≤ 𝑅
𝑘𝑝
, ∀𝑘 = 1, . . . , 𝐾; 𝑝 = 1, . . . , 𝑃

𝐷𝑇
𝑛
= {

𝑇
𝑛
− 𝑇

∗

𝑛
, if 𝑇

𝑛
≥ 𝑇

∗

𝑛

0, otherwise,

where 𝑇
𝑛
is solved in the lower-level model.

(9)
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3.4. Resource-Constrained Project Scheduling. When the
resources are allocated to each project, the project manager
has to consider how to make use of these resources to finish
the project more quickly. Therefore, each project manager is
faced with a resource-constrained project scheduling prob-
lem. Usually, the resources consist of company resources
and project resources. In this paper, we only consider the
company resources when scheduling the project.

For project scheduling, the minimization of project dura-
tion is often considered as the decision objective [1]. In
this paper, the finishing time of the last activity is used to
describe the project duration. This finishing time must be
located in the range between the early finishing time and
the late finishing time of the project after consideration of
the entire range of possible execution modes. This can be
stated as∑𝑚𝐼

𝑗=𝐼
∑

𝑡𝑛𝐼
LF

𝑡=𝑡𝑛𝐼
EF 𝑡𝑥𝑛𝐼𝑗𝑡

. Here, 𝑡
𝑛
𝐼
EF and 𝑡

𝑛
𝐼
LF are the early

finishing time and the late finishing time of activity 𝐼 in
project 𝑛, respectively. Therefore, the objective function can
be described as follows:

𝑇
𝑛
=

𝑚𝑛𝐼

∑
𝑗=𝐼

𝑡𝑛𝐼
LF

∑

𝑡=𝑡𝑛𝐼
EF

𝑡𝑥
𝑛𝐼𝑗𝑡
. (10)

In addition, some constraints must be met. First, each
activity must be scheduled and its finish time must be in
the range of its earliest finishing time and its latest possible
finishing while ensuring that all activities are adequately
arranged and there is only one execution mode for each
activity. So we can get the following constraint:

𝑚𝑛𝑖

∑
𝑗=1

𝑡𝑛𝑖
LF

∑

𝑡=𝑡𝑛𝑖
EF

𝑥
𝑛𝑖𝑗𝑡

= 1, 𝑖 = 1, 2, . . . , 𝐼. (11)

In the scheduling problem, precedence is the basic
term which ensures the rationality of the arrangement.
∑

𝑚𝑛𝑙

𝑗=1
∑

𝑡𝑛𝑙
LF

𝑡=𝑡𝑛𝑙
EF 𝑡𝑥𝑛𝑙𝑗𝑡

is denoted as the actual finishing time of
activity 𝑙 in project 𝑛. This must be between the earliest
finishing time and the latest finishing timewhen the activity is
scheduled in a certain executedmode.∑𝑚𝑛𝑖

𝑗=1
∑

𝑡𝑛𝑖
LF

𝑡=𝑡𝑛𝑖
EF(𝑡−𝑑𝑖𝑗

)𝑥
𝑖𝑗𝑡

is the starting time of the immediately following activity 𝑖
in project 𝑛. Generally, the beginning time of each activity
must be posterior to the finishing time of its immediate
predecessors. However, under a fuzzy random environment,
the duration of activity 𝑖 is a fuzzy random variable. In this
case, it is difficult to meet this constraint strictly. Decision
makers always hope to meet the constraint using an expected
value for the fuzzy random variable. From the definition of
Puri and Ralescu [34], the expected value 𝐸(𝜉) of a fuzzy
random variable 𝜉 can be calculated using the following
equation:

(𝐸 (𝜉))
𝛼
= ∫

Ω

𝜉
𝛼
𝑑𝑃

= {∫
Ω

𝑓 (𝜔) 𝑑𝑃 (𝜔) : 𝑓 ∈ 𝐿
1

𝑃, 𝑓 (𝜔) a.s. [𝑃]} ,
(12)

where ∫
Ω

𝜉
𝛼
𝑑𝑃 is the Aumann integral of 𝜉

𝛼
about 𝑃 and 𝐿1

𝑃

denote all of the integrable function 𝑓 : Ω → 𝑅 about the
probability measure 𝑃.

The fuzzy expected value reflects the center value that
the fuzzy random variable tends towards and describes
the fuzzy random variable statistical properties. After going
through the fuzzy expected operation above, all fuzzy random
durations are transformed into fuzzy durations. Then the
expected value operator of the fuzzy variables based on
a fuzzy measure [33] can be used to transform the fuzzy
duration into a crisp duration. This can be calculated using

𝐸
Me
(𝐸(

̃
𝑑)) = ∫

+∞

0

Me {𝐸(̃𝑑) ≥ 𝑟} 𝑑𝑟

− ∫
+∞

0

Me {𝐸(̃𝑑) ≤ 𝑟} 𝑑𝑟,
(13)

where Me is a type of fuzzy measure. Let 𝐴 be a fuzzy
event; then Me{𝐴} = 𝜆Pos{𝐴} + (1 − 𝜆)Nec{𝐴}. 𝜆 are the
optimistic and pessimistic indices, respectively, to determine
the combined attitude of the decision maker.

From the fuzzy random expected value operator and
the fuzzy expected value operator, the expected precedence
constraints can be obtained as

𝑚𝑛𝑙

∑
𝑗=1

𝑡𝑛𝑙
LF

∑

𝑡=𝑡𝑛𝑙
EF

𝑡𝑥
𝑛𝑙𝑗𝑡

≤

𝑚𝑛𝑖

∑
𝑗=1

𝑡𝑛𝑖
LF

∑

𝑡=𝑡𝑛𝑖
EF

(𝑡 −Me {𝐸(̃𝑑
𝑛𝑖𝑗
)})𝑥

𝑛𝑖𝑗𝑡
,

𝑙 ∈ 𝑃 (𝑖) , 𝑖 = 1, 2, . . . , 𝐼
𝑛
.

