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We study and establish the existence of a solution for a generalizedmixed equilibriumproblemwith a bifunction defined on the dual
space of a Banach space. Furthermore, we also modify Halpern-Mann iterations for finding a common solution of a generalized
mixed equilibrium problem and a fixed point problem. Under suitable conditions of the purposed iterative sequences, the strong
convergence theorems are established by using sunny generalized nonexpansive retraction in Banach spaces. Our results extend
and improve various results existing in the current literature.

1. Introduction

In the past years, variational inequalities is among the most
important and interestingmathematical problems, since they
have wide applications in the optimization and control,
economics and equilibrium, engineering science and physical
sciences.

Equilibrium problem represents an important area of
mathematical sciences such as optimization, operations re-
search, game theory, financial mathematics, and mechanics.
Equilibrium problems include variational inequalities, opti-
mization problems, Nash equilibria problems, saddle point
problems, and fixed point problems as special cases.

Throughout this paper, we denote the strong convergence
and weak convergence {𝑥

𝑛
} by 𝑥
𝑛

→ 𝑥, 𝑥
𝑛
⇀ 𝑥, respectively.

Let 𝐶 be a closed and convex subset of a real Banach
space 𝐸 with the dual space𝐸∗. Let𝐶∗ be a closed and convex
subset of 𝐸∗. We recall the following definitions.

(1) A mapping 𝐴 : 𝐶 → 𝐸
∗ is said to bemonotone if for

each 𝑥, 𝑦 ∈ 𝐶 such that
⟨𝑥 − 𝑦, 𝐴𝑥 − 𝐴𝑦⟩ ≥ 0. (1)

(2) A mapping 𝐴 : 𝐶 → 𝐸
∗ is said to be 𝛿-strong-

ly monotone, if there exists a constant 𝛿 > 0 such that

⟨𝑥 − 𝑦, 𝐴𝑥 − 𝐴𝑦⟩ ≥ 𝛿
𝑥 − 𝑦


2

, ∀𝑥, 𝑦 ∈ 𝐶. (2)

(3) A mapping 𝐴 : 𝐶 → 𝐸
∗ is said to be 𝛿-in-

verse strongly monotone, if there exists a constant 𝛿 >

0 such that

⟨𝑥 − 𝑦, 𝐴𝑥 − 𝐴𝑦⟩ ≥ 𝛿
𝐴𝑥 − 𝐴𝑦


2

, ∀𝑥, 𝑦 ∈ 𝐶. (3)

(4) A mapping 𝐴 : 𝐶
∗

→ 𝐸 is said to be skew monotone
if for each 𝑥

∗

, 𝑦
∗

∈ 𝐶
∗ such that

⟨𝐴𝑥
∗

− 𝐴𝑦
∗

, 𝑥
∗

− 𝑦
∗

⟩ ≥ 0. (4)

(5) A mapping 𝐴 : 𝐷(𝐴) ⊂ 𝐸
∗

→ 𝐸 is said to be 𝛼-in-
verse strongly skew monotone if there exists a constant
𝛼 > 0 such that

⟨𝐴𝑥
∗

− 𝐴𝑦
∗

, 𝑥
∗

− 𝑦
∗

⟩ ≥ 𝛼
𝐴𝑥
∗

− 𝐴𝑦
∗
2

,

∀𝑥
∗

, 𝑦
∗

∈ 𝐷 (𝐴) .

(5)
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Definition 1. Let 𝐸 be a Banach space. Then,

(1) 𝐸 is said to be strictly convex if (‖𝑥 + 𝑦‖/2) < 1 for all
𝑥, 𝑦 ∈ 𝑈

𝐸
= {𝑧 ∈ 𝐸 : ‖𝑧‖ = 1} with 𝑥 ̸= 𝑦;

(2) 𝐸 is said to be uniformly convex if for each 𝜖 ∈ (0, 2],
there exists 𝛿 > 0 such that (‖𝑥 +𝑦‖/2) ≤ 1 − 𝛿, for all
𝑥, 𝑦 ∈ 𝑈

𝐸
with ‖𝑥 + 𝑦‖ > 𝜖;

(3) 𝐸 is said to be smooth if the limit

lim
𝑡→0

𝑥 + 𝑡𝑦
 − ‖𝑥‖

𝑡
(6)

exists, for each 𝑥, 𝑦 ∈ 𝑈
𝐸
;

(4) 𝐸 is said to be uniformly smooth if the limit (6) is
attained uniformly, for all 𝑥, 𝑦 ∈ 𝑈

𝐸
;

(5) 𝐸 is said to have uniformly Gâteaux differentiable
norm if for all 𝑦 ∈ 𝑈(𝐸), the the limit (6) converges
uniformly, for 𝑥 ∈ 𝑈

𝐸
.

Definition 2. Let 𝐸 be a Banach space. Then, a function 𝜌
𝐸

:

R+ → R+ is said to be themodulus of smoothness of 𝐸 if

𝜌
𝐸
(𝑡) = sup{

𝑥 + 𝑦
 +

𝑥 − 𝑦


2
− 1 : ‖𝑥‖ = 1,

𝑦
 = 𝑡} .

(7)

(1) 𝐸 is said to be smooth if 𝜌
𝐸
(𝑡) > 0, ∀𝑡 > 0.

(2) 𝐸 is said to be uniformly smooth if and only if lim
𝑡→0
+

(𝜌
𝐸
(𝑡)/𝑡) = 0.

Definition 3. Let 𝐸 be a Banach space. Then, the modulus of
convexity of 𝐸 is the function 𝛿

𝐸
: [0, 2] → [0, 1] defined by

𝛿
𝐸
(𝜖) = inf {1 −



𝑥 + 𝑦

2


: ‖𝑥‖ ≤ 1,

𝑦
 ≤ 1;

𝑥 − 𝑦
 ≥ 𝜖} .

(8)

(1) 𝐸 is said to be uniformly convex if and only if 𝛿
𝐸
(𝜖) > 0

for all 𝜖 ∈ (0, 2].
(2) Let 𝑝 be a fixed real number 𝑝 > 1. Then, 𝐸 is said to

be 𝑝-uniformly convex if there exists a constant 𝑐 > 0

such that 𝛿
𝐸
(𝜖) ≥ 𝑐𝜖

𝑝 for all 𝜖 ∈ [0, 2].

Observe that every 𝑝-uniformly convex is uniformly
convex. One should note that no a Banach space is 𝑝-
uniformly convex, for 1 < 𝑝 < 2. It is well known that a
Hilbert space is 2-uniformly convex and uniformly smooth.

For any 𝑝 > 1, the generalized duality mapping 𝐽
𝑝
: 𝐸 →

2
𝐸
∗

is defined by

𝐽
𝑝
𝑥 = {𝑓

∗

∈ 𝐸
∗

: ⟨𝑥, 𝑓
∗

⟩ = ‖𝑥‖
𝑝

,
𝑓
∗ = ‖𝑥‖

𝑝−1

} ,

∀𝑥 ∈ 𝐸.

(9)

In particular, 𝐽 = 𝐽
2
is called the normalized duality

mapping. If 𝐸 is a Hilbert space, then 𝐽 = 𝐼, where 𝐼 is the
identity mapping. That is,

𝐽
2
𝑥 = 𝐽𝑥

= {𝑓
∗

∈ 𝐸
∗

: ⟨𝑥, 𝑓
∗

⟩ = ‖𝑥‖
2

=
𝑓
∗
2

} , ∀𝑥 ∈ 𝐸.
(10)

Remark 4. The basic properties below hold (see [1–3]).

(1) If 𝐸 is uniformly smooth real Banach space, then 𝐽 is
uniformly continuous on each bounded subset of 𝐸.

(2) If 𝐸 is uniformly smooth real Banach space, then 𝐽
∗

:

𝐸
∗

→ 2
𝐸 is a normalized duality mapping on 𝐸

∗,
and then 𝐽

−1

= 𝐽
∗, (𝐽∗)𝐽 = 𝐼

𝐸
, and 𝐽(𝐽

∗

) = 𝐼
𝐸
∗ , where

on 𝐼
𝐸
and 𝐼
𝐸
∗ are the identity mappings on 𝐸 and 𝐸

∗,
respectively.

(3) Let 𝐸 be a smooth, strictly convex reflexive Banach
space, and let 𝐽 be the duality mapping from 𝐸 into
𝐸
∗. Then, 𝐽−1 is also single-valued, one-to-one, and

onto, and it is also the duality mapping from 𝐸
∗ into

𝐸.
(4) If 𝐸 is a reflexive, strictly convex Banach space, then

𝐽
−1 is hemicontinuous; that is, 𝐽−1 is norm-to-weak∗-
continuous.

(5) If 𝐸 is a reflexive, smooth, and strictly convex Banach
space, then 𝐽 is single-valued, one-to-one, and onto.

(6) A Banach space 𝐸 is uniformly smooth if and only if
𝐸
∗ is uniformly convex.

(7) Eachuniformly convexBanach space𝐸has theKadec-
Klee property; that is, for any sequence {𝑥

𝑛
} ⊂ 𝐸, if

𝑥
𝑛
⇀ 𝑥 ∈ 𝐸, and ‖𝑥

𝑛
‖ → ‖𝑥‖, then 𝑥

𝑛
→ 𝑥.

