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The purpose of this paper is to solve the inverse spectral problems for Sturm-Liouville operator with boundary conditions depending
on spectral parameter and double discontinuities inside the interval. It is proven that the coefficients of the problem can be uniquely
determined by either Weyl function or given two different spectral sequences.

1. Introduction

Spectral problems of differential operators are studied in two
main branches, namely, direct spectral problems and inverse
spectral problems. Direct problems of spectral analysis con-
sist in investigating the spectral properties of an operator.
On the other hand, inverse problems aim at recovering
operators from their spectral characteristics. Such problems
often appear in mathematics, physics, mechanics, electronics,
geophysics, and other branches of natural sciences.

First and most important results for inverse problem of
a regular Sturm-Liouville operator were given by Ambart-
sumyan in 1929 [1] and Borg in 1946 [2]. Physical applications
of inverse spectral problems can be found in several works
(see, e.g., [3-9] and references therein).

Eigenvalue-dependent boundary conditions were studied
extensively. The references [10, 11] are well-known examples
for problems with boundary conditions that depend linearly
on the eigenvalue parameter. In [10, 12], an operator-theoretic
formulation of the problems with the spectral parameter
contained in only one of the boundary conditions has
been given. Inverse problems according to various spectral
data for eigenparameter linearly dependent Sturm-Liouville
operator were investigated in [13-17]. Boundary conditions
that depend nonlinearly on the spectral parameter were also
considered in [18-23].

Boundary value problems with discontinuity condition
appear in the various problems of the applied sciences. These
kinds of problems are well studied (see, e.g., [24-31]).

In this study, we consider a boundary value problem
generated by the Sturm-Liouville equation:

2
ty=-y"+q(x)y=Ay, xel= U(di,dm) (1)
i=0
subject to the boundary conditions
U () =A(Y (0) +hoy (0) =iy (0) = hyy (0) =0, (2)

V() =2y () +Hyy (1)) - Hyy' (1)~ Hyy(1) =0
(3)

and double discontinuity conditions
y(d;+0) =0,y (d; - 0),

' (di+0) ="y (di = 0) = (yid + B;) y (d; - 0),
where g(x) is real valued function in L, (0, 1); hj and Hj, j=
0, 1,2, are real numbers; «;,y;, € RY, B, € R, i =1,2; d, =
0,d,,d, € (0,1), d5 =1; p, := h, —hyh, >0, p, == HH, -
H, > 0; and A is a spectral parameter. We denote the problem
()-(4) by L = L(g,h,H,s,,s,), where h = (hy,h,h,), H =
(Hy, Hy,Hy),and s; = (d;, o, 95, 5;), i =1,2.

It is proven that the coeflicients of the problem can
be uniquely determined by either Weyl function or given
two different spectral sequences. The obtained results are
generalizations of the similar results for the classical Sturm-
Liouville operator on a finite interval.

(4)



2. Preliminaries

Let the functions ¢(x, A) and y/(x, A) be the solutions of (1)
under the following initial conditions and the jump condi-

tions (4):
@ _(=A+h
(¢) o= (i)
1 _(-A+H
(v)en=(i )

©)

[~ cos \/Xx+O(\/Xexp|T|x),

)2 [sin VAx sin VA (2d, - x)
S Y 2VA

(P(xi/\) =9

+O (/\3/2 exp || x) ,

132 sin VAx + O (Aexp|7] x),

q)’ (x,A) =

+0O (AZ exp |7 x),

where 7 = Im V.
The values of the parameter A for which the problem
L has nonzero solutions are called eigenvalues, and the
corresponding nontrivial solutions are called eigenfunctions.
The characteristic function A(A) and norming constants
«,, of the problem L are defined as follows:

A =W oyl
= A(¢' (LA + Hyp (1, ) - Hyg' (1,4) - Hyp (1,4)

— A (' (0, V) +hoy (0,1))+hyy' (0, 1) + hyy (0, 1),

K
Il

1
n J @’ (x,A,,) dx + pi(qo' (0,1,)) + hop (0,1,))”
1

0

1 2
+—(¢' (LA,) + Hop (1,4,))
P2
+ayy” (dy = 0,1,) + y1,9° (dy - 0,4,,).