(14)

In addition to the precedence constraints, resource con-
straints must be considered as well in this problem. In
each period, the available resource quantity is 𝑅

𝑛𝑘𝑝
which is

allocated as part of the upper-level decisions. The resource
constraint is described in (15). It ensures that the amount of
resources 𝑘 used by all activities does not exceed its limited
quantity 𝑅

𝑛𝑘𝑝
in any period as follows:

𝐼𝑛

∑
𝑖=1

𝑚𝑛𝑖

∑
𝑗=1

𝑟
𝑛𝑖𝑗𝑘

𝑡+Me{𝐸(
̃
𝑑𝑖𝑗)}−1

∑
𝑠=𝑡

𝑥
𝑖𝑗𝑠
≤ 𝑅

𝑛𝑘𝑝
,

𝑘 ∈ 𝐾, 𝑡 = 1, 2, . . . , 𝑇.

(15)

The objective function and the constraints form the
resource-constrained project scheduling model as in

min 𝑇
𝑛
=

𝑚𝑛𝐼

∑
𝑗=𝐼

𝑡𝑛𝐼
LF

∑

𝑡=𝑡𝑛𝐼
EF

𝑡𝑥
𝑛𝐼𝑗𝑡

s.t.
𝑚𝑛𝑖

∑
𝑗=1

𝑡𝑛𝑖
LF

∑

𝑡=𝑡𝑛𝑖
EF

𝑥
𝑛𝑖𝑗𝑡

= 1, 𝑖 = 1, 2, . . . , 𝐼
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𝑚𝑛𝑙

∑
𝑗=1

𝑡𝑛𝑙
LF

∑

𝑡=𝑡𝑛𝑙
EF

𝑡𝑥
𝑛𝑙𝑗𝑡

≤

𝑚𝑛𝑖

∑
𝑗=1

𝑡𝑛𝑖
LF

∑

𝑡=𝑡𝑛𝑖
EF

(𝑡 −Me {𝐸(̃𝑑
𝑛𝑖𝑗
)})𝑥

𝑛𝑖𝑗𝑡
,

𝑙 ∈ 𝑃 (𝑖) , 𝑖 = 1, 2, . . . , 𝐼
𝑛

𝐼𝑛

∑
𝑖=1

𝑚𝑛𝑖

∑
𝑗=1

𝑟
𝑛𝑖𝑗𝑘

𝑡+Me{𝐸(
̃
𝑑𝑖𝑗)}−1

∑
𝑠=𝑡

𝑥
𝑖𝑗𝑠
≤ 𝑅

𝑛𝑘𝑝
,

𝑘 ∈ 𝐾, 𝑡 = 1, 2, . . . , 𝑇

𝑥
𝑛𝑖𝑗𝑡

∈ {0, 1} , ∀𝑛, 𝑖, 𝑗, 𝑡.

(16)

3.5. The Completed Bilevel Model. There are two levels of
decision makers in the considered BLMPRAP. The decision
maker on the upper level, the company manager, hopes
to allocate the company resources to multiple projects at
the lowest cost. The cost consists of resource costs and the
tardiness penalty, so the upper-level decision maker is able
to control the resource cost through appropriate allocation.
The tardiness penalty is dependent on the finishing time of all
projects, which in turn is determined by the specific project
managers through their project schedule. In this situation, the
company manager must consider the decision of the project
managers. The company manager does know that the project
managers must schedule their projects under the resource
constraints. Therefore, the company manager can influence
the decision-making of project managers on the lower-level
model using different resource allocation schemes.

On the lower level, each project manager attempts to
make a more efficient schedule under the resource con-
straints. The objective is often to minimize the finishing
time of the project, although this may conflict with the
company’s objective. This is another reason why such a
problem needs to be modeled as a bilevel programming
model. In addition, uncertainty also impacts the decision. In
this paper, the uncertain resource cost and activity duration
are described using fuzzy random variables. On the upper
level, possibility theory is used to deal with the uncertain
resource cost. On the lower level, an expected value operation
is used to cope with the uncertain activity duration. In sum,
the complete bilevel programming model can be established
based on the above discussion as in (17). In the model, the
chance constrains are nonlinear when being transformed
to crisp equations. As a result, the proposed model is a
nonlinear bilevel optimization model under a fuzzy random
environment as follows:

min
𝑅𝑛𝑘𝑝

𝐹
1

s.t. Pr{𝜔 | Pos{
𝑁

∑
𝑛=1

𝑐𝑝
𝑛
𝐷𝑇

𝑛

+

𝑃

∑
𝑝=1

𝐾

∑
𝑘=1

𝑁

∑
𝑛=1

�̃�
𝑘𝑝
𝑅

𝑛𝑘𝑝
≤ 𝐹

1
} ≥ 𝛼} ≥ 𝛽

𝑁

∑
𝑛=1

𝑅
𝑛𝑘𝑝

≤ 𝑅
𝑘𝑝
, ∀𝑘 = 1, . . . , 𝐾; 𝑝 = 1, . . . , 𝑃

𝐷𝑇
𝑛
= {

𝑇
𝑛
− 𝑇

∗

𝑛
, if 𝑇

𝑛
≥ 𝑇

∗

𝑛

0, otherwise,

where 𝑇
𝑛
is solved in the following model :

min
𝑥𝑛𝑖𝑗𝑡

𝑇
𝑛
=

𝑚𝑛𝐼

∑
𝑗=𝐼

𝑡𝑛𝐼
LF

∑

𝑡=𝑡𝑛𝐼
EF

𝑡𝑥
𝑛𝐼𝑗𝑡
, 𝑛 = 1, . . . , 𝑁

s.t.
𝑚𝑛𝑖

∑
𝑗=1

𝑡𝑛𝑖
LF

∑

𝑡=𝑡𝑛𝑖
EF

𝑥
𝑛𝑖𝑗𝑡

= 1, 𝑖 = 1, 2, . . . , 𝐼

𝑚𝑛𝑙

∑
𝑗=1

𝑡𝑛𝑙
LF

∑

𝑡=𝑡𝑛𝑙
EF

𝑡𝑥
𝑛𝑙𝑗𝑡

≤

𝑚𝑛𝑖

∑
𝑗=1

𝑡𝑛𝑖
LF

∑

𝑡=𝑡𝑛𝑖
EF

(𝑡 −Me {𝐸(̃𝑑
𝑛𝑖𝑗
)})𝑥

𝑛𝑖𝑗𝑡
,

𝑙 ∈ 𝑃 (𝑖) , 𝑖 = 1, 2, . . . , 𝐼
𝑛

𝐼𝑛

∑
𝑖=1

𝑚𝑛𝑖

∑
𝑗=1

𝑟
𝑛𝑖𝑗𝑘

𝑡+Me{𝐸(
̃
𝑑𝑖𝑗)}−1

∑
𝑠=𝑡

𝑥
𝑖𝑗𝑠
≤ 𝑅

𝑛𝑘𝑝
,

𝑘 ∈ 𝐾, 𝑡 = 1, 2, . . . , 𝑇

𝑥
𝑛𝑖𝑗𝑡

∈ {0, 1} , ∀𝑛, 𝑖, 𝑗, 𝑡.

