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The availability of adequate system models to reproduce, as faithfully as possible, the actual behaviour of the experimental systems
is of key importance. In marine systems, the changing environmental conditions and the complexity of the infrastructure needed
to carry out experimental tests call for mathematical models for accurate simulations. There exist a wide number of techniques to
definemathematical models from experimental data. Support VectorMachines (SVMs) have shown a great performance in pattern
recognition and classification research areas having an inherent potential ability for linear and nonlinear system identification. In
this paper, this ability is demonstrated through the identification of the Nomoto second-order ship model with real experimental
data obtained from a zig-zag manoeuvre made by a scale ship. The mathematical model of the ship is identified using Least
Squares Support VectorMachines (LS-SVMs) for regression by analysing the rudder angle, surge and sway speed, and yaw rate.The
coefficients of the Nomotomodel are obtained with a linear kernel function.Themodel obtained is validated through experimental
tests that illustrate the potential of SVM for system identification.

1. Introduction

Nowadays, the breakthroughs in computer science and the
many research works on control engineering and auto-
nomous vehicles call for the availability of adequate math-
ematical models with which new designs and ideas can be
tested in simulation to predict the behaviour of the real
systems with high accuracy. Furthermore, due to the high
cost of practical implementations and tests, it is of higher
importance to have available tools and methods to compute
these mathematical models for simulation purposes. In this
sense, system identification is one of the highlights among the
research topics in engineering and one of the most important
stages in control of autonomous vehicles. In the present work,
we will focus on the computation of a mathematical model
that describes the dynamical behaviour of a surface marine
vessel bymeans of experimental data.Thismodel is computed
with a Support Vector Machines (SVMs) technique, the
Least Squares Support Vector Machines (LS-SVMs). SVM
has shown a great performance in pattern recognition and
classification research areas, and it has a potential ability for

linear and nonlinear system identification that will be shown
throughout this work.

The literature on linear and nonlinear system identifi-
cation is extensive and covers many areas of engineering
research. For a short survey on some essential features in the
identification area and a classification of methods the reader
is referred to [1]. The state-space identification methods are
one of the most common and intuitive techniques to deter-
mine mathematical models in the engineering practice. The
state-space identification methods for linear time-invariant
(LTI) systems are well established, [2]. In the nonlinear
case, the input and output signals of the system can be
used to estimate the state-space representation. Thus, it is of
practical interest to be able to determine the description of a
nonlinear system from a finite number of input and output
measurements, in which the use of Support Vector Machines
(SVMs) can provide an interesting new method to solve this
problem.

In surface and underwater marine robotics, the systems
and vehicles employed can have a high degree of complexity.
Moreover, the changing environmental conditions and the



2 Journal of Applied Mathematics

complexity of the infrastructure needed to carry out exper-
imental tests call for mathematical models for accurate
simulations. System identification of marine vehicles starts in
the 70swith theworks of [3], where an adaptive autopilot with
reference model was presented, and [4], where parametric
linear identification techniques were used to define the
guidance dynamics of a ship using the maximum likelihood
method. We can find in the literature on maritime research
several mathematical models to describe the dynamics of
surface vessels and underwater vehicles and algorithms to
compute these models; see, for example, [5], where sev-
eral parametric identification algorithms are used to design
autopilots for different kinds of ships, [6] in which the
hydrodynamic characteristics of a ship are determined by
a Kalman Filter (KF) or [7] where an extended Kalman
filter (EKF) is used for the identification of a ship dynamics
for dynamic positioning. Moreover, different operational
conditions thatmay affect the vessel and that provide different
models have been analysed; see [8] where an overview of
the motion dynamics topic of surface marine vessels and
models is given. The procedure to obtain these models is
not an easy and simple task, it usually requires a lot of time
on practical tests and an important computational effort.
In [9], the authors define a practical ship model and the
identification process for simulation, guidance, and control
for small and low-cost vehicles. The paper shows the lengthy
procedure to obtain a correct identification of the shipmodel.
For some more interesting works, the reader is referred to
[10, 11] and the references therein.

Despite this, in most cases and practical situations, it
is possible to employ a simple model to reproduce the
dynamics of a vessel in standard operational conditions. For
this reason, in this paper the Nomoto second-order model
is used, [12]. This approach provides a less precise model of
the vehicle; however, this model shows very good results in
the experimental setup for standard operations, asmentioned
above, and it can be obtained with SVM techniques in a
fast manner with relatively few data, as it will be shown in
Section 4.