(8) A Banach space 𝐸 is strictly convex if and only if 𝐽 is
strictly monotone; that is,

⟨𝑥 − 𝑦, 𝑥
∗

− 𝑦
∗

⟩ > 0, whenever 𝑥, 𝑦 ∈ 𝐸,

𝑥 ̸= 𝑦, 𝑥
∗

∈ 𝐽𝑥, 𝑦
∗

∈ 𝐽𝑦.
(11)

(9) Both uniformly smooth Banach space and uniformly
convex Banach space are reflexive.

(10) If 𝐸∗ is uniformly convex, then 𝐽 is uniformly norm-
to-norm continuous on each bounded subset of 𝐸.

(11) If 𝐸∗ is strictly convex Banach space, then 𝐽 is one-to-
one; that is, 𝑥 ̸= 𝑦 implies 𝐽𝑥 ∩ 𝐽𝑦 ̸= 0.

Let 𝐽 be the normalized duality mapping; then 𝐽 is said to
beweakly sequentially continuous if the strong convergence of
a sequence {𝑥

𝑛
} to 𝑥 ∈ 𝐸 implies the weak∗ convergence of a

sequence {𝐽𝑥
𝑛
} to 𝐽𝑥 in 𝐸

∗.
Let 𝐸 be a smooth and strictly convex reflexive Banach

space, and let 𝐶 be a nonempty, closed, and convex subset of
𝐸. We assume that the Lyapunov functional 𝜙 : 𝐸 × 𝐸 → R+

is defined by [3, 4]

𝜙 (𝑥, 𝑦) = ‖𝑥‖
2

− 2 ⟨𝑥, 𝐽𝑦⟩ +
𝑦


2

, ∀𝑥, 𝑦 ∈ 𝐸. (12)
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Let 𝐶 is nonempty, closed, and convex subset of a Banach
space𝐸.The generalized projection [3]Π

𝐶
: 𝐸 → 𝐶 is defined

by for each 𝑥 ∈ 𝐸,

Π
𝐶
(𝑥) = arg min

𝑦∈𝐶

𝜙 (𝑥, 𝑦) . (13)

Remark 5. From the definition of 𝜙. It is easy to see that

(1) (‖𝑥‖ − ‖𝑦‖)
2

≤ 𝜙(𝑥, 𝑦) ≤ (‖𝑥‖ + ‖𝑦‖)
2, for all 𝑥, 𝑦 ∈ 𝐸;

(2) 𝜙(𝑥, 𝑦) = 𝜙(𝑥, 𝑧) + 𝜙(𝑧, 𝑦) + 2⟨𝑥 − 𝑧, 𝐽𝑧 − 𝐽𝑦⟩, for all
𝑥, 𝑦, 𝑧 ∈ 𝐸;

(3) 𝜙(𝑥, 𝑦) = ⟨𝑥, 𝐽𝑥 − 𝐽𝑦⟩ + ⟨𝑦 − 𝑥, 𝐽𝑦⟩ ≤ ‖𝑥‖‖𝐽𝑥 − 𝐽𝑦‖ +

‖𝑦 − 𝑥‖‖𝑦‖, for all 𝑥, 𝑦, 𝑧 ∈ 𝐸;
(4) if 𝐸 is a real Hilbert space𝐻, then 𝜙(𝑥, 𝑦) = ‖𝑥 − 𝑦‖

2,
and Π

𝐶
= 𝑃
𝐶
(the metric projection of𝐻 onto 𝐶).

Lemma 6 (see [3, 4]). If 𝐶 is a nonempty, closed, and convex
subset of a smooth and strictly convex reflexive real Banach
space 𝐸, then

(1) for 𝑥 ∈ 𝐸 and 𝑢 ∈ 𝐶, one has

𝑢 = Π
𝐶
(𝑥) ⇐⇒ ⟨𝑢 − 𝑦, 𝐽𝑥 − 𝐽𝑢⟩ ≥ 0, ∀𝑦 ∈ 𝐶; (14)

(2) 𝜙(𝑥, Π
𝐶
(𝑦))+𝜙(Π

𝐶
(𝑦), 𝑦) ≤ 𝜙(𝑥, 𝑦), ∀𝑥 ∈ 𝐶, and 𝑦 ∈

𝐸;
(3) 𝜙(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦, ∀𝑥, 𝑦 ∈ 𝐸.

Let 𝐶 be a nonempty, closed subset of a smooth, strictly
convex, and reflexive Banach space 𝐸 such that 𝐽(𝐶) is closed
and convex. For solving the equilibrium problem, let us
assume that a bifunction 𝐹 : 𝐽(𝐶) × 𝐽(𝐶) → R satisfies the
following conditions:

(DA1) 𝐹(𝑥
∗

, 𝑥
∗

) = 0, for all 𝑥∗ ∈ 𝐽(𝐶);
(DA2) 𝐹 is monotone, that is, 𝐹(𝑥∗, 𝑦∗) + 𝐹(𝑦

∗

, 𝑥
∗

) ≤ 0, for
all 𝑥∗, 𝑦∗ ∈ 𝐽(𝐶)

(DA3) for all 𝑥∗, 𝑦∗, 𝑧∗ ∈ 𝐽(𝐶),

lim sup
𝑡↓0

𝐹 (𝑡𝑧
∗

+ (1 − 𝑡) 𝑥
∗

, 𝑦
∗

) ≤ 𝐹 (𝑥
∗

, 𝑦
∗

) ; (15)

(DA4) for all 𝑥∗ ∈ 𝐽(𝐶), 𝐹(𝑥
∗

, ⋅) is convex and lower semi-
continuous.

The following result is in Blum and Oettli [5], and see
proof in [6].

Let R be the set of real numbers, let 𝐸 be a real Banach
space with the norm ‖ ⋅ ‖, and let ⟨⋅, ⋅⟩ that is the dual pair
between 𝐸 and 𝐸

∗ by 𝐸
∗ be the dual space of 𝐸. Let 𝐶 be

a nonempty, closed, and convex subset of 𝐸, let 𝐽 be the
duality mapping from 𝐸 into 𝐸

∗ such that 𝐽(𝐶) is closed and
convex of 𝐸

∗, let us assume that a bifunction 𝐹 : 𝐽(𝐶) ×

𝐽(𝐶) → R satisfies suitable conditions, let 𝐴 : 𝐶
∗

→ 𝐸

be a skew monotone operator from 𝐽(𝐶) into 𝐸, and let 𝜑 :

𝐽(𝐶) → R be a real-valued function.

The generalizedmixed equilibriumproblem is to find �̂� ∈ 𝐶

such that

𝐹 (𝐽�̂�, 𝐽𝑦) + ⟨𝐴𝐽�̂�, 𝐽𝑦 − 𝐽�̂�⟩ + 𝜑 (𝐽𝑦) − 𝜑 (𝐽�̂�) ≥ 0, ∀𝑦 ∈ 𝐶.

(16)

The set of solutions of (16) is denoted by GMEP(𝐹, 𝐴, 𝜑);
that is,

GMEP (𝐹, 𝐴, 𝜑) = {�̂� ∈ 𝐶 : 𝐹 (𝐽�̂�, 𝐽𝑦)

+ ⟨𝐴𝐽�̂�, 𝐽𝑦 − 𝐽�̂�⟩ + 𝜑 (𝐽𝑦)

−𝜑 (𝐽�̂�) ≥ 0, ∀𝑦 ∈ 𝐶} .

(17)

If 𝐴 ≡ 0, then the problem (16) reduces to the mixed
equilibrium problem which is to find �̂� ∈ 𝐶 such that

𝐹 (𝐽�̂�, 𝐽𝑦) + 𝜑 (𝐽𝑦) − 𝜑 (𝐽�̂�) ≥ 0, ∀𝑦 ∈ 𝐶. (18)

The set of solution of problem (18) is denoted by
MEP(𝐹, 𝜑); that is,

MEP (𝐹, 𝜑) = {�̂� ∈ 𝐶 : 𝐹 (𝐽�̂�, 𝐽𝑦)

+𝜑 (𝐽𝑦) − 𝜑 (𝐽�̂�) ≥ 0, ∀𝑦 ∈ 𝐶} .
(19)

If 𝐴 ≡ 0 and 𝜑 ≡ 0, then the problem (16) reduces to the
equilibrium problem which is to find �̂� ∈ 𝐶 such that

𝐹 (𝐽�̂�, 𝐽𝑦) ≥ 0, ∀𝑦 ∈ 𝐶. (20)

The set of solution of problem (20) is denoted by EP(𝐹);
that is,

EP (𝐹) = {�̂� ∈ 𝐶 : 𝐹 (𝐽�̂�, 𝐽𝑦) ≥ 0, ∀𝑦 ∈ 𝐶} . (21)

The above formulation (20) was considered in Takahashi
and Zembayashi [7], and they proved a strong convergence
theorem for finding a solution of the equilibrium problem
(20) in Banach spaces.

If 𝐹 ≡ 0 and 𝐴 ≡ 0, then the problem (16) reduces to
variational inequality, which is to find �̂� ∈ 𝐶 such that

⟨𝐴𝐽�̂�, 𝐽𝑦 − 𝐽�̂�⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (22)

The set of solution of problem (22) is denoted by VI(𝐽(𝐶),

𝐴); that is,

VI (𝐽 (𝐶) , 𝐴) = {�̂� ∈ 𝐶 : ⟨𝐴𝐽�̂�, 𝐽𝑦 − 𝐽�̂�⟩ ≥ 0, ∀𝑦 ∈ 𝐶} .