(17)

4. Fuzzy Random Simulation-Based aPSO-hGA

The proposed model is a bilevel programming model, which
is considered as a strong NP-hard problem [35, 36]. It is
often difficult to obtain an analytical optimal solution for
such problems, and the most commonly used methods are
to obtain a numerically optimal solution or a numerically
efficient solution using an approximation or heuristic algo-
rithm. For bilevel programming model, the particle swarm
optimization algorithm (PSO) has been proposed in some
research and has had good results [37, 38]. An important
motivation for using PSO to solve bilevel programming is
that PSO is usually quicker than other algorithms, since it
often takes much more time to solve a bilevel model than a
single level one. In our model, not only the bilevel structure
of the model but also the considered multimode resource-
constrained project scheduling problems greatly increase the
computing complexity and solution speed. In the bilevel
model, the lower-level models are the constraints of the
upper-level model. If the found solution is not optimal,
then the final solution may not be feasible. This leads to a
bilevel model which cannot be solved. Therefore, unlike the
upper-level model, an algorithm with higher accuracy and
stability needs to be chosen. In this paper, the multimode
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resource-constrained project scheduling on the lower level
is solved using a genetic algorithm (GA). In addition, to
deal with the fuzzy random chance constraints, a fuzzy
random simulation procedure is proposed. In this case,
a hybrid algorithm of an adaptive PSO and a GA based
on fuzzy random simulation (fuzzy random simulation-
based aPSO-hGA) is proposed to solve the proposed non-
linear bilevel optimization model under a fuzzy random
environment.

4.1. Framework for the Proposed Solution Algorithm. To solve
the bilevel model, a particle swarm optimization is proposed
to search for the solution to the upper level. At the beginning
of the algorithm, some feasible solutions (particles: 𝑅

𝑛𝑘𝑝
) for

the upper level decision variables which meet the constraints
of upper level model are generated.Then the solutions are set
into the lower-levelmodel. A genetic algorithm is used to find
the optimal solution (𝑥

𝑛𝑖𝑗𝑡
) to the lower-level model. Both

the solutions to the upper level and the lower level consist
of the final feasible solutions ({𝑅

𝑛𝑘𝑝
, 𝑥

𝑛𝑖𝑗𝑡
}) of the model,

and they are evaluated and the correlative fitness values are
calculated using a fuzzy random simulation procedure. Then
the𝑝𝑏𝑒𝑠𝑡,𝑔𝑏𝑒𝑠𝑡, and 𝑙𝑏𝑒𝑠𝑡 are recorded, and new solutions are
generated through an update of the particles. This program
goes on until the stop condition is met. In addition, in
order to improve convergence speed and search efficiency, a
float coding method and a parameter adaptation method are
proposed for the PSO algorithm, respectively. The proposed
solution approach is then a hybrid of the PSO and GA, and
its overall procedure can be seen in Figure 5.

4.2. Solving the Resource Allocation Using an Improved aPSO.
To solve the bilevel model, an improved adaptive PSO is
introduced to cope with the upper-level programming. In
contrast to classical PSO, to improve the convergence speed,
a float coding method, which is capable of incorporating
various constraints in its implementation [39] and has been
used in PSO for solving bilevel programming problem [37],
is proposed to generate the initial particles for the upper-
level variables. At the same time, a parameter adaptation
regulation is applied to improve the search efficiency of the
PSO. In addition, to deal with the uncertainty on the upper
level, a fuzzy random simulation procedure is proposed to
calculate the fitness value of each particle. The procedure for
the improved adaptive PSO is as follows.

Step 1. Set the parameters for the adaptive PSO: swarm size,
iteration max, 𝑐

𝑝
, 𝑐

𝑔
, 𝑐

𝑙
, inertia weight max, and inertia

weight min.

Step 2. Initialize the velocity and the position of the
upper-level model. Each particle is represented as
𝜃 = {𝑅

111
, 𝑅

112
, . . . , 𝑅

11𝑃
, 𝑅

121
, 𝑅

122
, . . . , 𝑅

1𝐾𝑃
, . . . , 𝑅

𝑁𝐾𝑃
}.

In order to generate the random particle positions for the
upper-level variables, float coding method is adopted. Thus,
every particle represents a real dimensional position. At
the same time, the constraints ∑𝑁

𝑛=1
𝑅

𝑛𝑘𝑝
≤ 𝑅

𝑘𝑝
, for all

𝑘 = 1, . . . , 𝐾, 𝑝 = 1, . . . , 𝑃, are also incorporated into
the coding to ensure that the generated particles meet the

constraints on the upper level. That is, for any given 𝑘 and 𝑝,
𝑅

1𝑘𝑝
is generated randomly within the range [0, 𝑅

𝑘𝑝
] while

𝑅
𝑛𝑘𝑝

is generated within the range [0, 𝑅
𝑘𝑝
− ∑

𝑛−1

𝑖=1
𝑅

𝑖𝑘𝑝
].

Step 3. Solve the lower-level programming with the initial-
ization result of the upper-level variables using the pro-
posed adaptive hybrid genetic algorithm for the multimode
resource-constrained project scheduling problem.

Step 4. Calculate each fitness value using a fuzzy random
simulation procedure using the calculated results of the lower
level: 𝑥

𝑛𝑖𝑗𝑡
and 𝑇

𝑛
. Here, the objective value of the upper-level

model is considered the fitness value which is estimated using
Procedure 1.

Step 5. Update the 𝑝𝑏𝑒𝑠𝑡, 𝑔𝑏𝑒𝑠𝑡, and 𝑙𝑏𝑒𝑠𝑡.

Step 5.1. Update 𝑝𝑏𝑒𝑠𝑡: for 𝑠 = 1 ⋅ ⋅ ⋅ 𝑆, if 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝜃
𝑠
) <

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑝𝑏𝑒𝑠𝑡), 𝑝𝑏𝑒𝑠𝑡 = 𝜃
𝑠
.