Artificial-neural-networks-based techniques have been
employed for system identification such asmultilayer percep-
tron (MLP); see, for example, [13]. We can find some works
that employ neural networks to define the dynamics of a sur-
face marine vehicle, such as [14–16] or [17]. These techniques
have shown to be robust and effective in identification and
control, although they also show some inherent drawbacks
such as the multiple local minima problem or overfitting,
to name but a few. These problems can be avoided using
SVM since it is not based on the empirical error implemented
in neural networks; rather it is based on the structural risk
minimization (SRM); so SVM provides a larger generalisa-
tion performance. An estimate of generalisation ability may
be obtained from a trained network without using test data,
assuming the training data to be representative. Vapnik-
Chervonenkis (VC) theory is the basic idea behind SVM
which defines ameasure of the capacity of a learningmachine
[18]. The idea is to map input data into a high-dimensional
feature Hilbert space using a nonlinear mapping technique,
that is, the kernel dot product trick [19] and to carry out

linear classification or regression in feature space.The Kernel
functions replace a possibly very-high-dimensional Hilbert
space without explicitly increasing the feature space [20].
SVM, both for regression and classification, has the ability to
simultaneously minimize the estimation error in the training
data (the empirical risk) and the model complexity (the
structural risk) [21]. Moreover, SVM can be designed to deal
with sparse data, where we have many variables but few data.
Furthermore the solution of SVM is globally optimal.

In support vector regression (SVR), a nonlinear model is
represented by an expansion in terms of nonlinear mappings
of the model input, so that they define a feature space that
may be of infinite dimension. A convenient feature in SVR is
that the optimal model complexity is obtained as part of the
solution and does not have to be determined separately. For a
survey and a tutorial on support vector regression, the reader
is referred to [22] and the references therein. The goal is to
find a set of parameters for a given model which are chosen
to fit measured values of output and input data.

An inadequate model identification may yield large pre-
diction errors. It is important to remark that even though
the problem of system identification is of great importance
and the use of SVM has experienced a great boost and
diversification in the last few years, not many results are
available on the topic of system identification with SVM
for regression yet. Exceptions include a series of interesting
results such as the work of [23], where the authors make a
study of the possible use of SVM for system identification,
in particular for parameter estimation in discrete-time linear
models and model structure identification for nonlinear
models,more specificallyNonlinearAuto-RegressiveMoving
Average with eXogeneous Input (NARMAX) models. The
potential of SVM for system identification is remarked, but
some significant issues to be addressed are shown. In [24],
an identification method based on SVR is proposed for
linear regressionmodels such as finite impulse response (FIR)
and Auto-Regressive with eXogeneous input (ARX) models.
The paper shows how the method is robust for simulated
data and it is even applied to actual data from rolling mill
showing a good learning performance. In the work of [25]
the application of SVM to time seriesmodelling is considered
by means of simulated data from an autocatalytic reactor.
In particular, a state-space model is defined for the process
with reconstruction methods from nonlinear dynamics. As
mentioned above, the identification process in [25], is done
by means of simulation data, as most of the papers that
deal with identification using SVM. In [26], a SVM with
linear-kernel-function-based nonparametric model identi-
fication and dynamic matrix control (DMC) technique is
introduced. The paper [27] shows how the kernel canonical
correlation analysis (KCCA) can be used to construct a
state sequence of an unknown nonlinear dynamic system
from delay vectors of inputs and outputs. This sequence is
then used together with input and output data to identify
a nonlinear state-space model. In [28], a design procedure
of SVM-based model identification and control strategy is
proposed. The proposed design procedure and the SVM-
based model identification are illustrated with the control
of a simulated continuous-stirred tank reactor. In [29], SVR
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is applied to the identification of a nonlinear system that
corresponds to a Wiener model, that consists of a linear
dynamic system with a static nonlinear block. The static
nonlinear block is determined by SVR. The model employed
is function of the input only, not depending on the measured
system outputs. The identification procedure is tested with
numerical simulations.

In this work, a variation of SVM, the Least Squares Sup-
port Vector Machines (LS-SVMs) [30], is used for system
identification with regression. This technique allows a nice
simplification of the problem making it more tractable. A
study on this subject can be found in [31] where LS-SVM
is used for nonlinear system identification for some simple
examples of Nonlinear Auto-Regressive with eXogenous
input (NARX) input-output models. There also exist some
other representative examples that deal with identification
using LS-SVM. For example, in [32], the identification of
MIMO Hammerstein ARX models based on LS-SVM is
studied. The results are compared with two other techniques
(the Hermite polynomial expansion and a RBF network)
with numerical simulations showing an improvement of the
performance with the LS-SVM approach. In [33], a new
support vector kernel is defined, the wavelet kernel that
satisfies wavelet frames. This kernel is able to approximate
arbitrary functions improving the generalisation ability of
the SVM. Based on this kernel and on LS-SVM, the LS-
WSVM is constructed and it is applied to a nonlinear system
identification problem showing better accuracy than a Gaus-
sian kernel for the problem studied. Finally in [34], the LS-
SVM is combined with the multiresolution analysis (MRA)
to provide a new improved algorithm, the multiresolution
least squares support vector machines (MLS-SVMs). This
algorithm has the same theoretical framework as MRA
but it has a better approximation ability and can gradually
approximate the target function at different scales.