(8)

It is obvious that A(A) is an entire function in A and the zeros,
namely, {1,} of A(A) coincide with the eigenvalues of the
problem L. Now, from (6) and (8), we can write

] +0 (Aexp|t]x),

AZ
YIT [cos VAx + cos VA (2d; - x)] +0 (/\3/2 exp |7 x),
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These solutions are the entire functions of A and satisfy the
relation y(x, A,,) = B,9(x, A,,) for each eigenvalue A,,, where
B, =-W'(0,A,) + hoy(0,A,))/p1.

The following asymptotics can be obtained from the
integral equations given in the appendix:

x <d,

dy <x<d,,

(6)

%AZ [cos VAx + cos VA (2d, - x) — cos VA (2d, — x) - cos VA (2d, - 2d, - x)]

x>d,,
x <dj,

d <x<d,,

7)

—%AS/Z {sin Vx - sin VA (2d, - x) + sin VA (2d, - x) + sin VA (2d, - 2d, - x)}

x> d,,

A = -1l
sin VA sinVA(2d, -1) sin VA(2d, - 1)
x - +
v i Vi
sin VA (2d, -2d, - 1) )
VA

O(/\3 exp |T|).

)
Lemma 1. See the following.

(i) All eigenvalues of the problem L are real and alge-
braically simple; that is, A'(A,,) #0.

(ii) Two eigenfunctions ¢(x, A,) and ¢(x, A,), correspond-
ing to different eigenvalues A, and ), are orthogonal
in the sense of

Ll ¢ (x, Al) ¢ (%, A,) dx
(6 O + g (0.0)) (9 (0.0) +hop (0.1,))
+é(¢’<u1> +Hop (1.4)) (¢' (1.1,) + Hop (1, 1,))
+ay19(dy = 0,41) @ (d) - 0,1,)

+ a9 (dy - 0,4,) ¢ (d, - 0,4,) = 0.
(10)
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Proof. Consider a Hilbert Space H = L,(0, 1) ® C*, equipped
with the inner product

1 — —
(Y, Z) = L y(x)z (x)dx + ‘DLYIZ1
1 ()

1 — _ _
+ ;Yzzz oy Y323 + Y2,
2)

fOr Y = (}’(x)) Y17 YZ; Y3) Y4)Ts Z = (Z(-x): Z]s Zz; Z3) Z4)T
H.

Define an operator T with the domain D(T) = {Y € H :
y(x), and y'(x) are absolutely continuous in I, €Y € L,(0,
1), y(d;+0) = o;y(d;=0), Y; = y'(0)+hyy(0), Y, = y;(1)+
H,y(1), Y5 =y,y(d, —0),and Y, = y,y(d, — 0)} such that

—y" (%) +q (%) y (x)
hyy' (0) + hyy (0)

T(Y):= H,y' (1) + Hyy (1)
-y (d, +0) +a7'y' (d, - 0) - B,y (d, - 0)
-y (dy +0) + a5y (d, - 0) - B,y (d, - 0)
(12)

It is easily proven, using classical methods in the similar
works (see, e.g., [28]), that the operator T is symmetric in H;
the eigenvalue problem for the operator T and the problem L
coincide. Therefore, all eigenvalues are real, and two different
eigenfunctions are orthogonal.

Let us show the simplicity of the eigenvalues A, by
writting the following equations:

" (6, )+ g () v (xA) = Ay (x, ),

—¢" (6 1,) +q() @ (x,4,) = 1,0 (x,4,,).