(23)

In the sequel, let 𝑇 : 𝐶 → 𝐶 be a mapping, we denote by
Fix(𝑇) the set of fixed points of 𝑇; that is,

Fix (𝑇) = {𝑥 ∈ 𝐶 : 𝑇𝑥 = 𝑥} . (24)

In 1953,Mann [8] introduced an iterative algorithmwhich
is defined by the initial point 𝑥

0
is taken in 𝐶 arbitrarily and

𝑥
𝑛+1

= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑇𝑥
𝑛
, 𝑛 ≥ 0 (25)

where the sequence 𝛼
𝑛

∈ [0, 1]. Mann’s iteration can yield
only weak convergence.
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In 1967, Halpern [9] introduced another iterative algo-
rithm which is defined by the initial point 𝑥

0
is taken in 𝐶

arbitrarily and

𝑥
0
= 𝑢 ∈ 𝐶 chosen arbitrary,

𝑥
𝑛+1

= 𝛼
𝑛
𝑢 + (1 − 𝛼

𝑛
) 𝑇𝑥
𝑛
, 𝑛 ≥ 0,

(26)

which satisfied the conditions lim
𝑛→∞

𝛼
𝑛
= 0 and ∑

∞

𝑛=1
𝛼
𝑛
=

∞. Then, the sequence {𝑥
𝑛
} is converges strongly to a fixed

point of 𝑇.
In 2007, Takahashi and Zembayashi [7] introduced an

iterative algorithm for finding a solution of an equilibrium
problem with a bifunction defined on the dual space of a
Banach space by using the shrinking projection method,
and they established the strong convergence of the following
results.

Theorem TZ. Let 𝐸 be a uniformly convex Banach space
whose norm is uniformly Gâteaux differentiable, and let 𝐶 be
a nonempty, closed and convex subset of 𝐸 such that 𝐽(𝐶) is
closed, and convex of 𝐸∗. Assume that a mapping 𝐹 : 𝐽(𝐶) ×

𝐽(𝐶) → R satisfied the conditions (DA1)–(DA4) such that
EP(𝐹) ̸= 0. Let {𝑥

𝑛
} be a sequence generated by the following

algorithm:

𝑥
0
∈ 𝐶, 𝐶

0
= 𝐶 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦,

𝑢
𝑛
∈ 𝐶 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐹 (𝐽𝑢

𝑛
, 𝐽𝑦) +

1

𝑟
𝑛

⟨𝑢
𝑛
− 𝑥
𝑛
, 𝐽𝑦 − 𝐽𝑢

𝑛
⟩ ≥ 0,

∀𝑦 ∈ 𝐶,

𝑦
𝑛
= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑢
𝑛
,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
: 𝜙 (𝑦
𝑛
, 𝑧) ≤ 𝜙 (𝑥

𝑛
, 𝑧)} ,

𝑥
𝑛+1

= 𝑅
𝐶
𝑛+1

(𝑥
0
) , ∀𝑛 ∈ N ∪ {0} ,

(27)

where 𝐽 is the duality mapping on 𝐸, the sequence {𝛼
𝑛
} ⊂ [0, 1]

such that lim sup
𝑛→∞

𝛼
𝑛
< 1, 𝑟

𝑛
⊂ [𝑎,∞) for some 𝑎 > 0, and

𝑅
𝐶
𝑛+1

is the sunny generalized nonexpansive retraction from 𝐸

onto 𝐶
𝑛+1

. Then, the sequence {𝑥
𝑛
} converges strongly to some

point 𝑝 = 𝑅EF(𝐹)(𝑥0), where 𝑅EP(𝐹) is the sunny generalized
nonexpansive retraction from 𝐸 to EP(𝐹).

In 2010, Plubtieng and Sriprad [10] proved the existence
theorem of the variational inequality problem for skew
monotone operator defined on the dual space of a smooth
Banach space, and they established weak convergence the-
orem for finding a solution of the variational inequality
problem using projection algorithm method with a new
projection which was introduced by Ibaraki and Takahashi
[11] and Iiduka and Takahashi [12] in Banach spaces.

Let 𝐸 be a smooth, strictly convex, and reflexive Banach
space, let 𝐸∗ be the dual space of 𝐸, and let 𝐶 be a nonempty,
closed, and convex subset of 𝐸 such that 𝐽(𝐶) is closed and
convex of 𝐸

∗, where 𝐽 is the duality mapping on 𝐸. Let 𝐴

be a skew monotone operator from 𝐽(𝐶) into 𝐸. Then, the
variational inequality problem is to find 𝑧 ∈ 𝐶 such that

⟨𝐴𝐽𝑧, 𝐽𝑦 − 𝐽𝑧⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (28)

The set of solution of problem (28) is denoted by VI(𝐽(𝐶),

𝐴); that is,

VI (𝐽 (𝐶) , 𝐴) = {𝑧 ∈ 𝐶 : ⟨𝐴𝐽𝑧, 𝐽𝑦 − 𝐽𝑧⟩ ≥ 0, ∀𝑦 ∈ 𝐶} .

(29)

Theorem PS. Let 𝐸 be a uniformly convex and 2-uniformly
smooth Banach space whose duality mapping 𝐽 is weakly
sequentially continuous. Let 𝐶 be a nonempty, closed and
convex subset of 𝐸 such that 𝐽(𝐶) is closed, and convex, and let
𝐴 be an 𝛼-inverse-strongly-skew-monotone operator of 𝐽𝐶 into
𝐸 such that VI(𝐽(𝐶), 𝐴) ̸= 0, and ‖𝐴𝐽𝑧‖ ≤ ‖𝐴𝐽𝑦 −𝐴𝐽𝑧‖, for all
𝑦 ∈ 𝐶 and 𝑧 ∈ VI(𝐽(𝐶), 𝐴). Let {𝑥

𝑛
} be a sequence defined by

𝑥
1
= 𝑥 ∈ 𝐶 and

𝑥
𝑛+1

= 𝑅
𝐶
(𝑥
𝑛
− 𝜆
𝑛
𝐴𝐽𝑥
𝑛
) , (30)

for every 𝑛 = 1, 2, 3, . . ., where 𝑅
𝐶
is the sunny generalized

nonexpansive retraction of 𝐸 into 𝐶, {𝛼
𝑛
} ⊂ [𝑎, 𝑏] and for

some 𝑎, 𝑏 with 0 < 𝑎 < 𝑏 < (𝛼/𝑐), where 𝑐 > 0 is a
constant that satisfies ‖𝐽𝑥 − 𝐽𝑦‖ ≤ 𝑐‖𝑥 − 𝑦‖, for all 𝑥, 𝑦 ∈ 𝐶.
Then, the sequence {𝑥

𝑛
} converges weakly to some element 𝑧 ∈

VI(𝐽(𝐶), 𝐴). Further 𝑧 = lim
𝑛→∞

𝑅VI(𝐽(𝐶),𝐴)𝑥𝑛.

In 2011, Chen et al. [13] introduced a new iterativemethod
for finding a solution of equilibriumwith a bifunction defined
on the dual space of a Banach space. They established the
strong convergence theorem by using the sunny generalized
nonexpansive retraction in Banach spaces.

Theorem CCW. Let 𝐶 be a nonempty, closed and convex
subset of a uniformly convex and uniformly smooth Banach
space such that 𝐽(𝐶) is closed and convex. Assume that a
bifunction 𝐹 : 𝐽(𝐶) × 𝐽(𝐶) → R satisfies the conditions
(DA1)–(DA4). Define a sequence {𝑥

𝑛
} in C by the following

algorithm:

𝑥
0
∈ 𝐶 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦,

𝑢
𝑛
∈ 𝐶 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐹 (𝐽𝑢

𝑛
, 𝐽𝑦) +

1

𝑟
𝑛

⟨𝑢
𝑛
− 𝑥
𝑛
, 𝐽𝑦 − 𝐽𝑢

𝑛
⟩ ≥ 0,

∀𝑦 ∈ 𝐶,

𝑥
𝑛+1

= 𝛼
𝑛
𝑥
0
+ (1 − 𝛼

𝑛
) (𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑢
𝑛
) , ∀𝑛 ∈ N,

(31)

where 𝐽 is the duality mapping on 𝐸, the sequences {𝛼
𝑛
}, {𝛽
𝑛
} ⊂

[0, 1], and {𝑟
𝑛
} ⊂ [𝑎,∞), for some 𝑎 > 0 such that

∞

∑
𝑛=0

𝛼
𝑛
< ∞, lim inf

𝑛→∞

𝛽
𝑛
(1 − 𝛽

𝑛
) > 0, lim inf

𝑛→∞

𝑟
𝑛
> 0.

(32)

Then, the sequence 𝑅EP(𝐹){𝑥𝑛} converges strongly to some point
𝑝 ∈ EF (𝐹), where 𝑅EP(𝐹) is the sunny generalized nonexpan-
sive retraction from 𝐸 to EP(𝐹).
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In 2012, Saewan et al. [14] introduced a new iterative
scheme for finding a common element of the set of solutions
of the mixed equilibrium problems and the set of fixed points
for a -𝜙-nonexpansive mapping in Banach spaces by using
sunny generalized nonexpansive retraction in Banach spaces.