Step 5.2. Update 𝑔𝑏𝑒𝑠𝑡: for 𝑠 = 1 ⋅ ⋅ ⋅ 𝑆, if 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝜃
𝑠
) <

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑔𝑏𝑒𝑠𝑡), 𝑔𝑏𝑒𝑠𝑡 = 𝜃
𝑠
.

Step 5.3. Update 𝑝𝑏𝑒𝑠𝑡: for 𝑠 = 1 ⋅ ⋅ ⋅ 𝑆, among all 𝑝𝑏𝑒𝑠𝑡 from
𝐾 neighbors of the 𝑠th particle, set the personal best which
obtains the least fitness value to be 𝑙𝑏𝑒𝑠𝑡.

Step 6. Update the inertia weight for iteration 𝜏 using the
following equations:

𝜔 =
∑

𝑆

𝑠=1
∑

𝐻

ℎ=1

𝜔𝑠ℎ



𝑆 ⋅ 𝐻
,

𝜔
∗

=

{{{{

{{{{

{

(1 −
1.8𝜏

𝑇
)𝜔

max
, 0 ≤ 𝜏 ≤

𝑇

2
,

(0.2 −
0.2𝜏

𝑇
)𝜔

max
,

𝑇

2
≤ 𝜏 ≤ 𝑇,

Δ𝑤 =
(𝜔

∗

− 𝜔)

𝜔max (𝑤
max

− 𝑤
min
) ,

𝑤 = 𝑤 + Δ𝑤,

𝑤 = 𝑤
max if 𝑤 > 𝑤

max
,

𝑤 = 𝑤
min if 𝑤 > 𝑤

min
.

(18)

Step 7. Update the velocity and the position of each particle
using the following equations:

𝜔
𝑛𝑘𝑝
(𝜏 + 1) = 𝑤 (𝜏) 𝜔

𝑛𝑘𝑝
(𝜏) + 𝑐

𝑝
𝑢

𝑟
(𝜓

𝑛𝑘𝑝
− 𝜃

𝑛𝑘𝑝
(𝜏))

+ 𝑐
𝑔
𝑢

𝑟
(𝜓

𝑔ℎ
− 𝜃

𝑛𝑘𝑝
(𝜏)) + 𝑐

𝑙
𝑢

𝑟
(𝜓

𝐿

𝑛𝑘𝑝
− 𝜃

𝑛𝑘𝑝
(𝜏)) ,

𝜃
𝑛𝑘𝑝
(𝜏 + 1) = 𝜃

𝑛𝑘𝑝
(𝜏) + 𝜔

𝑛𝑘𝑝
(𝜏 + 1)

For any given 𝑘 and 𝑝

If 𝜃
𝑛𝑘𝑝
(𝜏 + 1) > 𝑅

𝑘𝑝
−

𝑛−1

∑
𝑖=1

𝑅
𝑖𝑘𝑝
, then set

𝜃
𝑛𝑘𝑝
(𝜏 + 1) = 𝑅

𝑘𝑝
−

𝑛−1

∑
𝑖=1

𝑅
𝑖𝑘𝑝

and 𝜔
𝑛𝑘𝑝
(𝜏 + 1) = 0



10 Journal of Applied Mathematics

Begin the program

Initialize the parameters (PSO: swarm size, iteration max, cp, cg , cl, inertia weight
max, inertia weight min. GA: population size, crossover rate pc, mutation rate pm ,

and maximum generation)

Initialize the particles of PSO, i.e., {R111, R112, · · · , Rnkp , · · · RNKP}

Obtain the position of each particle for the upper-level model

Calculate the fitness for each particle
using fuzzy random simulation procedure

Apply a-hGA to solve the lower-level model

Put the upper-level variables {Rnkp}

Generate the initial population P(0) using activity
priority and multistage-based encoding routine

Evaluate P(t) using priority-based decoding routine

Create C(t) from P(t) by crossover operator

Create C(t) from P(t) by mutation operator

Select new chromosomes by selection operator

Updated the parameters of GA using adaptive method

Update the pbest, gbest, and lbest according to the calculated fitness values

Update the inertia weight for each particle using adaptive update procedure, i.e.,

Update the velocity and the position for each particle according to equation (17)

equation (16)

The stopping criterion
in met?

The stopping

End the program

criterion is met?

Yes

Yes

No
No

No

No

Put out the objective value Tn of lower-level model

Let n = 1, Fn = −∞, f( kp) =
N

∑
n=1

cpnDTn +
P

∑
p=1

K

∑
k=1

N

∑
n=1

kpRnkp
≃c≃c

Generate 𝜔 from Ω according to the probability measure Pr of ckp
≃

≃

≃

≃

Generate a determined vectorf(ckp(𝜔)) uniformly from the 𝛼-cut

f(ckp(𝜔)) ≤ Fn?

Let Fn = f(ckp(𝜔)) and n = n + 1

n > N?

Set N = 𝛽N and return the Nth least element
in {F1, · · · , FN} as the fitness value

Figure 5: The overall procedure of the proposed solution algorithm.
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Step 1: Let 𝑛 = 1, 𝐹
𝑛
= −∞, 𝑓(�̃�

𝑘𝑝
) = ∑

𝑁

𝑛=1
𝑐𝑝

𝑛
𝐷𝑇

𝑛
+ ∑

𝑃

𝑝=1
∑

𝐾

𝑘=1
∑

𝑁

𝑛=1
�̃�
𝑘𝑝
𝑅

𝑛𝑘𝑝
.

Step 2: Generate 𝜔 fromΩ according to the probability measure Pr of the fuzzy random variables �̃�kp.
Step 3: Generate a determined vector 𝑓(�̃�

𝑘𝑝
(𝜔)) uniformly from the 𝛼-cut of fuzzy vector 𝑓(�̃�

𝑘𝑝
(𝜔)).

Step 4: If 𝑓(�̃�
𝑘𝑝
(𝜔)) ≤ 𝐹

𝑛
, then let 𝐹

𝑛
= 𝑓(�̃�

𝑘𝑝
(𝜔)). Return to step 3, and repeat𝑀 times.

Step 5: If 𝑛 = 𝑁, set𝑁

= 𝛽𝑁 and return the𝑁th least element in 𝐹
1
, 𝐹

2
,. . ., 𝐹

𝑁
as the fitness value; else go to step 2, and 𝑛 = 𝑛 + 1.

