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It is reported in the literature that the most fundamental idea to address uncertainty is to begin by condensing random variables. In
this paper, we propose Cournot duopoly game where quantity-setting firms use nonlinear demand function that has no inflection
points. A random cost function is introduced in this model. Each firm in the model wants to maximize its expected profit and also
wants to minimize its uncertainty byminimizing the cost. To handle this multiobjective optimization problem, the expectation and
worst-case approaches are used. A model of two rational firms that are in competition and produce homogenous commodities
is introduced using an unknown demand function. The equilibrium points of this model are obtained and their dynamical
characteristics such as stability, bifurcation, and chaos are investigated. Complete stability and bifurcation analysis are provided.
The obtained theoretical results are verified by numerical simulation.

1. Introduction

In economicmarkets, competed firms often face considerable
uncertainty upon their productions.This uncertainty may be
concerned with information on the exact demand function,
rivals’ costs, or even components of firms own production
cost. The effects of uncertainty in the optimizing behavior of
economic models have been previously examined by many
researchers. Sandmo [1] has introduced a systematic study
of the theory of firms under a price uncertainty and risk
aversion. In [2], some properties of class of models involving
optimization under uncertainty have been analyzed. Dard-
ononi [3] has presented the impact of uncertainty on an agent
that has a two-argument utility function under plausible
normality conditions. A simple noncooperative game with
common uncertainty in which the firms have two-argument
utility functions has been discussed by Gradstein et al. [4].
In [4], the authors have shown that the effect of increased
uncertainty on the equilibrium strategies is similar to its effect
on the optimal strategy of a single agent.

In the literature, several studies concerning duopolistic
models under uncertainty have investigated that in such

models each firm is in risk neutral andmay share or exchange
its information on market uncertainty with its rival [5–11]. In
these studies, it has been investigated howmarket uncertainty
with either unknown market demand or unknown constant
marginal cost can affect firms’ behavior.

Everyone agrees that risk is associated with having to
make a decision without fully knowing its consequences, due
to future uncertainty, but also knowing that some of those
consequences might be bad or at least undesirable relative to
others [12]. To many people, the amount of risk in a random
variable representing a cost of some kind is the degree of
uncertainty in it, that is, how much it deviates from being
constant. To other people, risk must be quantified in terms of
a surrogate for the overall cost, such as itsmean value,median
value, or worst possible value [12]. An alternative approach
for risk measurement has been introduced in detail by
Ahmed et al. [13]. In [13], Ahmed et al. have modeled risk
in Cournot game based on multiobjective method. Ahmed
et al. [13] have used the standard deviation for modeling risk
in Cournot game.

The goal of this paper is to set up a discrete time dynamic
Cournot model in which duopoly firms use an unknown
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nonlinear demand functionwith cost uncertainty.We assume
that each firm does not know the other firm’s cost function
at the time when the output is produced. It is assumed that
the cost function used in this model is generated based on
a random variable with zero mean and standard deviation
equal to one. Therefore, with the given situation of uncer-
tainty, the existence and uniqueness of the equilibrium point
and its asymptotic behavior are proved and investigated.

The paper is devoted as follows. In Section 1, an intro-
duction and related works are presented. Next, some basic
concepts which can be found elsewhere [14–17] are provided
in Section 2 to make the current paper self-contained. The
model and the main results are illustrated and discussed in
detail in Section 3. Finally, some concluding results are pre-
sented.

2. Basic Concepts

This section provides some basic concepts that will be used in
the sequel.

Definition 1. Apayoff is a function𝜋 : A → R that associates
a numerical value with every action 𝑎 ∈ A.

Definition 2. An action 𝑎∗ ∈ A is an optimal action if𝜋(𝑎∗) ≥
𝜋(𝑎) for all 𝑎 ∈ A.

Definition 3. A solution is called a Pareto-optimal solution
if no player’s payoff can be increased without decreasing the
payoff to the other player. Such solutions are also termed
socially efficient or just efficient.

Definition 4. A Nash equilibrium (for the two player games)
is a pair of strategies (𝜎∗
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where Σ
𝑖
is the set of all possible strategies for player 𝑖.