Theorem SCK. Let 𝐸 be a uniformly smooth and uniformly
convex Banach space, and let 𝐶 be a nonempty, closed, and
convex subset of 𝐸 such that 𝐽(𝐶) is closed and convex of 𝐸∗.
Let 𝐹 : 𝐽(𝐶) × 𝐽(𝐶) → R be a bifunction that satisfies the
conditions (DA1)–(DA4), and let 𝑇 : 𝐶 → 𝐶 be a closed
and -𝜙-nonexpansive mapping. Assume that F := Fix(𝑇) ∩

MEP(𝐹, 𝜑) ̸= 0. For an initial point 𝑥
0

∈ 𝐶 and define a
sequence {𝑥

𝑛
} in 𝐶 by the following algorithm:

𝑥
0
∈ 𝐶 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦,

𝑢
𝑛
∈ 𝐶 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡

𝐹 (𝐽𝑢
𝑛
, 𝐽𝑦) + 𝜑 (𝐽𝑦) − 𝜑 (𝐽𝑢

𝑛
) +

1

𝑟
𝑛

⟨𝑢
𝑛
− 𝑥
𝑛
, 𝐽𝑦 − 𝐽𝑢

𝑛
⟩ ≥ 0,

∀𝑦 ∈ 𝐶,

𝑥
𝑛+1

= 𝛼
𝑛
𝑥
0
+ (1 − 𝛼

𝑛
) (𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑇𝑢
𝑛
) ,

∀𝑛 ∈ N,

(33)

where 𝐽 is the duality mapping on 𝐸, the sequence {𝛼
𝑛
}, {𝛽
𝑛
} ⊂

[𝑎, 𝑏], and {𝑟
𝑛
} ⊂ [𝑐,∞), for some 𝑎, 𝑏 ∈ (0, 1) and 𝑐 > 0. If

the following conditions are satisfied:

∞

∑
𝑛=0

𝛼
𝑛
< ∞,

∞

∑
𝑛=0

𝛽
𝑛
< ∞, lim inf

𝑛→∞

𝑟
𝑛
> 0. (34)

Then, the sequence𝑅F{𝑥𝑛} converges strongly to some point𝑝 ∈

F, where 𝑅F is the sunny generalized nonexpansive retraction
from 𝐸 ontoF.

In this paper, Motivated and inspired by the previ-
ously mentioned above results, we study and investigate the
existence of theorem for a generalized mixed equilibrium
problem with a bifunction defined on the dual space of
a Banach space, and we construct an iterative procedure
generated by the conditions for solving the common solution
of a generalized mixed equilibrium problem and a fixed
point problem by using the sunny generalized nonexpansive
retraction. Under some suitable assumptions, the strong
convergence theorem are established in Banach spaces. The
results obtained in this paper extend and improve several
recent results in this area.

2. Preliminaries

Definition 7. Let 𝐶 be a nonempty, closed subset of a smooth
Banach space.

(1) A mapping 𝑇 : 𝐶 → 𝐶 is said to be closed if for each
{𝑥
𝑛
} ⊂ 𝐶, 𝑥

𝑛
→ 𝑥 and 𝑇𝑥

𝑛
→ 𝑦 imply 𝑇𝑥 = 𝑦.

(2) A mapping 𝑇 : 𝐶 → 𝐶 is said to be nonexpansive if
𝑇𝑥 − 𝑇𝑦

 ≤
𝑥 − 𝑦

 , ∀𝑥, 𝑦 ∈ 𝐶. (35)

(3) A mapping 𝑇 : 𝐶 → 𝐶 is said to be -𝜙-nonexpansive
if Fix(𝑇) ̸= 0, and

𝜙 (𝑇𝑥, 𝑇𝑦) ≤ 𝜙 (𝑥, 𝑦) , ∀𝑥, 𝑦 ∈ 𝐶. (36)

(4) A mapping 𝑇 : 𝐶 → 𝐶 is said to be generalized
nonexpansive [15] if Fix(𝑇) ̸= 0 and

𝜙 (𝑇𝑥, 𝑝) ≤ 𝜙 (𝑥, 𝑝) , ∀𝑥 ∈ 𝐶, 𝑝 ∈ Fix (𝑇) . (37)

Definition 8 (see [15]). Let 𝐶 be a nonempty, closed subset of
a smooth Banach space 𝐸. A mapping 𝑅 : 𝐸 → 𝐶 is called

(1) a retraction if 𝑅2 = 𝑅;
(2) a sunny if 𝑅(𝑅𝑥 + 𝑡(𝑥 − 𝑅𝑥)) = 𝑅𝑥, for all 𝑥 ∈ 𝐸 and

𝑡 ≥ 0.

We also know that if 𝐸 is a smooth, strictly convex,
and reflexive Banach space and 𝐶 is nonempty, closed, and
convex subset of 𝐸, then there exists a sunny generalized
nonexpansive retraction 𝑅

𝐶
of 𝐸 onto 𝐶 if and only if 𝐽(𝐶)

is closed and convex. In this case 𝑅
𝐶
is given by

𝑅
𝐶
= 𝐽
−1

Π
𝐽(𝐶)

𝐽. (38)

Definition 9 (see [15]). A nonempty, closed subset 𝐶 of a
smooth Banach space 𝐸 is said to be a sunny generalized non-
expansive retraction of 𝐸 if there exists a sunny generalized
nonexpansive 𝑅 from 𝐸 onto 𝐶.

Lemma 10 (see [11]). Let 𝐶 be a nonempty, closed, and subset
of a smooth and strictly convex Banach space 𝐸, and let 𝑅 be a
retraction from 𝐸 onto 𝐶. Then, the following are equivalent:

(1) 𝑅 is sunny generalized nonexpansive;
(2) ⟨𝑥 − 𝑅𝑥, 𝐽𝑦 − 𝐽𝑅𝑥⟩ ≤ 0, for all 𝑥 ∈ 𝐸 and 𝑦 ∈ 𝐶.

Lemma 11 (see [11]). Let 𝐶 be a nonempty, closed, and
sunny generalized nonexpansive retraction of a smooth and
strictly convex Banach space 𝐸. Then, the sunny generalized
nonexpansive retraction from𝐸 onto𝐶 is uniquely determined.

Lemma 12 (see [11]). Let 𝐶 be a nonempty, closed, and subset
of a smooth and strictly convex Banach space 𝐸 such that there
exists a sunny generalized nonexpansive retraction 𝑅 from 𝐸

onto 𝐶. Let 𝑥 ∈ 𝐸 and 𝑧 ∈ 𝐶. Then, the following hold:

(1) 𝑧 = 𝑅𝑥 if and only if ⟨𝑥−𝑧, 𝐽𝑦− 𝐽𝑧⟩ ≤ 0, for all 𝑦 ∈ 𝐶;
(2) 𝜙(𝑥, 𝑅𝑥) + 𝜙(𝑅𝑥, 𝑧) ≤ 𝜙(𝑥, 𝑧).

Lemma 13 (see [16]). Let 𝐶 be a nonempty, closed, and subset
of a smooth, strictly convex, and reflexive Banach space 𝐸.
Then, the following are equivalent:

(1) 𝐶 is sunny generalized nonexpansive retraction of 𝐸;
(2) 𝐽(𝐶) is closed and convex.
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Remark 14. Let 𝐸 be a Hilbert space. By the Lemmas 11 and
13, a sunny generalized nonexpansive retraction from 𝐸 onto
𝐶 reduces to a metric projection operator 𝑃 from 𝐸 onto 𝐶.

Lemma 15 (see [16]). Let 𝐸 be a smooth, strictly convex, and
reflexive Banach space, let 𝐶 be a nonempty, closed, and sunny
generalized nonexpansive retraction of𝐸, and let𝑅 be the sunny
generalized nonexpansive retraction from 𝐸 onto 𝐶. Let 𝑥 ∈ 𝐸

and 𝑧 ∈ 𝐶. Then, the following are equivalent:

(1) 𝑧 = 𝑅𝑥;
(2) 𝜙(𝑥, 𝑧) = min

𝑦∈𝐶
𝜙(𝑥, 𝑦).

Lemma 16 (see [4]). Let E be a uniformly smooth and strictly
convex real Banach space, and let {𝑥

𝑛
} and {𝑦

𝑛
} be two

sequences of 𝐸. If 𝜙(𝑥
𝑛
, 𝑦
𝑛
) → 0 and either {𝑥

𝑛
} or {𝑦

𝑛
} is

bounded, then ‖𝑥
𝑛
− 𝑦
𝑛
‖ → 0.

Lemma 17 (see [17]). Let E be a uniformly smooth and strictly
convex real Banach space with the Kadec-Klee property, and
let 𝐶 be a nonempty, closed, and convex subset of 𝐸. Let {𝑥

𝑛
}

and {𝑦
𝑛
} be two sequences in 𝐶 and 𝑝 ∈ 𝐸. If 𝑥

𝑛
→ 𝑝 and

𝜙(𝑥
𝑛
, 𝑦
𝑛
) → 0, then 𝑦

𝑛
→ 𝑝.

Lemma 18 (see [18]). Let {𝑎
𝑛
} and {𝑏

𝑛
} be two sequences of

nonnegative real numbers satisfying the inequality

𝑎
𝑛+1

≤ 𝑎
𝑛
+ 𝑏
𝑛
, ∀𝑛 ≥ 1. (39)

If ∑∞
𝑛=0

𝑏
𝑛
< ∞, then lim

𝑛→∞
𝑎
𝑛
exists.

Lemma 19 (see [19]). Let 𝐸 be a uniformly convex Banach
space. Then, for any 𝑟 > 0, there exists a strictly increasing,
continuous, and convex function ℎ : [0, 2𝑟] → R such that
ℎ(0) = 0 and

𝑡𝑥 + (1 − 𝑡) 𝑦

2

≤ 𝑡‖𝑥‖
2

+ (1 − 𝑡)
𝑦


2

− 𝑡 (1 − 𝑡) ℎ (
𝑥 − 𝑦

) ,

∀𝑥, 𝑦 ∈ 𝐵
𝑟
(𝑧) , 𝑡 ∈ [0, 1] ,

(40)

where 𝐵
𝑟
(𝑧) = {𝑧 ∈ 𝐸 : ‖𝑧‖ ≤ 𝑟}.