If these equations are multiplied by ¢(x,A,) and w(x, A),
respectively, subtracting them side by side and finally inte-
grating over the interval [0, 1], the equality

[0 (x,4,) ¥ (x, 1) -

d,—0
x (16" + 13750 + las0) (14)

(13)

v () (xA,)]

1
- (1-2) [ v Do, dx

is obtained. Add and subtract A(A) in the left-hand side of the
last equality, and use initial conditions (5) to get

A +(A=1,) (¥ (0,1 +hey (0, 1))

)

~ (=) (¢ (LA, + Hp (1.A,))

SO =My (d -0 e(d -01) s
»

-(A=A) a0y (d,-0,A)¢(d, -0,1,)

1

- (-2 [ v, dx

0

3
Rewrite this equality as
AN Jl
A v(x,A) e (x,A,)dx
+ (SDI (1’ /\n) + HOSD (1’ /\n))
(16)
- (¥ (0, 1) + hoy (0, 1))
+oyy (dy —0,1) ¢ (d, - 0,1,)
+ o0,y (d, = 0,4) ¢ (d, - 0,1,,)
1
= J v (6, A) e (x,A,)dx
0
(V@) +hgy (0.0)(¢'(0.:1,) +hep (0.1,))
hohy = h,
. (¢'(1,A,)+Hyp (1,A,))(v' (1, )+ Hyy (1, 1))
HyH, - H,
+oyyy (dy - 0,4) ¢ (d; -0, 1,)
+ o,y (dy = 0,4) ¢ (d, — 0, 4,,)
(17)
1
- [ e, ds
0
N (1//'(0’ A)"'h()l// (07 A))(?”(O: /\n)+hO(P (0’ An))
P
. (¢'(1,1,)+Hop (1,1,))(v' (1, )+ Hyy (1, 1))
P2
+oyy (dy —0,1) ¢ (d, - 0,1,)
+ o,y (dy = 0,4) @ (dy — 0, 4,,).
(18)
AsA — A,
A (A,) = Buet, (19)

is obtained by using the equality y(x, A,,) = B,9(x, A,)). Thus,
A'(A,) #0. O

3. Main Results

We consider three statements of the inverse problem for the
boundary value problem L; from the Weyl function, from the
spectral data {A,,&,},.., and from two spectra {A,, t4,},~o-
For studying the inverse problem, we consider a boundary
value problem L, together with L, of the same form but with
different coefficients g(x), h, H, §, i = 1,2.

Let the function »(x, A) denote the solution of (1) under
the initial conditions »#(0,1) = p; Lyd0,0) = -py h



and the jump conditions (4). It is clear that the function y(x,
A) can be represented by

v' (0,A) + hyw (0, 1)

Y (6A) = A (x,A) - o (x).
1 20)
Denote
"(0,A) + hyy (0, A
mQly = ¥ p)lA()‘G”( ). (21)
Then, we have
VO e -mMge. @)
A ()

The function m(A) is called Weyl function [32].

Theorem 2. Ifm(A) =
always everywhere in I; h =

m(\), then L = L; that is, q(x) = g(x),

h, H=H, ands; =5, i =1,2.

Proof. Let us define the functions P,(x,A) and P,(x,A) as
follows:

PL(xA) =@t M) D (x5, A) = D (x, 1) @ (x,4),

P2 (X,A) = (D(XJ)(P(X)/\)—<P(x)/\)5(X;A),

where O(x,A) = w(x,A)/AQ). If m(A) = mi(A), then from
(22)-(23), Pi(x,A) and P,(x,A) are entire functions in A.
Denote G5 = {A : A = k% [k —k,| > & n = 1,2,..}and
Gs = A:A=KkLlk-Fk| > & n=1,2..1 where d is
sufficiently small number and k,, and k,, are square roots of
the eigenvalues of the problem L and L, respectively. One can
easily show that the asymptotics

D(x,A) =0 (/\_(i+3)/2 exp (—|7] x)) ,
(24)

@' (x,4) = 0 (A" exp (- 7] x))

are valid for d; < x < d;,;, i = 0, 1,2, and sufficiently large

IAl in G5 N Gj. Thus, the following inequalities are obtained
from (6) and (24):

P (V)| <Csr [Py (5 0)| < CsIAT2,

(@)
A€ GsNGs.

According to the last inequalities and Liouville’s theorem,
P, (x,A) = A(x) and P,(x, A) = 0. Use (23) again to take

P(6A) =A(x)P(x,A),
D (x,A)

- (26)
=Ax)D(x,A).