3. Model and Main Results

Here, we propose a new demand function that has not been
used in the literature before. The purpose of using this func-
tion is that the function has no inflection points. In addition,
it has been investigated elsewhere that when themonopolistic
firms use such function in the market it seems that Nash
equilibrium goes from stability through double bifurcation to
chaos [18]. To start our work in the present paper, we consider
that the market includes two firms producing homogeneous
commodities to sale in the market. Let 𝑞𝑡

𝑖
be the output of the

firm 𝑖, 𝑖 = 1, 2, at discrete time 𝑡 = 0, 1, 2, . . .. This simple
situation is called a Cournot duopoly game. Apparently, one
should be aware that those two firms are in conflict (more
precisely, in competition). Now, let us assume that both firms
adopt the following inverse demand function:

𝑃 (𝑄
𝑡
) = 𝑎 − 𝑏𝑄

4

𝑡
, (2)

where 𝑄
𝑡
= ∑
2

𝑖=1
𝑞
𝑡

𝑖
, 𝑞
𝑖
, 𝑖 = 1, 2, is the quantity of commodity

produced by the firm 𝑖. In addition, 𝑎, 𝑏 are positive constants.

Few approaches of uncertainty in multiobjective opti-
mization problems have been reported in the literature [19].
The most fundamental idea to address uncertainty in such
problems is to begin by condensing random variables. Rock-
afellar [19] has reported shortcomings on those approaches.
In this section, we apply the expectation and worst-case
approaches described by Rockafellar [19]. Let us now suppose
that the two firms use the following random cost function:

𝐶 (𝑞
𝑡

𝑖
) = (𝑐 + 𝛾𝜀

𝑖
) 𝑞
𝑡

𝑖
, 𝑖 = 1, 2, (3)

where 𝑐 ≥ 0 is the fixed marginal cost, 𝜀
𝑖
≥ 0, and 𝛾 is a

random variable with zero mean and variance equal to 1. The
main aim of each firm is to maximize its following profit:
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Now, a repeated Cournot duopoly game is considered.
It consists of two bounded rational players (firms) in which
they update their production strategies at discrete time peri-
ods. They use an adjustment mechanism based on a local
estimation of the marginal profit.This dynamical adjustment
mechanism is described by the following dynamical system:

𝑞
𝑡+1

𝑖
= 𝑞
𝑡

𝑖
+ 𝛼 (𝑞

𝑡

𝑖
)

𝜕𝜋
𝑖

𝜕𝑞
𝑡

𝑖

, 𝑖 = 1, 2. (5)

It is known elsewhere [13, 18] the significance of speed of
adjustment 𝛼(𝑞𝑡

𝑖
). It is a positive function which gives the

extent of production variation of 𝑖th firm following a given
profit signal. Moreover, it captures the fact that relative effort
variations are proportional to the marginal profit.

Here, two scenarios are considered as follows.

Scenario 1 (worst-case approach). This case relies on deter-
mining the worst that might happen. For example, if the
uncertainty in 𝛾 has to do with market fluctuation due to
future circumstances, there may be no available choice of the
fixed cost 𝑐 that guarantees absolute compliance.Therefore, if
the target of a firm is tomaximize its profit, it may have to live
with a balance between the practicalities of the fixed cost
𝑐 and the chance that fluctuation of the market could be
controlled by some extreme efforts.

Substituting (4) in (5), one gets
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(6)

where 𝜀
𝑖
> 0, 𝑖 = 1, 2, is the cost control parameters. In the

literature many authors have assumed a constant speed of
adjustment inducing that a positive variation of profits will
make the monopolist to change the quantity in the same
direction from that in the previous one.Therefore, no changes
will occur if profits are constant. Bischi et al. [20, 21] have
chosen a speed of adjustment that is linear function of the
quantities produced. In this paper, we assume a linear speed



Journal of Applied Mathematics 3

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
q
t 1
,q

t 2

k

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

q
t 1
,q

t 2

k

(b)

Figure 1: Bifurcation and chaos of themap (6) at the parameters: (a)
𝑎 = 3, 𝑏 = 1.5, 𝑐 = 0.3, 𝜀

1
= 0.3, 𝜀

2
= 0.7, and 𝛾 = 0.7254; (b) 𝑎 = 3,

𝑏 = 1.5, 𝑐 = 0.3, 𝜀
1
= 0.3, 𝜀

2
= 0.7, and 𝛾 = 2.7694.

of adjustment, where 𝛼(𝑞𝑡
𝑖
) = 𝑘𝑞

𝑡

𝑖
, 𝑖 = 1, 2, 𝑘 is constant. The

above system has the following equilibrium points:
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The fixed points 𝐸
1
and 𝐸

2
can be denoted as monopoly fixed

points such that 𝑎 > 𝑐 + 𝛾𝜀
𝑖
, 𝑖 = 1, 2. Assuming 𝑎 > 𝑐 +

𝛾𝜀
𝑖
, 𝑖 = 1, 2, guarantees positive equilibrium productions. To

get more insights about these two monopolistic points, some
analytical and numerical discussions are carried out.
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Figure 2: Bifurcation and chaos of the map (6) at the parameters:
(a) 𝑎 = 3, 𝑏 = 1.5, 𝑐 = 0.3, 𝜀

1
= 2, 𝜀

2
= 6, and 𝛾 = 0.3192; (b) 𝑎 = 3,

𝑏 = 1.5, 𝑐 = 0.3, 𝜀
1
= 2, 𝜀

2
= 6, and 𝛾 = .3714.