With respect to the identification of marine vehicles by
using SVM, we can find two interesting references, [35] and
[36], where an Abkowitz model for ship manoeuvring is
identified by using LS-SVM and 𝜖-SVM, respectively. The
purpose of these works is to determine the hydrodynamic
coefficients of a Mariner-class vessel, although the identifica-
tion of the mathematical model is made with data obtained
from simulation and then tested only in simulation. These
works do not deal with real data. Furthermore, it is important
to point out that most of the works on system identification
with SVR deal with simulation data and numerical examples,
where the use of SVR is not tested on an experimental setup,
as far as the authors know. In striking contrast to what is
commonly reported in the literature, in the paper at hand the
model identification is done with experimental data obtained
from a scale surface marine vessel, and the mathematical
model obtained is validated with experimental tests carried
out with the scale ship, showing how the model predicts with
large accuracy the actual behaviour of the surface vessel. It
is important to keep in mind, for the experimental results
obtained in this paper, that the analytical properties of SVM
can be compromised in stochastic problems because the noise
generates additional support vectors. However, if the noise

ratio is good and the amplitude is limited, the SVM can solve
the problem as if it was deterministic [23].

The key contributions of the present paper are twofold: (i)
themathematicalmodel of a surfacemarine vessel is obtained
with the LS-SVM technique from experimental data collected
from a 20/20 degree zig-zag manoeuvre; and (ii) in striking
contrast to what is customary in the literature, the prediction
ability of the mathematical model computed with LS-SVM
regression is tested on an open air environment with the
real ship. This allows us to explicitly address the connection
between the mathematical model identified and the ship, so
that the model can be used to design control strategies to be
implemented on the real vehicle and to predict its behaviour.

The document is organized as follows. In Section 2, a brief
introduction on LS-SVM is given.TheNomoto second-order
model and the training input and output data to be used
are defined in Section 3. In Section 4, the Nomoto model
computed from the training data is well defined and its
behaviour is tested with some turning manoeuvres. Finally,
the conclusions and a brief discussion of topics for further
research are included in Section 5.

2. Least Squares Support Vector
Machines for Regression

In this section, we briefly introduce LS-SVM for system
identification. As mentioned in Section 1, for both regression
and classification, SVM has the ability to simultaneously
minimize the estimation error in the training data (the
empirical risk) and the model complexity (the structural
risk). SVM can also be designed to deal with sparse data,
where we may have many variables but few data. The input
data are mapped into a high dimensional feature space using
nonlinear mapping techniques, and then linear classification
or regression is carried out in feature space.

The use of LS-SVM for regression is very similar to its use
for classification. Following the notation and definitions in
[22, 30], consider a model in the primal weight space:

𝑦 (𝑥) = 𝜔
𝑇
𝜑 (𝑥) + 𝑏, (1)

where 𝑥 ∈ R𝑛 is the input data, 𝑦 ∈ R is the output
data, 𝑏 is a bias term, 𝜔 is a matrix of weights, and 𝜑(⋅) :

R → R𝑛ℎ is the mapping to a high-dimensional space,
where 𝑛

ℎ
can be infinite. The optimization problem in the
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𝑦
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𝜑 (𝑥
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) + 𝑏 + 𝑒

𝑖
, (3)

where 𝑖 = 1, . . . , 𝑁
𝑠
, 𝑒
𝑖
are error variables, and 𝛾 is the

regularisation parameter that determines the deviation tol-
erated from the desired accuracy which must be positive.
The minimization of 𝜔𝑇𝜔 is closely related to the use of a
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weight decay term in the training of neural networks, and the
second term of the right-hand side of (2) controls the tradeoff
between the empirical error and the model complexity. The
main differences between the formulation of LS-SVM with
the standard SVM are the equality constraints (3) and the
squared error term of the second term in the right-hand side
of (2), implying a significant simplification of the problem.

The above primal problem cannot be solved when 𝜔

becomes infinite dimensional. Thus, the Lagrangian must be
computed and the dual problem derived, yielding

L (𝜔, 𝑏, 𝑒, 𝛼) = J (𝜔, 𝑒) −
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(4)

where 𝛼
𝑖
, with 𝑖 = 1, . . . , 𝑁

𝑠
, are the Lagrange multipliers.