Since W[®(x, A), ¢(x,A)] = 1 and similarly WI[D(x, ), o(x,
M] = 1, then A%(x) = 1.
On the other hand, the asymptotic expressions

¢ (x, 1) = C(N)exp (-iVAx) (1 +0(1)),
(27)
¢ (6, 1) =C (V) exp (-iVAx) (1 +0(1))
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are valid for VA — 00 on the imaginary axis, where

'—E)u, 0<x<d,
Y1432
C\) = ZA , d, <x<d,,
%AZ, dy <x<1,
O (28)
-=A, 0<x<d,
~2
_ Y1432 7 7
C(A):«4A , dy<x<d,,
%/\2, d,<x<1

Assume that d, #d, and d, # d,. There are six different cases
for the permutation of the numbers d; and d;. Without loss of
generality,let0 < d, < d, <d, <d, < 1.

From (26)-(27), we get y;, = 9, ¥, = P, and A(x) = 1,
while x € [0,d,) U (d,,d,) U (d,,1].
Moreover, we get
A (1 +0(1)AX) +y, =0(1), (29)

while x € (d,,d,). By taking limit in (29) as |A\| — oo, we
condradict y; > 0. Thus, d, = d,. Similarly, d, = d,, and
A(x) = 1in I. Hence,

TACT A
vl yxA)’
It can be obtained from (1), (4), and (5) that g(x) = g(x), a.e.

inl;s; =5, i = 1,2,and h = h, H = H. Consequently,
L=1L. O

(30)

PN =d(x M),

Theorem 3. If {A,, e}, = {A,, &,},20 then L = L.

Proof. The meromorphic function m(A) has simple poles at
A, and its residues at these poles are

RCS{M(A) A} y (0 An)'i_hOl//(O/\)

A (A
P1 ( n) (31)
B 1
AL,

Denote T, = {A : [A| = (\/A, + 8)2}, where ¢ is sufficiently
small number. Consider the contour integral
m ()

EO=5z | G

There exists a constant Cs; > 0 such that A(A) >
A7 2C5 exp |7| holds for A € G;. Use this inequality and (21)
to get [m(A)| < C5/|A|3/2, for A € Gs. Hence, lim,, _, . ,F,(A) =
0, and so

——dn, Aeintl,. (32)

m@)Z (33)

nO(x
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is obtained from residue theorem. Consequently, if A, = A,,
and «,, = @, for all n, then from (33), m(A) = mi(A). Hence,
Theorem 2 yields L = L. O

We consider the boundary value problem L, with the
condition

¥ (0,0) + hyy (0,1) =0 (34)

instead of (2) in L. Let {r’},o be the eigenvalues of the
problem L,. It is obvious that #, are zeros of A,(n) :=

' (0,7) + hoy(0, ).

Theorem 4. If {A,,%,},50 = A flhso and h = h, then L =
L.

Proof. The functions A(A) and A | (1) which are entire of order
1/2 can be represented by Hadamard’s factorization theorem

as follows:
A
1 -5 >
(-3

(-2)

where C and C, are constants which depend only on {A,,} and
{11,,}, respectively. Therefore, A(A) = A(A) and A, (1) = A, (1),
when A, A, and 5, = 7, for all n. Thus, ¥'(0,%) +
how(0,17) = '(0,%) + hy(0, 7). Moreover, p; = p; since
h = h. Consequently, the equality (21) yields m(A) = ().
Hence, the proof is completed by Theorem 2. O

s

AV =C

1l
o

n

(35)

—1s

Ay () =C

Il
(=1

1

Appendix

The solution ¢(x, A) satisfies the following integral equations.
Ifx <d,

@ (x, ) = (Ahy —h,) sin Vix + (hy = A) cos VAx
(A1)

1 X
i \/_ - > 5
+ _\/I L sin VA(x —t)q(t) ¢ (t,A) dt

ifd, <x<d,,

Ay — hy

(M) =

S

X (ocIr sin Vx + & sin VA (2d, - x))
+(h - Q)
x (o] cos VAx + oy cos VA (2d, - x))