Procedure 1: Calculate fitness value using fuzzy random simulation.

Activity 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Priority 3 2 6 8 12 13 1 16 7 14 4 10 5 9 11 15

Mode 1 1 2 2 1 1 3 2 3 1 2 3 2 1 2 2 

Figure 6: An individual solution composed of priority-based and multistage-based chromosomes.

If 𝜃
𝑛𝑘𝑝
(𝜏 + 1) < 0, then set

𝜃
𝑛𝑘𝑝
(𝜏 + 1) = 0 and 𝜔

𝑛𝑘𝑝
(𝜏 + 1) = 0.

(19)
Step 8. If the stopping criterion is met, that is, 𝜏 = 𝑇, stop.
Otherwise, 𝜏 = 𝜏 + 1 and go to Step 2.

4.3. Solving the Project Scheduling Using a-hGA. In the
considered problem, the multimode resource-constrained
project scheduling problem (MRCPSP) is discussed on the
lower level. For the MRCPSP, many types of heuristic
algorithms such as simulated annealing [40], PSO [41],
and genetic algorithm [42] have been applied in previous
research. Zhang et al. [41] compared the performance of the
several types of algorithms. The results show that the genetic
algorithm has a higher percentage in finding the optimal
schedule.Hence, the adaptive hybrid genetic algorithmwhich
is proposed byKim et al. [42] is introduced to solve the lower-
level problem. Let 𝑃(𝑡) and 𝐶(𝑡) be the parents and offspring
in the current generation 𝑡. The detailed procedure of the
proposed genetic algorithm is as follows.

Step 1. Set the initial value and parameters for the genetic
algorithm: population size, crossover rate 𝑝

𝑐
, mutation rate

𝑝
𝑚
, and maximum generation 𝑔max.

Step 2. Generate the initial population 𝑝(0) using an activity
priority andmultistage-based encoding routine.The individ-
ual solution is composed of two chromosomes where the first
shows the feasible activity finish sequence and the second
consists of activity mode assignments [42]. An example with
16 activities is illustrated in Figure 6.

Step 3. Evaluate 𝑝(𝑡) using the priority-based decoding rou-
tine. The objective function is used as the fitness function.

Step 4. Create 𝐶(𝑡) from 𝑃(𝑡) by order-based crossover oper-
ator for activity finish priority. The procedure is explained
bellow and an example is illustrated in Figure 7.

Step 4.1. Select a set of positions from one parent in activity
priority at random.

Step 4.2. Produce a child by copying the cites in these
positions into the corresponding positions.

Step 4.3. Delete the cites which are already selected form the
second parent. The resulting sequence of sites contains the
sites the child needs.

Step 4.4. Place the cites into the unfixed positions of the child
from left to right according to the order of the sequence to
produce one offspring.

Step 5. Create 𝐶(𝑡) from 𝑃(𝑡) using the neighborhood search
mutation routine for activity mode.

Step 5.1. Select a set of pivot genes randomly from the current
chromosome.

Step 5.2. Pick up the genes, and search for the neighbors until
the bound of the activity mode.

Step 5.3. Evaluate the neighbors; choose the best neighbor.

Step 5.4. If the best neighbor is better than the current, replace
the current with the neighbor.

Step 6. Climb 𝐶(𝑡) using the iterative hill climbing routine
method.

Step 6.1. Select the optimum chromosome in the current
generation.
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Parent 7 9 2 1 15 16 3 8 12 10 4 6 13 14 5 11

Offspring 1 2 6 8 12 3 10 16 7 14 4 13 5 9 11 15

Parent 3 2 6 8 12 13 1 16 7 14 4 10 5 9 11 15

Figure 7: Order-based crossover for activity priority.

Step 6.2. Randomly generate as many new chromosomes as
the population size in the neighborhood of the optimal one.

Step 6.3. Select a chromosome with the optimal value of
fitness among the set of the neighborhood.

Step 6.4. Compare with the optimal one in the current
generation and the optimal one in the neighborhood; choose
the better and put it into the current generation to be the
optimum chromosome instead of the original one.

Step 7. Apply the heuristic for adaptively regulating GA
parameters. Select 𝑃(𝑡 + 1) from 𝑃(𝑡) and 𝐶(𝑡) using elitist
selection routine. The regulation is as follows:

𝑝


(𝑡) =

{{{{{{{{{{{{

{{{{{{{{{{{{

{

𝑝 (𝑡) + 𝛼,
𝑓parsize (𝑡)

𝑓parsize (𝑡)
≥ 1.1

𝑝 (𝑡) − 𝛼,
𝑓parsize (𝑡)

𝑓offsize (𝑡)
≤ 0.9

𝑝 (𝑡) , 0.9 ≤
𝑓parsize (𝑡)

𝑓offsize (𝑡)
≤ 1.1.

(20)

Here, the 𝑝(𝑡) can be 𝑝
𝑐
(𝑡) or 𝑝

𝑀
(𝑡). 𝑝

(𝑡) are the new
parameters amended. And when it is 𝑝

𝑐
(𝑡), 𝛼 = 0.05;

when it is 𝑝
𝑀
(𝑡), 𝛼 = 0.015. 𝑓parsize(𝑡) and 𝑓offsize(𝑡) are the

average fitness values of parents and offspring in the current
generation 𝑡. parsize and offsize are the parent size and offspring
size satisfying constraints.

Step 8. Repeat the above stages 3 to 7 after 𝑡 + 1 → 𝑡 until
the stop condition is met, that is, 𝑡 ≥ 𝑔max.

5. Case Study

In this section, computational experiments that were carried
out on a real application are presented. Through an illus-
trative example on the data set adopted from a case study,
the proposed method is validated and the efficiency of the
algorithm is tested. The data for resource allocation, project
scheduling, and others involved in the case are from an
industrial equipment installation company (company X) and
an electric power design institute in Sichuan province, China.
The case is introduced to demonstrate the potential real world
applications of the proposed methods.

5.1. Presentation of Case Problem. Company X is a state-
owned large-scale comprehensive installation and construc-
tion company with total assets of 460 million RMB and
more than 3000 workers, which always contracts for multiple
projects at the same time. To manage these projects, many
project groups are found. These project groups can purchase
somematerials and equipment by themselves.However, some
other resources must be allocated from the company such as
large-scale equipment and professional staff.