Lemma 20 (see [4]). Let 𝐸 be a smooth and uniformly convex
Banach space. Then, for any 𝑟 > 0, there exists a strictly
increasing, continuous, and convex function ℎ : [0, 2𝑟] → R

such that ℎ(0) = 0 and

ℎ (
𝑥 − 𝑦

) ≤ 𝜙 (𝑥, 𝑦) , ∀𝑥, 𝑦 ∈ 𝐵
𝑟
(𝑧) , 𝑡 ∈ [0, 1] , (41)

where 𝐵
𝑟
(𝑧) = {𝑧 ∈ 𝐸 : ‖𝑧‖ ≤ 𝑟}.

Now, let us recall the following well-known concept and
result.

Definition 21 (see [20]). Let 𝐵 be a subset of a topological
vector space 𝑋. A mapping 𝐺 : 𝐵 → 2

𝑋 is called a KKM
mapping if conv{𝑥

1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑚
} ⊂ ⋃

𝑚

𝑖=1
𝐺(𝑥
𝑖
) for 𝑥

𝑖
∈ 𝐵

and 𝑖 = 1, 2, 3, . . . , 𝑚, where conv𝐴 denotes the convex hull
of the set 𝐴.

In [21], Fan gave the following famous infinite-di-
mensional generalization of Knaster, Kuratowski, and
Mazurkiewicz’s classical finite-dimensional result.

Lemma 22 (see [21]). Let 𝐵 be a subset of a Hausdorff
topological vector space 𝑋, and let 𝐺 : 𝐵 → 2

𝑋 be a KKM
mapping. If 𝐺(𝑥) is closed, for all 𝑥 ∈ 𝐵 and is compact for at
least one 𝑥 ∈ 𝐵, then ⋂

𝑥∈𝐵
𝐺(𝑥) ̸= 0.

Lemma 23 (see [14]). Let𝐶 be a nonempty, closed, and convex
subset of a smooth and strictly convex Banach space, and let
𝑇 : 𝐶 → 𝐶 be a closed and -𝜙-nonexpansive mapping. Then,
Fix(𝑇) is a closed and convex subset of 𝐶.

3. Existence Theorem

In this section, we prove the existence theorem of a solution
for a generalized mixed equilibrium problem with a bifunc-
tion defined on the dual space of a Banach space.

Lemma 24. Let 𝐶 be a nonempty, compact, and convex subset
of a uniformly smooth, strictly convex, and reflexive Banach
space 𝐸, let 𝐽 be the duality mapping from 𝐸 into 𝐸

∗ such that
𝐽(𝐶) is closed and convex, let us assume that a bifunction 𝐹 :

𝐽(𝐶) × 𝐽(𝐶) → R satisfies the following conditions (DA1)–
(DA4), let 𝐶∗ be a nonempty, closed, and convex subset of 𝐸∗,
let 𝐴 : 𝐶

∗

→ 𝐸 be an 𝛼-inverse strongly skew monotone and
let 𝜑 : 𝐽(𝐶) → R be a convex and lower semicontinuous.
Let 𝑟 > 0 be given real number and 𝑥 ∈ 𝐸 be any point. Then,
there exists 𝑧 ∈ 𝐶 such that

𝐹 (𝐽𝑧, 𝐽𝑦) + ⟨𝐴𝐽𝑧, 𝐽𝑦 − 𝐽𝑧⟩ +
1

𝑟
⟨𝑧 − 𝑥, 𝐽 (𝑦 − 𝑧)⟩

+ 𝜑 (𝐽𝑦) − 𝜑 (𝐽𝑧) ≥ 0, ∀𝑦 ∈ 𝐶.

(42)

Proof. Let 𝑥
0
be any point in 𝐸. For each 𝑦 ∈ 𝐶, we define the

mapping 𝐺 : 𝐶 → 2
𝐸 as follows:

𝐺 (𝑦) = {𝑧 ∈ 𝐶 : 𝐹 (𝐽𝑧, 𝐽𝑦) + ⟨𝐴𝐽𝑧, 𝐽𝑦 − 𝐽𝑧⟩

+
1

𝑟
⟨𝑧 − 𝑥

0
, 𝐽 (𝑦 − 𝑧)⟩ + 𝜑 (𝐽𝑦)

−𝜑 (𝐽𝑧) ≥ 0, ∀𝑦 ∈ 𝐶} .

(43)

It is easy to see that 𝑦 ∈ 𝐺(𝑦), and hence 𝐺(𝑦) ̸= 0.
(a) First, we will show that 𝐺 is a KKMmapping.
Suppose that 𝐺 is not a KKMmapping.Then, there exists

a finite subset {𝑦
1
, 𝑦
2
, 𝑦
3
, . . . , 𝑦

𝑚
} of 𝐶 and 𝛼

𝑖
> 0 with

∑
𝑚

𝑖=1
𝛼
𝑖

= 1 such that 𝑥 = ∑
𝑚

𝑖=1
𝛼
𝑖
𝑦
𝑖

∉ ⋃
𝑚

𝑖=1
𝐺(𝑦
𝑖
) for all

𝑖 = 1, 2, 3, . . . , 𝑚.
It follows from the definition of a mapping 𝐺 that

𝐹 (𝐽𝑥, 𝐽𝑦
𝑖
) + ⟨𝐴𝐽𝑥, 𝐽𝑦

𝑖
− 𝐽𝑥⟩ +

1

𝑟
⟨𝑥 − 𝑥

0
, 𝐽 (𝑦
𝑖
− 𝑥)⟩

+ 𝜑 (𝐽𝑦
𝑖
) − 𝜑 (𝐽𝑥) < 0, ∀𝑖 = 1, 2, 3, . . . , 𝑚. (44)

By the assumptions of (DA1) and (DA4), we get
0 = 𝐹 (𝐽𝑥, 𝐽𝑥) + ⟨𝐴𝐽𝑥, 𝐽𝑥 − 𝐽𝑥⟩

+
1

𝑟
⟨𝑥 − 𝑥

0
, 𝐽 (𝑥 − 𝑥)⟩ + 𝜑 (𝐽𝑥) − 𝜑 (𝐽𝑥)
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≤

𝑚

∑
𝑖=1

𝛼
𝑖
(𝐹 (𝐽𝑥, 𝐽𝑦

𝑖
) + ⟨𝐴𝐽𝑥, 𝐽𝑦

𝑖
− 𝐽𝑥⟩

+
1

𝑟
⟨𝑥 − 𝑥

0
, 𝐽 (𝑦
𝑖
− 𝑥)⟩ + 𝜑 (𝐽𝑦

𝑖
) − 𝜑 (𝐽𝑥))

< 0,

(45)

which is a contradiction. Thus, 𝐺 is a KKMmapping on 𝐶.
(b) Next, we will show that 𝐺(𝑦) is closed, for all 𝑦 ∈ 𝐶.

Let {𝑧
𝑛
} be a sequence in𝐺(𝑦) such that 𝑧

𝑛
→ 𝑧
0
as 𝑛 → ∞.

It then follows from 𝑧
𝑛
∈ 𝐺(𝑦) that

𝐹 (𝐽𝑧
𝑛
, 𝐽𝑦) + ⟨𝐴𝐽𝑧

𝑛
, 𝐽𝑦 − 𝐽𝑧

𝑛
⟩ +

1

𝑟
⟨𝑧
𝑛
− 𝑥
0
, 𝐽 (𝑦 − 𝑧

𝑛
)⟩

+ 𝜑 (𝐽𝑦) − 𝜑 (𝐽𝑧
𝑛
) ≥ 0.

(46)

By the assumption (DA3), the continuity of 𝐽, and the lower
semicontinuity of 𝜑 and ‖ ⋅ ‖

2, it follows from (46) that

𝜑 (𝑧
0
) ≤ lim inf
𝑛→∞

𝜑 (𝑧
𝑛
)

≤ lim inf
𝑛→∞

(𝐹 (𝐽𝑧
𝑛
, 𝐽𝑦) + ⟨𝐴𝐽𝑧

𝑛
, 𝐽𝑦 − 𝐽𝑧

𝑛
⟩

+
1

𝑟
⟨𝑧
𝑛
− 𝑥
0
, 𝐽 (𝑦 − 𝑧

𝑛
)⟩ + 𝜑 (𝐽𝑦))

≤ lim sup
𝑛→∞

(𝐹 (𝐽𝑧
𝑛
, 𝐽𝑦) + ⟨𝐴𝐽𝑧

𝑛
, 𝐽𝑦 − 𝐽𝑧

𝑛
⟩

+
1

𝑟
⟨𝑧
𝑛
− 𝑥
0
, 𝐽 (𝑦 − 𝑧

𝑛
)⟩ + 𝜑 (𝐽𝑦))

= lim sup
𝑛→∞

(𝐹 (𝐽𝑧
𝑛
, 𝐽𝑦) + ⟨𝐴𝐽𝑧

𝑛
, 𝐽𝑦 − 𝐽𝑧

𝑛
⟩

+
1

𝑟
⟨(𝑧
𝑛
− 𝑦) + (𝑦 − 𝑥

0
) , 𝐽 (𝑦 − 𝑧

𝑛
)⟩

+𝜑 (𝐽𝑦))