Proposition 5. Letting 𝑎 > 𝑐 + 𝛾𝜀
𝑖
, 𝑖 = 1, 2, then

(i) the fixed point Eo is a repelling node,
(ii) the monopoly point 𝐸

1
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Proof. The proof of the above proposition is based on the
standard analysis of the eigenvalues as follows. It is easy to
check that the point 𝐸
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whose eigenvalues are 𝜆
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are real given 𝑎 > 𝑐 + 𝛾𝜀
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, 𝑖 = 1, 2. Hence, for the point 𝐸
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Figure 3: The relationship between 𝑞𝑡
1
and 𝑞𝑡

2
at the parameters: (a)

𝑎 = 3, 𝑏 = 1.5, 𝑐 = 0.3, 𝜀
1
= 2, 𝜀

2
= 6, and 𝛾 = 2.7694; (b) 𝑎 = 3,

𝑏 = 1.5, 𝑐 = 0.3, 𝜀
1
= 2, 𝜀

2
= 6, and 𝛾 = 0.7254.

be stable, the eigenvalues should satisfy |𝜆
𝑖
| < 1, 𝑖 = 1, 2, that

is, 𝑘 < 1/(2(𝑎 − 𝑐 − 𝛾𝜀
1
)) < 2/(𝛾𝜀

2
− (1/5)(4𝑎 − 4𝑐 + 𝛾𝜀
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)),

which can be reduced to 𝑘 < 2/(𝛾𝜀
2
− (1/5)(4𝑎 − 4𝑐 + 𝛾𝜀

1
)).

For the stability of the point 𝐸
2
, the same considerations and

arguments hold and this completes the proof. Regarding 𝐸
3
,

numerical simulation is employed.
To illustrate the stability of the point 𝐸

3
, some numerical

cases are assumed tomake the discussion economically inter-
preted. Let us assume that the system’s parameters are given
as follows: 𝑎 = 3, 𝑏 = 1.5, 𝑐 = 0.3, 𝜀

1
= 0.3, 𝜀

2
=

0.7, and a randomly selected value 𝛾 = 0.7254.We graphically
show how the dynamical behavior of the map (6) changes
for different values of the parameter 𝑘. Figure 1(a) presents
different values of the quantities for different value of the
parameter 𝑘. It is easily illustrated that both quantities move
from stability through a sequence of period doubling bifur-
cation to chaos. It is also noted that the marginal cost at the
market should be less than the fixed price (𝑎 > 𝑐+𝛾𝜀

𝑖
, 𝑖 = 1, 2).
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Figure 4: Bifurcation and chaos of the map (9) at the parameters:
(a) 𝑎 = 3, 𝑏 = 1.5, 𝑐 = 0.3; (b) 𝑎 = 0.5, 𝑏 = 0.3, 𝑐 = 0.4.

Interestingly, it is numerically observed that when 𝑎 ≤ 1, 𝑏 <
0.5, 𝑐 < 0.3, and the other parameters are left without change
the period doubling bifurcation of the map (6) is going to be
reduced. Figures 1(b) and 2 simulate the dynamic behavior of
themap for different values of the parameters. Figure 3 shows
the chaotic behavior of the relationship between quantities
produced by both firms at different value of the parameter
𝛾.

Scenario 2 (expectation approach). Expectation is primarily
suitable for situations where the interest lies in long-range
operation and where stochastic ups and downs can safely
average out. Since the expectation of 𝛾 is zero, (3) becomes
𝐶(𝑞
𝑡

𝑖
) = 𝑐𝑞
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𝑖
, 𝑖 = 1, 2. With this information, the system (6) is

reduced to the following form:
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That admits the following fixed points:
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The proof of stability and instability conditions of the above
fixed points are similar to those in Proposition 5. Here we
briefly give only numerical simulation for the dynamical
behavior of the system (9) at certain value parameters.
Figure 4 illustrates the dynamic behavior of the system (9) at
those parameters.

4. Conclusions

In this paper, we have proposed a Cournot duopoly model
based on an uncertain cost and a demand function without
inflection point. For thismodel, the existence and uniqueness
of the equilibrium have been proved. The asymptotic behav-
ior of the equilibrium point has been investigated. Complete
stability and bifurcation analysis have been illustrated. The
obtained theoretical results have been verified by numerical
simulation.
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