The company has contracted for an installation engineer-
ing project at the HP power plant construction project in
Luzhou. This is made up of two projects: the installation
projects of 1 and 2 power units. At the same time, the
company has also contracted for another installation project:
an equipment installation project for a sewage treatment con-
struction engineering project in Luzhou.Hence, the company
is managing three projects at the same time. Formanagement
convenience, each project is managed by a project group who
takes charge of the project scheduling and resource allocation
within their project. However, some important resources
such as large-scale installation equipment are still controlled
by the companymanager.Theproblem the companymanager
faces is how to allocate these resources over the three projects
so as to gain maximal company income. This is a good
example of the proposed bilevel resource allocation problem.

In this case, each power plant construction engineering
installation project consists of 12 activities, while the sewage
treatment construction engineering equipment installation
project has 11 activities. The flow charts are illustrated in
Figures 8 and 9. Every activity has several optional modes,
and every activity in a certain mode has a certain duration
and some resource requirements. Each activity duration is
modelled as a discrete triangular fuzzy random variable.
The project managers traditionally use days as time units.
The corresponding data is as follows in Table 1. However,
each project has resource limitations including manpower,
materials, and equipments, with some key resources being
managed by company managers. In this paper, we consider
four resources, including cranes (CR), concreting machinery
(CM), welding outfits (WO), and electrical equipment (EE).
The total quantities and unit costs for these equipments are
shown in Table 2. In this case, all the resources are assigned to
projects at the beginning of each week. Hence, we use weeks
as the unit time for resource allocation. It is assumed that the
other resources are sufficient for all three projects.
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Figure 8: The activity precedence of installation project for thermal power plant construction engineering.
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Figure 9: The activity precedence of installation project for sewage treatment construction engineering.

5.2. Computing Results. In order to run the program for
the proposed PSO-GA algorithm, the parameters for the
PSO algorithm were set as follows: swarm size=40, itera-
tion max=200, inertia weight max=1, weight min=0, posi-
tion acceleration constant 𝑐

𝑝
= 0.3, 𝑐

𝑔
= 0.3, and 𝑐

𝑙
=

0.1. For the GA, an order-based crossover is used as the
crossover operator at a rate of 0.4. A neighborhood search
mutation with a rate of 0.05 was used. The population
size was set as 40 and the maximum cycle number was
equal to 400. In this case, the predetermined finishing times
for the three projects were September 15, October 31, and
September 20, respectively. The unit overdue penalty costs
are 50,000 RMB/day, 30,000 RMB/day, and 40,000 RMB/day,
respectively.

The computer running environment was an intercore
2 Duo 2.26GHz clock pulse with 2048MB memory. The
programwaswritten usingMATLAB 2007. After 3.12minutes
on average, the optimal solutions for the bilevel programming
were determined.

The partial assignment scheme for these resources is
shown in Table 3 and Figure 10. The integrated project
schedules are illustrated in Figure 12. From Table 3 and
Figure 10, the following can be seen. (1) The resource should
be assigned to projects dynamically since the demanded
quantity changes over time. (2) It is not necessary to allocate
resources during the projects for each period because the
assigned quantity is the same in some continuous periods.
(3) This also reflects that the allocation period length has an
effect on the allocation results. From Figure 10, we can see

the following. (1) The finishing time and chosen modes for
project 1 and project 2 are different although they have same
resources requirements. (2) Activities which need the same
resources have been staggered because the total resource
quantity is insufficient to implement these activities at the
same time. This indicates that the scheduling is impacted by
the resource allocation over the three projects although the
company manager does not control the project scheduling
directly. Hence, the resource allocation on the upper level can
impact the decision on the lower level. Moreover, the results
show that existing company resources cannot ensure that all
three projects can finish on time. In this case, the company
managers have to allocate more resources to the first project,
which has a higher tardiness penalty. These detailed results
can assist the decision makers on both the upper and lower
levels to make the appropriate resources allocation plans.

5.3. Model Analysis. In this section, the proposed model is
analyzed through a comparison with other resource alloca-
tion methods and an analysis is given for three uncertain
models.

5.3.1. Assignment Method Comparison. Traditionally, re-
source allocation planning over multiple projects is executed
using a resource-constrained multiple project scheduling
model (RCMPS).This model is dependent on an assumption
that a single manager oversees all projects. That is, there is
only one level manager who is responsible for the overall
project resource allocation and for the resource allocation
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Table 1: The activity duration and resource consumption for the installation projects.

No. Mode Duration
Resource requirement

CR CM WO EE
16 10 30 6

A 1 {(32, 34, 36), 0.5; (35, 38, 41), 0.3; (42, 48, 54), 0.2} 6 4 8 2
2 {(28, 30, 32), 0.5; (30, 33, 35), 0.3; (35, 40, 45), 0.2} 8 5 12 2

B
1 {(20, 23, 26), 0.4; (22, 25, 28), 0.3; (25, 30, 35), 0.3} 3 2 4 2
2 {(15, 18, 21), 0.4; (18, 21, 24), 0.3; (20, 23, 26), 0.3} 4 2 6 2
3 {(12, 15, 18), 0.4; (15, 18, 21), 0.3; (20, 24, 28), 0.3} 5 4 8 2

C 1 {(20, 23, 26), 0.3; (22, 25, 28), 0.3; (25, 30, 35), 0.4} 2 3 0 0
2 {(15, 18, 21), 0.3; (18, 21, 24), 0.3; (20, 23, 26), 0.4} 3 3 0 0

D
1 {(24, 26, 28), 0.3; (26, 28, 30), 0.3; (30, 32, 34), 0.4} 2 0 4 0
2 {(20, 23, 26), 0.3; (22, 25, 28), 0.3; (25, 30, 35), 0.4} 2 0 6 0
3 {(18, 20, 22), 0.3; (20, 22, 24), 0.3; (22, 24, 26), 0.4} 3 0 8 0

E
1 {(28, 30, 32), 0.3; (30, 33, 35), 0.3; (35, 40, 45), 0.4} 2 0 3 0
2 {(24, 26, 28), 0.3; (28, 31, 34), 0.3; (30, 34, 38), 0.4} 3 0 4 0
3 {(20, 23, 26), 0.3; (22, 25, 28), 0.3; (25, 28, 31), 0.4} 4 0 5 0