= lim sup
𝑛→∞

(𝐹 (𝐽𝑧
𝑛
, 𝐽𝑦) + ⟨𝐴𝐽𝑧

𝑛
, 𝐽𝑦 − 𝐽𝑧

𝑛
⟩

+
1

𝑟
⟨𝑧
𝑛
− 𝑦, 𝐽 (𝑦 − 𝑧

𝑛
)⟩

+
1

𝑟
⟨𝑦 − 𝑥

0
, 𝐽 (𝑦 − 𝑧

𝑛
)⟩ + 𝜑 (𝐽𝑦))

= lim sup
𝑛→∞

(𝐹 (𝐽𝑧
𝑛
, 𝐽𝑦) + ⟨𝐴𝐽𝑧

𝑛
, 𝐽𝑦 − 𝐽𝑧

𝑛
⟩

+
1

𝑟
⟨𝑦 − 𝑥

0
, 𝐽 (𝑦 − 𝑧

𝑛
)⟩

−
1

𝑟
⟨𝑦 − 𝑧

𝑛
, 𝐽 (𝑦 − 𝑧

𝑛
)⟩ + 𝜑 (𝐽𝑦))

= lim sup
𝑛→∞

(𝐹 (𝐽𝑧
𝑛
, 𝐽𝑦) + ⟨𝐴𝐽𝑧

𝑛
, 𝐽𝑦 − 𝐽𝑧

𝑛
⟩

+
1

𝑟
⟨𝑦 − 𝑥

0
, 𝐽 (𝑦 − 𝑧

𝑛
)⟩

−
1

𝑟

𝑦 − 𝑧
𝑛


2

+ 𝜑 (𝐽𝑦))

≤ lim sup
𝑛→∞

𝐹 (𝐽𝑧
𝑛
, 𝐽𝑦)

+ lim sup
𝑛→∞

⟨𝐴𝐽𝑧
𝑛
, 𝐽𝑦 − 𝐽𝑧

𝑛
⟩

+
1

𝑟
lim sup
𝑛→∞

⟨𝑦 − 𝑥
0
, 𝐽 (𝑦 − 𝑧

𝑛
)⟩

− lim inf
𝑛→∞

1

𝑟

𝑦 − 𝑧
𝑛


2

+ 𝜑 (𝐽𝑦)

≤ 𝐹 (𝐽𝑧
0
, 𝐽𝑦) + ⟨𝐴𝐽𝑧

0
, 𝐽𝑦 − 𝐽𝑧

0
⟩

+
1

𝑟
⟨𝑦 − 𝑥

0
, 𝐽 (𝑦 − 𝑧

0
)⟩

−
1

𝑟

𝑦 − 𝑧
0


2

+ 𝜑 (𝐽𝑦)

= 𝐹 (𝐽𝑧
0
, 𝐽𝑦) + ⟨𝐴𝐽𝑧

0
, 𝐽𝑦 − 𝐽𝑧

0
⟩

+
1

𝑟
⟨𝑦 − 𝑥

0
, 𝐽 (𝑦 − 𝑧

0
)⟩

−
1

𝑟
⟨𝑦 − 𝑧

0
, 𝐽 (𝑦 − 𝑧

0
)⟩ + 𝜑 (𝐽𝑦)

= 𝐹 (𝐽𝑧
0
, 𝐽𝑦) + ⟨𝐴𝐽𝑧

0
, 𝐽𝑦 − 𝐽𝑧

0
⟩

+
1

𝑟
⟨𝑦 − 𝑥

0
, 𝐽 (𝑦 − 𝑧

0
)⟩

+
1

𝑟
⟨𝑧
0
− 𝑦, 𝐽 (𝑦 − 𝑧

0
)⟩ + 𝜑 (𝐽𝑦)

= 𝐹 (𝐽𝑧
0
, 𝐽𝑦) + ⟨𝐴𝐽𝑧

0
, 𝐽𝑦 − 𝐽𝑧

0
⟩

+
1

𝑟
⟨(𝑦 − 𝑥

0
) + (𝑧

0
− 𝑦) , 𝐽 (𝑦 − 𝑧

0
)⟩

+ 𝜑 (𝐽𝑦)

= 𝐹 (𝐽𝑧
0
, 𝐽𝑦) + ⟨𝐴𝐽𝑧

0
, 𝐽𝑦 − 𝐽𝑧

0
⟩

+
1

𝑟
⟨𝑧
0
− 𝑥
0
, 𝐽 (𝑦 − 𝑧

0
)⟩ + 𝜑 (𝐽𝑦) .

(47)

Now, we get

𝐹 (𝐽𝑧
0
, 𝐽𝑦) + ⟨𝐴𝐽𝑧

0
, 𝐽𝑦 − 𝐽𝑧

0
⟩ +

1

𝑟
⟨𝑧
0
− 𝑥
0
, 𝐽 (𝑦 − 𝑧

0
)⟩

+ 𝜑 (𝐽𝑦) − 𝜑 (𝐽𝑧
0
) ≥ 0.

(48)

Therefore, 𝑧
0
∈ 𝐺(𝑦), and so 𝐺(𝑦) is closed, for all 𝑦 ∈ 𝐶.

(c) We will show that 𝐺(𝑦) is weakly compact.
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Now, we know that 𝐺(𝑦) is closed and subset of 𝐶.
Since 𝐶 is compact. Therefore, 𝐺(𝑦) is compact, and then

𝐺(𝑦) is weakly compact.
By using (a), (b), and (c) and Lemma 22, we can conclude

that⋂
𝑦∈𝐶

𝐺(𝑦) ̸= 0.
Therefore, there exists 𝑧 ∈ 𝐶 such that

𝐹 (𝐽𝑧, 𝐽𝑦) + ⟨𝐴𝐽𝑧, 𝐽𝑦 − 𝐽𝑧⟩ +
1

𝑟
⟨𝑧 − 𝑥, 𝐽 (𝑦 − 𝑧)⟩

+ 𝜑 (𝐽𝑦) − 𝜑 (𝐽𝑧) ≥ 0, ∀𝑦 ∈ 𝐶.

(49)

Theorem 25. Let 𝐶 be a nonempty, closed, and convex subset
of a uniformly smooth and strictly convex real Banach space
𝐸 such that 𝐽(𝐶) is closed and convex, let us assume that a
bifunction 𝐹 : 𝐽(𝐶) × 𝐽(𝐶) → R satisfies the following
conditions (DA1)–(DA4), let 𝐶

∗ be a nonempty, closed, and
convex subset of 𝐸∗, let 𝐴 : 𝐶

∗

→ 𝐸 be an 𝛼-inverse strongly
skew monotone and let 𝜑 : 𝐽(𝐶) → R be a convex and lower
semicontinuous. Let 𝑟 > 0 be given real number and 𝑥 ∈ 𝐸 be
any point. We define a mapping 𝑆

𝑟
: 𝐸 → 𝐶 as follows:

𝑆
𝑟
(𝑥) = {𝑧 ∈ 𝐶 : 𝐹 (𝐽𝑧, 𝐽𝑦) + ⟨𝐴𝐽𝑧, 𝐽𝑦 − 𝐽𝑧⟩

+
1

𝑟
⟨𝑧 − 𝑥, 𝐽 (𝑦 − 𝑧)⟩

+ 𝜑 (𝐽𝑦) − 𝜑 (𝐽𝑧) ≥ 0, ∀𝑦 ∈ 𝐶} .

(50)

Then, the following conclusion hold:

(1) 𝑆
𝑟
is single-valued;

(2) ⟨𝑆
𝑟
𝑥 − 𝑆

𝑟
𝑦, 𝐽(𝑆
𝑟
𝑥 − 𝑆

𝑟
𝑦)⟩ ≤ ⟨𝑥 − 𝑦, 𝐽(𝑆

𝑟
𝑥 − 𝑆

𝑟
𝑦)⟩,

∀𝑥, 𝑦 ∈ 𝐸;

(3) Fix(𝑆r) = GMEP(𝐹, 𝐴, 𝜑);

(4) 𝐽(GMEP(𝐹, 𝐴, 𝜑)) is closed and convex;

Proof. We will complete this proof by the following four
items.

(1)We will show that 𝑆
𝑟
is single-valued.

Indeed, for any 𝑥 ∈ 𝐸 and 𝑟 > 0, let 𝑧
1
, 𝑧
2
∈ 𝑆
𝑟
(𝑥). Then,

𝐹 (𝐽𝑧
1
, 𝐽𝑧
2
) + ⟨𝐴𝐽𝑧

1
, 𝐽𝑧
2
− 𝐽𝑧
1
⟩ +

1

𝑟
⟨𝑧
1
− 𝑥, 𝐽 (𝑧

2
− 𝑧
1
)⟩

+ 𝜑 (𝐽𝑧
2
) − 𝜑 (𝐽𝑧

1
) ≥ 0,

𝐹 (𝐽𝑧
2
, 𝐽𝑧
1
) + ⟨𝐴𝐽𝑧

2
, 𝐽𝑧
1
− 𝐽𝑧
2
⟩ +

1

𝑟
⟨𝑧
2
− 𝑥, 𝐽 (𝑧

1
− 𝑧
2
)⟩

+ 𝜑 (𝐽𝑧
1
) − 𝜑 (𝐽𝑧

2
) ≥ 0.