+ (pA+By) (hy — 1)
2V

X (sin VA (2d, - x) - sin \/Xx)

N (nA+ B;) (Ahy — hy)
21

X (cos Ax — cos VA (2d, - x))

(nA+p)
)

x Jdl (cos VA (x - t) = cos VA (2d, - x — t))

0

xq(t) e (t,A)dt

1 (%
+ﬁjo (oc;sin\/x(x—t)

+a; sin VA (2d, - x - t))

xq () ¢ (t, 1) dt

+ % r sin VA (x —t) g (t) ¢ (¢, A) dt;
(A.2)
ifx>d,
¢ (x,A)
_ _(hl -A)(nA+B)
2VA

X [ocz+ (sin Vx - sin VA (2d, - x))
+a, ( sin VA (2d, - x)
+sin VA (2d, - 2d, - x))]

+ (Ahg = hy) (A + By)
21

x [ (cos VAx = cos VA (2d, - x))
+a; (cos VA (2d, - x)
— cos VA(2d, - 2d, - x))|
+(hy - A)
x [of (05 cos VAx + o, cos VA (2d, - x))
+ay (a5 cos VA (2d, - x)

+ o, cos VA (2d, - 2d, - x))]



(Ahy — 1)
T

x [af (a5 sin VAx + o sin VA (2d, - x))

+o (cx; sin VA (2d; - x)
—a; sin VA (2d, - 2d, - x))]

B (h =) (1A + B) (nA+B,)
41

x [cos VAx + cos VA (2d, - x)
—cos VA (2d, - x)
—cos VA (2d, - 2d, - x)]

(Ahg = hy) (1A + B1) (1A + o)
41302

X [sin VAx —sin VA (2d, - x)

—sin VA (2d, - x)
+sin VA (2d, - 2d, - x)]

+ (hy = A) (1A + By)
2V

X [ocIr (sin VA (2d, - x) - sin \/Xx)

+a; (sin VA (2d, - x)
+sin VA (2d, - 2d, - x))]

+ (Ahg = hy) (1A + B,)
2)

X [ocl+ (cos VAx - cos VA (2d, - x))
- (cos VA (2d, - x)

—cos VA (2d, - 2d, - x))]

+

a, (4
ij Jo [ocir (sin VA (2d, - x —t)
+sin \/X(x—t))
+ay (sin VA (2d, - x —t)
—sin VA (2d, - 2d, —x+t))]

o (nA+pB)

xq(O) ¢t dt + 2H
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4,
xJ;) [cos\/X(x—t)—cos\/X(Zdl—x—t)

+cos VA (2d, — x - t)
+cos VA (2d, - 2d, —x+t)]

1

JA)dt —
xq(t)e(t,A)dt R

X sz [ocIr (sin VA (2d, — x —t) — sin VA (x — t))
0

- (sin VA (2d, - x —t)
+sin VA (2d, - 2d, - x + t))]
xq(t) et A)dt

(nA+B)
+ —_—
4o, A

dy
xJ;) [cos\/X(x—t)—cos\/X(Zdl—x—t)

—cos VA(2d, - x - t)
+cos VA (2d, - 2d, —x+t)]
xq(t) g (tA)dt

1 (%
_WL [oc;'sin\/X(x—t)

+a, sin VA (2d, — x — t)]
xq(t) et A)dt

(nA+B,)
Y]

[ [ (cos VA=) - cos VA 2y ~ 1)
—ay (cos VA (2d, - x - t)
—cos VA(2d, - 2d, - x +1))]
xq(t) e (t,A)dt

B (nA+B1) (1A +By)
47312

xjdl [sin\/)—t(x—t)—sin\/X(Zdl—x—t)
0

—sin VA (2d, - x —t)
+sin \/X(Zdz -2d, —x+t)]
xq(t) g (t,A)dt

B (A +B,)
21
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X Ldz [cos VA (x —t) = cos VA (2d, — x - t)]

xq ()¢ (tA)dt

1 x
Y Lz sin VA(x = 1) q (1) o (£, A) dit,

(A3)

where o = (1/2)(e;; + 1/ev;), i =1,2.
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