F 1 {(15, 17, 19), 0.4; (17, 19, 21), 0.3; (20, 22, 24), 0.3} 2 4 0 0
2 {(10, 12, 14), 0.4; (12, 15, 18), 0.3; (15, 18, 21), 0.3} 3 6 0 0

G 1 {(15, 17, 19), 0.4; (17, 19, 21), 0.3; (20, 22, 24), 0.3} 2 0 8 1
2 {(10, 12, 14), 0.4; (12, 15, 18), 0.4; (15, 18, 21), 0.2} 3 0 10 2

H 1 {(3, 5, 7), 1.0} 0 0 0 4
2 {(5, 7, 9), 1.0} 0 0 0 6

I 1 {(32, 34, 36), 0.3; (35, 38, 41), 0.3; (42, 48, 54), 0.4} 2 2 4 0
2 {(28, 30, 32), 0.3; (30, 33, 35), 0.3; (35, 40, 45), 0.4} 4 3 6 0

J
1 {(20, 23, 26), 0.5; (22, 25, 28), 0.4; (25, 30, 35), 0.1} 2 0 0 2
2 {(15, 18, 21), 0.5; (18, 21, 24), 0.4; (20, 23, 26), 0.1} 2 0 0 2
3 {(12, 15, 18), 0.5; (15, 18, 21), 0.4; (20, 24, 28), 0.1} 3 0 0 3

K 1 {(28, 30, 32), 0.3; (30, 33, 35), 0.3; (35, 40, 45), 0.4} 1 0 3 1
2 {(22, 25, 27), 0.3; (25, 28, 31), 0.3; (30, 33, 36), 0.4} 2 0 5 2

L
1 {(15, 17, 19), 0.5; (17, 19, 21), 0.4; (20, 22, 24), 0.1} 0 0 4 2
2 {(13, 15, 17), 0.5; (15, 17, 19), 0.4; (17, 20, 23), 0.1} 0 0 6 3
3 {(12, 14, 16), 0.5; (14, 15, 16), 0.4; (16, 17, 18), 0.1} 0 0 8 4

Table 2: The total quantity and unit cost of the company resources.

Resource CR CM WO EE
Total quantity 16 10 30 6
Cost
(unit: CN/day)

(780, 𝜌, 960),
𝜌 ∼ 𝑁(850, 50)

(1020, 𝜌, 1300),
𝜌 ∼ 𝑁(1160, 80)

(500, 𝜌, 700),
𝜌 ∼ 𝑁(600, 60)

(920, 𝜌, 1240),
𝜌 ∼ 𝑁(1100, 75)

in each specific project. However, a bilevel organization
structure is frequently used to manage projects which have
two levels of managers. In this case, a bilevel optimization
assignment model (BLOAM) is proposed to allocate the
company resources over multiple projects. In this model,
the company managers are responsible for the multipro-
ject resources allocation in each period, while the project
managers are responsible for the resource allocation for each
specific project. In practice, other several assignment meth-
ods can also be used in the bilevel multiproject environment.
One of these is called the Simple Weight Allocation Method
(SWAM). The SWAM gives a weigh to each project and then

assigns resources to the projects according to the weight at
the beginning of each resource period. Another method is
the First In System First Served (FISFS) method which gives
priority to the project that has been waiting the longest when
resource conflicts occur. In addition, the MINPDD method
gives priority to the project that has the earliest project
due date and the MINPSLK method gives priority to the
project that has the smallest project slack.There is a common
characteristic in these four methods, as all of them only set
the allocation regulation before the project implementation
rather than making a detailed allocation plan for each time
period.
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Table 3: An optimal resource assignment scheme after 20 experi-
ments.

Time CR CM WO EE
𝑃

1
𝑃

2
𝑃

3
𝑃

1
𝑃

2
𝑃

3
𝑃

1
𝑃

2
𝑃

3
𝑃

1
𝑃

2
𝑃

3

1–8 8 8 0 5 5 0 12 12 0 2 2 0
9–12 4 4 8 2 2 4 6 6 10 2 2 2
13–16 6 6 4 5 5 0 8 8 12 0 0 2
17–20 7 4 4 4 4 2 19 11 0 2 2 0
21 5 4 4 0 0 4 12 8 8 0 2 2
22 4 4 4 0 0 6 9 13 6 2 2 0
23-24 5 4 4 0 0 4 10 12 8 4 2 0
25-26 5 4 6 4 4 2 4 8 8 4 0 2
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Project 1
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Project 3

Figure 10: The allocation plan for Resource CR during 38 weeks.

To test these methods above, four performance measures
were used: total cost, project finishing time, actual usage,
and total resource transfers. Actual usage refers to the
proportion of the used resources compared to the total
assigned resources. In practice, in order to improve resource
usage, the assigned resource is transferred to each project
at the beginning of each time period. At the end, idle
resources should be released back into company’s resource
pool if they are not required for a project in the next time
period.This resource transfer is used to record the transferred
resource quantity between the company resource pool and
the projects.

The computation results from the fivemethods are shown
in Table 4. It is seen that, in comparison with other alloca-
tion methods, the proposed bilevel optimization allocation
method can save cost more than 11.45% (600,000 RMB).
The finishing time is also acceptable since it is shorter than
the other three methods. Moreover, it also has the best
resource usage of the fivemethods while the resource transfer
is at an intermediate level. On the contrary, the SWAM
can be seen to be unacceptable because of the high cost
and the low resource usage. The other three methods have
comparable performances with each other. However, all of
these methods show a higher cost and lower resource usage
than the proposed bilevel optimization method. Hence, the
proposed bilevel optimization allocation method is efficient

in reducing costs, shortening project duration, and improving
resource usage. It also shows that it is necessary to decide
on a resource allocation plan using the bilevel optimization
method rather than only making allocation regulation before
project implementation.