The optimality conditions are defined by computing the
derivatives of (4) with respect to 𝜔, 𝑏, 𝑒

𝑖
, and 𝛼
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(5)

for 𝑖 = 1, . . . , 𝑁
𝑠
. After elimination of variables 𝜔 and 𝑒

from the above equations, and applying the kernel trickwhich
allows us to work in large-dimensional feature spaces without
explicit computations on them [19], the LS-SVM model for
function estimation yields

𝑦 (𝑥) =

𝑁𝑠

∑

𝑖=1

𝛼
𝑖
𝐾(𝑥, 𝑥

𝑖
) + 𝑏, (6)

where 𝐾(⋅, ⋅) is the kernel function that represents an inner
product between its operands. This kernel must be a positive
definite kernel and must satisfy the Mercer condition [37].

3. Identification of a Nomoto’s
Second-Order Model

In marine systems, as in a multitude of engineering areas,
an adequate mathematical model is essential to simulate and
predict the behaviour of a real system with the best possible
accuracy. If reliable mathematical models are available and
they predict the behaviour of the real systems accurately,
then control actions can be planned and tested in simulation
avoiding the costly, in time and money, practical tests.

A reliable mathematical ship model, like the Abkowitz
model [38], requires the identification of a multitude of
hydrodynamic parameters. The identification task for this

large number of variables can be hard and may take a long
time.Moreover, different tests for the different hydrodynamic
parameters must be carried out [9, 10].

For the above reason, simpler vehicle models are com-
monly used so that, although without modelling all the
dynamic features of the vehicle, each of these models repro-
duces the real behaviour of ships with large accuracy in most
of practical scenarios. For the problem at hand, we consider
a constant surge speed and we determine a mathematical
model that defines the ship steering equations. Among these
kinds of models, we can find the Nomoto models [12], that
are an alternative representation of the model of Davidson
and Schiff [39]. We now briefly comment these two models.

Given the linear steering dynamics:

𝑚(�̇� + 𝑢
0
𝑟 + 𝑥
𝐺
̇𝑟) = 𝑌,

𝐼
𝑧
̇𝑟 + 𝑚𝑥

𝐺
(�̇� + 𝑢

0
𝑟) = 𝑁,

(7)

the hydrodynamic force and moment can be modelled as in
[39]:

𝑌 = 𝑌
�̇�
�̇� + 𝑌 ̇𝑟

̇𝑟 + 𝑌
𝜐
𝜐 + 𝑌
𝑟
𝑟 + 𝑌
𝛿
𝛿,

𝑁 = 𝑁
�̇�
�̇� + 𝑁 ̇𝑟

̇𝑟 + 𝑁
𝜐
𝜐 + 𝑁

𝑟
𝑟 + 𝑁
𝛿
𝛿,

(8)

where 𝑌 is sway force, 𝑁 is moment (rotation about the 𝑧-
axis, with the 𝑧-axis pointing downwards as is customary in
marine systems), 𝑟 is yaw rate, 𝜐 is sway velocity, 𝑢

0
is nominal

surge velocity, 𝛿 is the rudder angle, 𝐼
𝑧
is moment of inertia

about the 𝑧-axis, 𝑚 is mass, 𝑥
𝐺
is the 𝑥-axis coordinate of

the centre of gravity, and 𝑌
�̇�
, 𝑌 ̇𝑟

, 𝑌
𝜐
, 𝑌
𝑟
, 𝑌
𝛿
, 𝑁
�̇�
, 𝑁 ̇𝑟

, 𝑁
𝜐
, 𝑁
𝑟
,

and 𝑁
𝛿
are added inertia hydrodynamic coefficients; for

more details, the reader is referred to [10]. See Figure 1 for
a definition of the reference frames used in marine systems.

Following the procedure of [10], (8) can be rewritten as

M]̇ + N] = b𝛿, (9)

where ] = [𝜐, 𝑟]
𝑇 is the state vector, and

M = [

𝑚 − 𝑌
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𝐺
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− 𝑁 ̇𝑟

] ,
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𝜐

𝑚𝑢
0
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𝑟

−𝑁
𝜐
𝑚𝑥
𝐺
𝑢
0
− 𝑁
𝑟

] ,

b = [

𝑌
𝛿

𝑁
𝛿

] .