(51)

Adding the two inequalities, we have

0 ≤ 𝐹 (𝐽𝑧
1
, 𝐽𝑧
2
) + 𝐹 (𝐽𝑧

2
, 𝐽𝑧
1
)

+ ⟨𝐴𝐽𝑧
1
, 𝐽𝑧
2
− 𝐽𝑧
1
⟩ + ⟨𝐴𝐽𝑧

2
, 𝐽𝑧
1
− 𝐽𝑧
2
⟩

+
1

𝑟
⟨𝑧
1
− 𝑥, 𝐽 (𝑧

2
− 𝑧
1
)⟩ +

1

𝑟
⟨𝑧
2
− 𝑥, 𝐽 (𝑧

1
− 𝑧
2
)⟩

+ 𝜑 (𝐽𝑧
2
) − 𝜑 (𝐽𝑧

1
) + 𝜑 (𝐽𝑧

1
) − 𝜑 (𝐽𝑧

2
)

= 𝐹 (𝐽𝑧
1
, 𝐽𝑧
2
) + 𝐹 (𝐽𝑧

2
, 𝐽𝑧
1
)

+ ⟨𝐴𝐽𝑧
1
, 𝐽𝑧
2
− 𝐽𝑧
1
⟩ − ⟨𝐴𝐽𝑧

2
, 𝐽𝑧
2
− 𝐽𝑧
1
⟩

+
1

𝑟
⟨𝑧
1
− 𝑥, 𝐽 (𝑧

2
− 𝑧
1
)⟩ −

1

𝑟
⟨𝑧
2
− 𝑥, 𝐽 (𝑧

2
− 𝑧
1
)⟩

= 𝐹 (𝐽𝑧
1
, 𝐽𝑧
2
) + 𝐹 (𝐽𝑧

2
, 𝐽𝑧
1
)

+ ⟨𝐴𝐽𝑧
1
− 𝐴𝐽𝑧

2
, 𝐽𝑧
2
− 𝐽𝑧
1
⟩

+
1

𝑟
⟨(𝑧
1
− 𝑥) − (𝑧

2
− 𝑥) , 𝐽 (𝑧

2
− 𝑧
1
)⟩

= 𝐹 (𝐽𝑧
1
, 𝐽𝑧
2
) + 𝐹 (𝐽𝑧

2
, 𝐽𝑧
1
)

+ ⟨𝐴𝐽𝑧
1
− 𝐴𝐽𝑧

2
, 𝐽𝑧
2
− 𝐽𝑧
1
⟩ +

1

𝑟
⟨𝑧
1
− 𝑧
2
, 𝐽 (𝑧
2
− 𝑧
1
)⟩

= 𝐹 (𝐽𝑧
1
, 𝐽𝑧
2
) + 𝐹 (𝐽𝑧

2
, 𝐽𝑧
1
)

− ⟨𝐴𝐽𝑧
1
− 𝐴𝐽𝑧

2
, 𝐽𝑧
1
− 𝐽𝑧
2
⟩ +

1

𝑟
⟨𝑧
1
− 𝑧
2
, 𝐽 (𝑧
2
− 𝑧
1
)⟩ .

(52)

Therefore,

𝐹 (𝐽𝑧
1
, 𝐽𝑧
2
) + 𝐹 (𝐽𝑧

2
, 𝐽𝑧
1
) − ⟨𝐴𝐽𝑧

1
− 𝐴𝐽𝑧

2
, 𝐽𝑧
1
− 𝐽𝑧
2
⟩

+
1

𝑟
⟨𝑧
1
− 𝑧
2
, 𝐽 (𝑧
2
− 𝑧
1
)⟩ ≥ 0.

(53)

From the condition (DA2), 𝐴 is an 𝛼-inverse strongly skew
monotone, and we have

0 ≤ 𝐹 (𝐽𝑧
1
, 𝐽𝑧
2
) + 𝐹 (𝐽𝑧

2
, 𝐽𝑧
1
)

− ⟨𝐴𝐽𝑧
1
− 𝐴𝐽𝑧

2
, 𝐽𝑧
1
− 𝐽𝑧
2
⟩ +

1

𝑟
⟨𝑧
1
− 𝑧
2
, 𝐽 (𝑧
2
− 𝑧
1
)⟩

≤ −𝛼
𝐴𝐽𝑧
1
− 𝐴𝐽𝑧

2


2

+
1

𝑟
⟨𝑧
1
− 𝑧
2
, 𝐽 (𝑧
2
− 𝑧
1
)⟩

≤
1

𝑟
⟨𝑧
1
− 𝑧
2
, 𝐽 (𝑧
2
− 𝑧
1
)⟩ .

(54)

Since 𝑟 > 0, 𝐽 is monotone, 𝐸 is strictly convex, and we obtain

𝑧
1
= 𝑧
2
. (55)

This implies that 𝑆
𝑟
is single-valued.

(2) We will show that ⟨𝑆
𝑟
𝑥 − 𝑆
𝑟
𝑦, 𝐽(𝑆
𝑟
𝑥 − 𝑆
𝑟
𝑦)⟩ ≤ ⟨𝑥 −

𝑦, 𝐽(𝑆
𝑟
𝑥 − 𝑆
𝑟
𝑦)⟩, for all 𝑥, 𝑦 ∈ 𝐸.
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Indeed, for any 𝑥, 𝑦 ∈ 𝐶 and 𝑟 > 0, we have

𝐹 (𝐽𝑆
𝑟
𝑥, 𝐽𝑆
𝑟
𝑦) + ⟨𝐴𝐽𝑆

𝑟
𝑥, 𝐽𝑆
𝑟
𝑦 − 𝐽𝑆

𝑟
𝑥⟩

+
1

𝑟
⟨𝑆
𝑟
𝑥 − 𝑥, 𝐽 (𝑆

𝑟
𝑦 − 𝑆
𝑟
𝑥)⟩ + 𝜑 (𝐽𝑆

𝑟
𝑦) − 𝜑 (𝐽𝑆

𝑟
𝑥)

≥ 0,

𝐹 (𝐽𝑆
𝑟
𝑦, 𝐽𝑆
𝑟
𝑥) + ⟨𝐴𝐽𝑆

𝑟
𝑦, 𝐽𝑆
𝑟
𝑥 − 𝐽𝑆

𝑟
𝑦⟩

+
1

𝑟
⟨𝑆
𝑟
𝑦 − 𝑦, 𝐽 (𝑆

𝑟
𝑥 − 𝑆
𝑟
𝑦)⟩ + 𝜑 (𝐽𝑆

𝑟
𝑥) − 𝜑 (𝐽𝑆

𝑟
𝑦)

≥ 0.

(56)

Adding the two inequalities, we have

0 ≤ 𝐹 (𝐽𝑆
𝑟
𝑥, 𝐽𝑆
𝑟
𝑦) + 𝐹 (𝐽𝑆

𝑟
𝑦, 𝐽𝑆
𝑟
𝑥)

+ ⟨𝐴𝐽𝑆
𝑟
𝑥, 𝐽𝑆
𝑟
𝑦 − 𝐽𝑆

𝑟
𝑥⟩ + ⟨𝐴𝐽𝑆

𝑟
𝑦, 𝐽𝑆
𝑟
𝑥 − 𝐽𝑆

𝑟
𝑦⟩

+
1

𝑟
⟨𝑆
𝑟
𝑥 − 𝑥, 𝐽 (𝑆

𝑟
𝑦 − 𝑆
𝑟
𝑥)⟩

+
1

𝑟
⟨𝑆
𝑟
𝑦 − 𝑦, 𝐽 (𝑆

𝑟
𝑥 − 𝑆
𝑟
𝑦)⟩

+ 𝜑 (𝐽𝑆
𝑟
𝑦) − 𝜑 (𝐽𝑆

𝑟
𝑥) + 𝜑 (𝐽𝑆

𝑟
𝑥) − 𝜑 (𝐽𝑆

𝑟
𝑦)

= 𝐹 (𝐽𝑆
𝑟
𝑥, 𝐽𝑆
𝑟
𝑦) + 𝐹 (𝐽𝑆

𝑟
𝑦, 𝐽𝑆
𝑟
𝑥)

+ ⟨𝐴𝐽𝑆
𝑟
𝑥, 𝐽𝑆
𝑟
𝑦 − 𝐽𝑆

𝑟
𝑥⟩ − ⟨𝐴𝐽𝑆

𝑟
𝑦, 𝐽𝑆
𝑟
𝑦 − 𝐽𝑆

𝑟
𝑥⟩

+
1

𝑟
⟨𝑆
𝑟
𝑥 − 𝑥, 𝐽 (𝑆

𝑟
𝑦 − 𝑆
𝑟
𝑥)⟩

−
1

𝑟
⟨𝑆
𝑟
𝑦 − 𝑦, 𝐽 (𝑆

𝑟
𝑦 − 𝑆
𝑟
𝑥)⟩

= 𝐹 (𝐽𝑆
𝑟
𝑥, 𝐽𝑆
𝑟
𝑦) + 𝐹 (𝐽𝑆

𝑟
𝑦, 𝐽𝑆
𝑟
𝑥)

+ ⟨𝐴𝐽𝑆
𝑟
𝑥 − 𝐴𝐽𝑆

𝑟
𝑦, 𝐽𝑆
𝑟
𝑦 − 𝐽𝑆

𝑟
𝑥⟩

+
1

𝑟
⟨(𝑆
𝑟
𝑥 − 𝑥) − (𝑆

𝑟
𝑦 − 𝑦) , 𝐽 (𝑆

𝑟
𝑦 − 𝑆
𝑟
𝑥)⟩

= 𝐹 (𝐽𝑆
𝑟
𝑥, 𝐽𝑆
𝑟
𝑦) + 𝐹 (𝐽𝑆

𝑟
𝑦, 𝐽𝑆
𝑟
𝑥)