5.3.2. Uncertainty Analysis. Uncertainty is an important
consideration in this study. In particular, fuzzy random
variables which integrate fuzzy factor and random factor are
used to model the uncertain activity durations and resource
costs because of the lack of precise data. Besides the fuzzy
random variables, we can also use fuzzy variable or random
variables to deal with the uncertainty. If only fuzzy factors are
considered, then some important random information such
as the weather has to be ignored.The situation is similar when
only considering the random factors. Taking the duration of
activity 𝐴 as an example, because of the lack of precise data,
some experts are invited to estimate the duration. From the
experts, the activity duration will be in the interval [32, 54]
with a most possible value of 40. Then the duration can be
modelled as fuzzy number (32, 40, 54). This is the situation
without considering random factors. In addition, the activity
is estimated to be implemented in October. According to the
weather data, the probability of sunshine, cloud, and rain are
0.5, 0.3, and 0.2, respectively. In this case, a new estimated
value for each type of weather can be obtained. Similar to
the previous estimation, these values are also fuzzy numbers.
Hence, the estimated duration which considers the weather
can be obtained as follows:

̃
𝑑

𝐴
=

{{

{{

{

(32, 34, 36) , 0.5

(35, 38, 41) , 0.3

(42, 48, 54) , 0.2.

(21)

Compared with only fuzzy factors, the fuzzy random
duration has more information which can lead to a more
precise calculation. If we only consider the random factors,
then the fuzzy number in the fuzzy random number has to be
replaced using a crisp number.The crisp number is chosen in
its interval randomly. This could lead to unstable, even false
computation results.

A test was also made by solving the proposed bilevel
optimizationmodel using the three types of uncertain data. In
the comparison, the fuzzy random model and fuzzy random
found different solutions by adjusting the optimistic and
pessimistic index 𝜆, while the randommodel found different
solutions by choosing different crisp numbers randomly.
Table 5 shows the comparison of the three model types based
on the upper level model objective. It can be seen that the
proposed model with fuzzy random variables has a much
better performance than the others, not only in the average
value of the results, but also in the stability.

5.4. Algorithm Evaluation. In this paper, a hybrid algorithm
made up of an adaptive PSO, a GA, and a fuzzy random
simulation was proposed to solve a bilevel resource allocation
problem. In order to test the efficiency of the algorithm, a
comparison with other solution methods was conducted.
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Table 4: An optimal resource assignment scheme after 20 experiments.

Assign methods Total cost
(unit: T RMB)

Finishing time Actual usage Total resource
transfersProject 1 Project 2 Project 3

BLOAM 5242 September 6 November 16 September 25 96.42% 224
SWAM 6381 September 6 November 16 September 25 78.38% 136
FISFS 5768 September 6 November 24 October 15 92.13% 248
MINPDD 5966 September 6 November 24 October 15 94.35% 236
MINPSLK 5842 September 26 November 24 September 28 89.72% 198
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Figure 11: The schedules of three projects on the lower level.

Themost common solution strategy for bilevelmodel is to
transform it into a single level using the Karush-Kuhn-Tucker
(KKT) conditions. However, this is difficult when variables
only take integer values in the inner models. This also means
that it can not be solved using common commercial solvers.
Hence, it is more appropriate to solve the problem using
a heuristic algorithm. In this paper, an improved adaptive
PSO was proposed to deal with the upper level model. First,
a comparison of the improved aPSO and original PSO was
carried out. The average convergence curves are shown in
Figure 11. It is shown that the proposed improved aPSO is
faster and has an improved solution accuracy compared to
the original PSO.

In addition, in our problem, the lower-level model is also
better to be solved using a heuristic algorithm. Traditionally,
researchers have tended to use the same algorithm to solve
both the upper level and lower level. However, for a multi-
mode resource-constrained project scheduling problem, the
genetic algorithm shows a significantly higher percentage
of success in finding the optimal solution although it may
be slower. If the optimal solution to the lower-level model
cannot be found, then the final solution may not be feasible.
Hence, an adaptive genetic algorithm was proposed to deal
with the lower-level model in this paper. In order to test
the efficiency of the proposed hybrid algorithm, other bilevel
algorithms such as PSO-PSO, GA-GA, and GA-PSO were
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Figure 12: The convergence curves of the three PSO algorithms.

Table 5: Comparisons among the three types of uncertainty.

Type of uncertain Best result Worst result Average result
Fuzzy random 5240 5386 5292
Fuzzy 5259 5421 5306
Random 5204 5506 5318

Table 6: Performance of the proposed algorithms based on 50
experiments.

Performance PSO-GA PSO-PSO GA-PSO GA-GA
Best result 5,234,486 5,382,321 5,323,732 5,224,494
Average result 5,318,216 5,547,291 5,388,462 5,267,782
Computing time 3.23 2.15 5.29 14.84

also tested over 50 experiments. In the experiments, the PSO
[41] and the GA [42] were used to solve the lower-level
model. The proposed improved aPSO and the GA [43] were
used to search for the solution to the upper-level model. The
performance of these algorithms is shown in Table 6. The
results indicate that the proposed bilevel hybrid algorithm
based PSO for the upper level and GA for the lower level
is able to find better solutions than either the PSO-PSO or
GA-PSO, and it has a faster computation speed than that
of the GA-GA. Hence, the proposed algorithm is shown to
be efficient for solving the proposed bilevel multiple project
resource allocation problem.

6. Conclusion

This paper presented a bilevel optimization model for com-
pany resource allocation amongmultiple projects in a hierar-
chical organization. There are two levels of decision makers
in the model. The decision maker on the upper level is the
company manager who hopes to allocate company resource
to multiple projects at a lower cost. This cost consists of
the resource costs and the tardiness penalty. On the lower
level, each project manager attempts to schedule their project
with the objective of minimization of project duration under

resource constraints and multiple modes. In addition, the
uncertainty associated with activity duration and resource
cost has been explicitly considered in the model. Specifically,
our research used fuzzy random variables to model the
activity duration and resource costs.Then a hybrid algorithm
made up of an adaptive PSO and aGAbased on fuzzy random
simulation was also applied to search for the optimal solution
to the bilevel model. In the algorithm, an adaptive PSO
was introduced to cope with the upper level programming,
while an adaptive hybrid genetic algorithm was embedded
into the PSO to solve the lower-level model. Finally, the
efficiency of the proposedmodel and algorithmwas evaluated
using a practical case and various computing attributes. In
contrast to prior studies, the proposed model shows that
it was able to deal with a multiproject resource allocation
in a bilevel optimization such as in most of construction
companies, software companies, and some production com-
panies. The limitation of the proposed model is that it
does not allow for new projects to be added during the
scheduled resource allocation periods.This is an interest area
for our future research. In addition, in future research we also
expect to investigate additional methods for dealing with the
uncertainty in resource management such as using interval
mathematical programming, which has been successfully
applied to environmental management [10, 44].
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