(10)

From (9), the alternative representation of the second-
order model of Nomoto [12] can be defined. This model
provides the transfer function that relates the yaw rate 𝑟 to
the rudder angle 𝛿 according to

𝑟

𝛿

(𝑠) =

𝐾 (1 + 𝑇
3
𝑠)

(1 + 𝑇
1
𝑠) (1 + 𝑇

2
𝑠)

(11)

or if an integrator (a pole) is included; the transfer function
relates the yaw angle 𝜓 to the rudder angle 𝛿; that is,

𝜓

𝛿

(𝑠) =

𝐾 (1 + 𝑇
3
𝑠)

𝑠 (1 + 𝑇
1
𝑠) (1 + 𝑇

2
𝑠)

, (12)
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Figure 1: Body (O) and earth-fixed ({𝑜}) reference frames, forces (𝑋, 𝑌), moment (𝑁), and linear speeds (𝑢
0
, 𝜐) used in marine systems for

3 degrees of freedom (3DOF) models.

where 𝑇
1
, 𝑇
2
, and 𝑇

3
are time constants and 𝐾 is gain. Now

rewrite (11) in the time domain:

𝑇
1
𝑇
2
𝜓
(3)

+ (𝑇
1
+ 𝑇
2
) �̈� + �̇� = 𝐾 (𝛿 + 𝑇

3
̇
𝛿) , (13)

where �̇� = 𝑟 and 𝜓
(3) represents the third derivative of the

yaw angle with respect to time. The parameters of (11) are
related to the hydrodynamic derivatives as follows:

𝑇
1
𝑇
2
=

det (M)

det (N)
,

𝑇
1
+ 𝑇
2
=

𝑛
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𝑚
22
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2
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𝐾𝑇
3
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𝑚
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1
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(14)

where 𝑚
𝑖𝑗
, 𝑛
𝑖𝑗
, and 𝑏

𝑖
, with 𝑖 = 1, 2 and 𝑗 = 1, 2, are the

elements of matricesM, N, and b.
In addition, we can express the sway velocity in a similar

manner:

𝜐

𝛿

(𝑠) =

𝐾
𝜐
(1 + 𝑇

𝜐
𝑠)

(1 + 𝑇
1
𝑠) (1 + 𝑇

2
𝑠)

, (15)

where 𝐾] and 𝑇] are the gain and time constants to describe
the sway velocity. In the time domain, (15) yields

𝑇
1
𝑇
2
�̈� + (𝑇

1
+ 𝑇
2
) �̇� + 𝜐 = 𝐾

𝜐
(𝛿 + 𝑇

𝜐
̇
𝛿) . (16)

The main advantage of the Nomoto second-order model
is its simplicity and that the hydrodynamic derivatives do
not have to be computed explicitly it is possible to define
the parameters of the Nomoto model directly from the
experimental data. Therefore, we can compute in a fast and

simplemanner a shipmodel for control purposes because it is
not the aim of this work to know explicitly the hydrodynamic
derivatives.

To proceed with the reconstruction of the ship manoeu-
vring model, the continuous equations of motion, (13) and
(16), are discretized because the experimental data are taken
with a given regular interval of time. The discretization
is done by the Euler stepping method, so that the above
equations can be rewritten as

𝑇
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𝑇
2
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3
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ℎ

,
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ℎ

,

(17)

where ℎ is the time between two consecutive measurements
taken from the IMU (inertial measurement unit) on board
the ship, and 𝑘 − 1, 𝑘, and 𝑘 + 1 are the indices of three
successive sampling times. Now, it is possible to apply the
LS-SVM regression to obtain the parameters of the model
of Nomoto by constructing the training data following the
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equation structure of (17). Thus, the discrete motion equa-
tions given by (17) can be rewritten as

Δ𝑟 (𝑘 + 1) = 2Δ𝑟 (𝑘) − Δ𝑟 (𝑘 − 1)

+ (𝑇
1
+ 𝑇
2
)

−Δ𝑟 (𝑘) + Δ𝑟 (𝑘 − 1)

𝑇
1
𝑇
2

ℎ

−

Δ𝑟 (𝑘 − 1)

𝑇
1
𝑇
2

ℎ
2
+

𝐾Δ𝛿 (𝑘 − 1)

𝑇
1
𝑇
2

ℎ
2

+ 𝐾𝑇
3

Δ𝛿 (𝑘) − Δ𝛿 (𝑘 − 1)

𝑇
1
𝑇
2

ℎ,

Δ𝜐 (𝑘 + 1) = 2Δ𝜐 (𝑘) − Δ𝜐 (𝑘 − 1)

+ (𝑇
1
+ 𝑇
2
)

−Δ𝜐 (𝑘) + Δ𝜐 (𝑘 − 1)

𝑇
1
𝑇
2

ℎ

−

Δ𝜐 (𝑘 − 1)

𝑇
1
𝑇
2

ℎ
2
+

𝐾
𝜐
Δ𝛿 (𝑘 − 1)

𝑇
1
𝑇
2

ℎ
2

+ 𝐾
𝜐
𝑇
𝜐

Δ𝛿 (𝑘) − Δ𝛿 (𝑘 − 1)

𝑇
1
𝑇
2

ℎ,

(18)

and in a simplified manner:

Δ𝑟 (𝑘 + 1) = 𝐴X
𝑟
,

Δ𝜐 (𝑘 + 1) = 𝐵X
𝜐
,

(19)

where Δ𝑟(𝑘 + 1) = 𝑦
𝑗𝑟
and Δ𝜐(𝑘 + 1) = 𝑦

𝑗𝜐
are the output

training data, and X
𝑟
= 𝑥
𝑗𝑟

and X
𝜐

= 𝑥
𝑗𝜐

are the input
training data given by

X
𝑟
= [Δ𝑟 (𝑘) , Δ𝑟 (𝑘 − 1) , −Δ𝑟 (𝑘) + Δ𝑟 (𝑘 − 1) ,

Δ𝑟 (𝑘 − 1) , Δ𝛿 (𝑘 − 1) , Δ𝛿 (𝑘) − Δ𝛿 (𝑘 − 1)]
𝑇
,

X
𝜐
= [Δ𝜐 (𝑘) , Δ𝜐 (𝑘 − 1) , −Δ𝜐 (𝑘) + Δ𝜐 (𝑘 − 1) ,

Δ𝜐 (𝑘 − 1) , Δ𝛿 (𝑘 − 1) , Δ𝛿 (𝑘) − Δ𝛿 (𝑘 − 1)]
𝑇

(20)

for 𝑗 = 1, . . . , 𝑁
𝑠
, and with

𝐴 = [2, −1,

(𝑇
1
+ 𝑇
2
) ℎ

𝑇
1
𝑇
2

,

−ℎ
2

𝑇
1
𝑇
2

,

ℎ
2
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1
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2

,
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3
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𝑇
2

] ,

𝐵 = [2, −1,

(𝑇
1
+ 𝑇
2
) ℎ

𝑇
1
𝑇
2

,

−ℎ
2

𝑇
1
𝑇
2

,

ℎ
2
𝐾
𝜐

𝑇
1
𝑇
2

,

ℎ𝐾
𝜐
𝑇
𝜐

𝑇
1
𝑇
2

] .

(21)

The vectors (21) are now computed from LS-SVM regres-
sion. It is important to point out that the vectors (21) are
separately identified; that is, 𝐴 is defined first, and after that,
𝐵 is defined, so that 𝑇

1
and 𝑇

2
are already known for the

computation of 𝐵. The structure of the mathematical model
is known in advance; so we can use a linear kernel𝐾(𝑥

𝑖
, 𝑥
𝑗
) =

(𝑥
𝑖
⋅ 𝑥
𝑗
). The result of applying the LS-SVM technique for the

training data gives us

𝑦
𝑗𝜉
= (

𝑁𝑠

∑

𝑖=1

𝛼
𝑖𝜉
𝑥
𝑖𝜉
) ⋅ 𝑥
𝑗𝜉
+ 𝑏
𝜉

(22)

for 𝜉 = 𝑟, 𝜐 and 𝑗 = 1, . . . , 𝑁
𝑠
. Comparing the above equation

with (19), after the training process we have

𝐴 =

𝑁𝑠

∑

𝑖=1

𝛼
𝑖𝑟
𝑥
𝑖𝑟
,

𝐵 =

𝑁𝑠

∑

𝑖=1

𝛼
𝑖𝜐
𝑥
𝑖𝜐

(23)

if the object function has been well approximated by the LS-
SVM algorithm, where the bias term 𝑏

𝜉
must be equal to or

approximately 0. Once the support vectors are defined by the
above process, the parameters of the Nomoto model can be
obtained immediately from (21).

4. Experimental Results

The vehicle used for the experimental tests is a scale model
of an operational vessel, in a 1/16.95 scale, see Figure 2. The
dimensions of the vessel and the scale model are shown in
Table 1.

The scale ship model, henceforth referred to as the ship,
is equipped with an electric motor to control the propeller
turning speed and a servo to control the rudder angle.
The desired rudder angle and surge speed are commanded
through aWi-Fi connection between the ship and the control
station at land.

The training data used for system identification are
obtained from a 20/20 degree zig-zag manoeuvre with a
sample time of 0.2 seconds and a nominal surge speed of
1m/s. The zig-zag manoeuvre was executed for 100 seconds;
so a set of 500 samples is trained. In Figure 3, the commanded
rudder angle (dashed line) and the yaw angle (solid line)
made by the ship during the 20/20 degree zig-zag manoeuvre
are shown. The training data are constructed with the com-
manded control signal (rudder angle) and the data measured
from the IMU on board the ship (yaw rate and sway velocity).
From the input and output data, and with (19), the LS-SVM
algorithm is now trained to determine the vectors 𝐴 and 𝐵

defined in (21).
Using the data shown in Figure 3, with the regularisation

parameter 𝛾 = 10
4, the Nomoto model parameters obtained

from the identification process with LS-SVM regression are
𝑇
1
= 1.1918, 𝑇

2
= 1.4442, 𝑇

3
= 1.5711, 𝐾 = 0.3619, 𝑇

𝜐
=

0.3457, and𝐾
𝜐
= 0.3813. Then, the Nomoto model yields

𝑟

𝛿

(𝑠) =

0.3619 (1 + 1.5711𝑠)

(1 + 1.1918𝑠) (1 + 1.4442𝑠)

,

𝜐

𝛿

(𝑠) =

0.3813 (1 + 0.3457𝑠)

(1 + 1.1918𝑠) (1 + 1.4442𝑠)

.

(24)

Figure 4 shows the yaw rate obtained from the IMU on
board the ship (solid line) together with the yaw rate obtained
in simulation (dotted line) with the Nomoto second-order
model previously defined and with the same commanded
input signal than the ship. It can be noticed how the behaviour
of the model fits the real behaviour of the ship in a nice
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Figure 2: Scale ship model used in the experimental tests.

Table 1:Main parameters and dimensions of the vessel and the scale
ship model.

Parameter Vessel Scale ship model
Length between
perpendiculars (𝐿pp)

74.400m 4.389m

Maximum beam (𝐵) 14.200m 0.838m
Mean depth to the top
deck (𝐻) 9.050m 0.534m

Design draught (𝑇
𝑚
) 6.300m 0.372m

manner for the training data used in the identification
process.

In the same way, in Figure 5 the sway velocity measured
from the IMU on board the ship is shown together with
the sway velocity obtained from the Nomoto model. Again,
the results are very similar showing a good behaviour of the
model for the training data. Despite the above, the model for
the sway velocity is less precise than themodel for the yaw rate
because the sway velocity cannot be directly controlled due
to the fact that the ship studied is an underactuated vehicle.
Moreover, the environmental conditions, like currents and
winds, particularly affect the sway velocity. In any case, the
model is satisfactory; furthermore, the yaw rate is the com-
ponent that defines in a higher degree the actual behaviour of
the ship.

Once the Nomoto model is well defined and it fits well
with the training data, as shown in Figures 4 and 5, themodel
must be tested with different data and manoeuvres to verify
the generalisation performance of the model obtained. In the
example shown below, two consecutive turning manoeuvres
(evolution circles) are performed with the simulation model
and the ship, for the same input signal. The input signal
commanded is the rudder angle, that takes the value of 10
degrees during 255 seconds, then a rudder angle of 0 degrees
is commanded for 70 seconds, and finally a rudder angle
of −10 degrees is commanded during 275 seconds, with a
nominal surge speed of 1m/s.

In Figures 6 and 7, the yaw rate and sway velocity for
the ship (solid line) and the Nomoto model (dotted line) are
shown, respectively. It is clear that the predicted behaviour
is very similar to the actual one of the ship, so that LS-SVM
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Figure 3: 20/20 degree zig-zag manoeuvre. Yaw angle (solid line)
and rudder angle (dashed line).
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Figure 4: Yaw rate obtained in the zig-zag manoeuvre with the ship
(solid line) and in simulation (dotted line).

provides a good mathematical model to test different control
strategies to be applied on the ship.

We can notice in Figure 6 how the real system deviates
slightly in turnings with negative rudder angles because the
actual yaw rate behaviour is not exactly symmetric; it is
slightly larger for negative rudder angles. Despite this small
deviation on the supposed symmetrical behaviour of the ship,
the result obtained from the simulated model is very similar
to the actual one, and the difference is not significant. This
deviation could be produced by environmental conditions,
like currents or winds, or by structural characteristics of
the ship, like the trimming, that can make the ship to not
have exactly a symmetrical behaviour, while this symmetrical
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Figure 5: Sway velocitymeasured in the zig-zagmanoeuvrewith the
ship (solid line) and in simulation (dotted line).

1000 200 300 400 500 600
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Time (s)

Ya
w

 ra
te

 (r
ad

/s
)

Experimental data
Simulation data

Figure 6: Yaw rate obtained in two consecutive turningmanoeuvres
with the ship (solid line) and in simulation (dotted line).

behaviour is implicit on the Nomoto models. This possible
source of errors in the fidelity of the mathematical model
should be further studied to be able to define more complex
mathematical models, although in our practical case, as can
be deduced from Figures 6 and 7, these errors are negligible.

In Figures 8 and 9, the error between the real and the
predicted yaw rate and sway velocity are shown, respectively.
We can notice from the yaw rate in Figure 8 how the error,
although very small, is larger for negative rudder angles
as mentioned above. Despite the commented deviation, the
error has a small magnitude and its average value is very close
to 0, providing a more than satisfactory prediction of the real
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Figure 7: Sway velocity obtained in two consecutive turning
manoeuvres with the ship (solid line) and in simulation (dotted
line).
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Figure 8: Error in the identification of the yaw rate, that is,
difference between the yaw rate obtained in simulation and in the
real setup.

dynamical behaviour of the ship. The same comments apply
to Figure 9 and the sway velocity instead of the yaw rate.

Therefore, it is clear that the mathematical model defined
for a surface marine vehicle with LS-SVMprovides a satisfac-
tory result which predicts with large accuracy the dynamics
of the experimental system.

Now, it is interesting to compare the result of LS-SVM
identification with the result that can be obtained by standard
identification methods. The latter model is computed using
the identification toolbox of MATLAB called Ident; for the
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Figure 9: Error in the identification of the sway velocity, that is,
difference between the sway velocity obtained in simulation and in
the real setup.

documentation of this toolbox, the reader is referred to [40].
The model computed with MATLAB is defined by

𝑟

𝛿

(𝑠) =

0.35942 (1 + 1.5119𝑠)

(1 + 1.201𝑠) (1 + 1.2312𝑠)

,

𝜐

𝛿

(𝑠) =

0.396 (1 + 0.34984𝑠)

(1 + 1.201𝑠) (1 + 1.2312𝑠)

.

(25)

In Figures 10 and 11, the yaw rate and sway velocity,
respectively, are shown for the experimental test (solid line),
the LS-SVM identification model (dotted line), and the
identificationmodel obtainedwith the Ident tool ofMATLAB
(dashed line) for the training data, that is, the 20/20 degree
zig-zag manoeuvre. We can check from Figures 10 and 11 that
for the practical case studied the behaviours obtained with
both identification methods are practically the same.

The main difference between both methods lies in the
important fact that the SVM approach can deal with a
large number of variables and few data, as shown in [35]
where multiple hydrodynamic variables are computed from
a single manoeuvre in a simulation scenario. In a practical
scenario, and with a classical identification methodology,
several practical tests should be carried out to define these
multiple hydrodynamic variables, with the corresponding
time cost. Moreover, if the model structure is not known
in advance some approach of black box identification may
be used, as in [32] or [29], by means of nonlinear kernels.
In these systems, a nonlinear block that is approximated by
selection of a basis function is used. In SVM, the nonlinear
mappings of this function can be unknown; they may be
defined with a nonlinear kernel function. Therefore, this
technique has the potential to be implemented for different
kinds of marine vehicles in a simple and fast manner. These
issues are a very interesting line for future research.
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Figure 10: Comparison between the experimental yaw rate (solid
line), the yaw rate of the LS-SVM identification model (dotted line),
and the one of the identification model obtained with the Ident tool
of MATLAB (dashed line) for a 20/20 degree zig-zag manoeuvre.
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Figure 11: Comparison between the experimental sway velocity
(solid line), the sway velocity of the LS-SVM identification model
(dotted line), and the one of the identification model obtained with
the Ident tool of MATLAB (dashed line) for a 20/20 degree zig-zag
manoeuvre.

5. Conclusions and Future Work

In this work, the Nomoto second-order model of a ship has
been determined through real experimental data obtained
from a zig-zag manoeuvre test. This ship model has been
identified by analysing the rudder angle, surge and sway
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speeds, and yaw rate obtained from experimental tests. This
identification has been done with a Least Squares Support
VectorMachines algorithm.The LS-SVM technique has been
widely used for pattern recognition and classification with
very good results, and in this work it has been shown that this
technique has a high potential to be used in system identifi-
cation. The model obtained with LS-SVM has been validated
through experimental tests showing that the behaviour of
the mathematical model is very similar to that of the real
ship. Furthermore, the model obtained is suitable to be used
for testing control algorithms that can be implemented on
the ship. It has been proved that LS-SVM is a powerful
tool for system identification that can deal with relative few
experimental data and low time cost.

Future work will aim at (i) extending the methodology
developed to deal with more complex ship models in which
the hydrodynamic coefficients can be well defined and to
deal with models whose structure is not known in advance,
and (ii) studying the performance of control algorithms for
path following and tracking with the ship model defined in
comparison with the results obtained for the real vehicle.
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