+ ⟨𝐴𝐽𝑆
𝑟
𝑥 − 𝐴𝐽𝑆

𝑟
𝑦, 𝐽𝑆
𝑟
𝑦 − 𝐽𝑆

𝑟
𝑥⟩

+
1

𝑟
⟨(𝑆
𝑟
𝑥 − 𝑆
𝑟
𝑦) − (𝑥 − 𝑦) , 𝐽 (𝑆

𝑟
𝑦 − 𝑆
𝑟
𝑥)⟩

= 𝐹 (𝐽𝑆
𝑟
𝑥, 𝐽𝑆
𝑟
𝑦) + 𝐹 (𝐽𝑆

𝑟
𝑦, 𝐽𝑆
𝑟
𝑥)

− ⟨𝐴𝐽𝑆
𝑟
𝑥 − 𝐴𝐽𝑆

𝑟
𝑦, 𝐽𝑆
𝑟
𝑥 − 𝐽𝑆

𝑟
𝑦⟩

+
1

𝑟
⟨(𝑆
𝑟
𝑥 − 𝑆
𝑟
𝑦) − (𝑥 − 𝑦) , 𝐽 (𝑆

𝑟
𝑦 − 𝑆
𝑟
𝑥)⟩ .

(57)

Therefore,
𝐹 (𝐽𝑆
𝑟
𝑥, 𝐽𝑆
𝑟
𝑦) + 𝐹 (𝐽𝑆

𝑟
𝑦, 𝐽𝑆
𝑟
𝑥)

− ⟨𝐴𝐽𝑆
𝑟
𝑥 − 𝐴𝐽𝑆

𝑟
𝑦, 𝐽𝑆
𝑟
𝑥 − 𝐽𝑆

𝑟
𝑦⟩

+
1

𝑟
⟨(𝑆
𝑟
𝑥 − 𝑆
𝑟
𝑦) − (𝑥 − 𝑦) , 𝐽 (𝑆

𝑟
𝑦 − 𝑆
𝑟
𝑥)⟩ ≥ 0.

(58)

From the condition (DA2), 𝐴 is an 𝛼-inverse strongly skew
monotone, and we have

0 ≤ 𝐹 (𝐽𝑆
𝑟
𝑥, 𝐽𝑆
𝑟
𝑦) + 𝐹 (𝐽𝑆

𝑟
𝑦, 𝐽𝑆
𝑟
𝑥)

− ⟨𝐴𝐽𝑆
𝑟
𝑥 − 𝐴𝐽𝑆

𝑟
𝑦, 𝐽𝑆
𝑟
𝑥 − 𝐽𝑆

𝑟
𝑦⟩

+
1

𝑟
⟨(𝑆
𝑟
𝑥 − 𝑆
𝑟
𝑦) − (𝑥 − 𝑦) , 𝐽 (𝑆

𝑟
𝑦 − 𝑆
𝑟
𝑥)⟩

≤ −𝛼
𝐴𝐽𝑆
𝑟
𝑥 − 𝐴𝐽𝑆

𝑟
𝑦

2

+
1

𝑟
⟨(𝑆
𝑟
𝑥 − 𝑆
𝑟
𝑦) − (𝑥 − 𝑦) , 𝐽 (𝑆

𝑟
𝑦 − 𝑆
𝑟
𝑥)⟩

≤
1

𝑟
⟨(𝑆
𝑟
𝑥 − 𝑆
𝑟
𝑦) − (𝑥 − 𝑦) , 𝐽 (𝑆

𝑟
𝑦 − 𝑆
𝑟
𝑥)⟩

≤ −
1

𝑟
⟨(𝑆
𝑟
𝑥 − 𝑆
𝑟
𝑦) − (𝑥 − 𝑦) , 𝐽 (𝑆

𝑟
𝑥 − 𝑆
𝑟
𝑦)⟩ .

(59)

Since 𝑟 > 0, we have

⟨(𝑆
𝑟
𝑥 − 𝑆
𝑟
𝑦) − (𝑥 − 𝑦) , 𝐽 (𝑆

𝑟
𝑥 − 𝑆
𝑟
𝑦)⟩ ≤ 0. (60)

Therefore,

⟨𝑆
𝑟
𝑥 − 𝑆
𝑟
𝑦, 𝐽 (𝑆

𝑟
𝑥 − 𝑆
𝑟
𝑦)⟩ − ⟨𝑥 − 𝑦, 𝐽 (𝑆

𝑟
𝑥 − 𝑆
𝑟
𝑦)⟩ ≤ 0.

(61)

This implies that

⟨𝑆
𝑟
𝑥 − 𝑆
𝑟
𝑦, 𝐽 (𝑆

𝑟
𝑥 − 𝑆
𝑟
𝑦)⟩ ≤ ⟨𝑥 − 𝑦, 𝐽 (𝑆

𝑟
𝑥 − 𝑆
𝑟
𝑦)⟩ . (62)

(3)We will show that Fix(𝑆
𝑟
) = GMEP(𝐹, 𝐴, 𝜑).

It is easy to see that

𝑧 ∈ Fix (𝑆
𝑟
) ⇐⇒ 𝑧 = 𝑆

𝑟
𝑧

⇐⇒ 𝐹 (𝐽𝑧, 𝐽𝑦) + ⟨𝐴𝐽𝑧, 𝐽𝑦 − 𝐽𝑧⟩

+
1

𝑟
⟨𝑧 − 𝑧, 𝐽 (𝑦 − 𝑧)⟩ + 𝜑 (𝐽𝑦) − 𝜑 (𝐽𝑧) ≥ 0

⇐⇒ 𝐹 (𝐽𝑧, 𝐽𝑦) + ⟨𝐴𝐽𝑧, 𝐽𝑦 − 𝐽𝑧⟩

+ 𝜑 (𝐽𝑦) − 𝜑 (𝐽𝑧) ≥ 0

⇐⇒ 𝑧 ∈ GMEP (𝐹, 𝐴, 𝜑) .

(63)

This implies that Fix(𝑆
𝑟
) = GMEP(𝐹, 𝐴, 𝜑).

(4) We will show that 𝐽(GMEP(𝐹, 𝐴, 𝜑)) is closed and
convex.

For each 𝑦 ∈ 𝐶, we define the mapping 𝐻 : 𝐶 → 2
𝐸 as

follows:

𝐻(𝑦) = {𝑧 ∈ 𝐶 : 𝐹 (𝐽𝑧, 𝐽𝑦) + ⟨𝐴𝐽𝑧, 𝐽𝑦 − 𝐽𝑧⟩

+𝜑 (𝐽𝑦) − 𝜑 (𝐽𝑧) ≥ 0} .
(64)

It is easy to see that 𝑦 ∈ 𝐻(𝑦), so that𝐻(𝑦) ̸= 0.
Next, we will show that 𝐻 is a KKMmapping.
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Suppose that there exists a finite subset {𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑚
} of

𝐶 and 𝛽
𝑖
> 0with∑

𝑚

𝑖=1
𝛽
𝑖
= 1 such that �̂� = ∑

𝑚

𝑖=1
𝛽
𝑖
𝑧
𝑖
∉ 𝐻(𝑧

𝑖
),

for all 𝑖 = 1, 2, 3, . . . , 𝑚. Then,

𝐹 (𝐽�̂�, 𝐽𝑧
𝑖
) + ⟨𝐴𝐽�̂�, 𝐽𝑧

𝑖
− 𝐽�̂�⟩ + 𝜑 (𝐽𝑧

𝑖
) − 𝜑 (𝐽�̂�) < 0,

𝑖 = 1, 2, 3, . . . , 𝑚.
(65)

It follows from (DA1) and (DA4) that

0 = 𝐹 (𝐽�̂�, 𝐽�̂�) + ⟨𝐴𝐽�̂�, 𝐽�̂� − 𝐽�̂�⟩ + 𝜑 (𝐽�̂�) − 𝜑 (𝐽�̂�)

≤

𝑚

∑
𝑖=1

𝛽
𝑖
(𝐹 (𝐽�̂�, 𝐽𝑧

𝑖
) + ⟨𝐴𝐽�̂�, 𝐽𝑧

𝑖
− 𝐽�̂�⟩ + 𝜑 (𝐽𝑧

𝑖
) − 𝜑 (𝐽�̂�))

< 0.

(66)

which is the contradiction. Hence, 𝐻 is a KKM mapping on
𝐶.

(4.1) Next, we will show that 𝐻(𝑦) is closed, for each 𝑦 ∈

𝐶.
For any 𝑦 ∈ 𝐶, let {𝑧

𝑛
} be any sequence in𝐻(𝑦) such that

𝑧
𝑛

→ 𝑧
0
as 𝑛 → ∞.

Hence, 𝑧
𝑛
− 𝑥
0

→ 𝑧 − 𝑥
0
as 𝑛 → ∞. Next, we will show

that 𝑧
0
∈ 𝐻(𝑦). Then, for each 𝑦 ∈ 𝐶, we have

𝐹 (𝐽𝑧
𝑛
, 𝐽𝑦) + ⟨𝐴𝐽𝑧

𝑛
, 𝐽𝑦 − 𝐽𝑧

𝑛
⟩ + 𝜑 (𝐽𝑦) − 𝜑 (𝐽𝑧

𝑛
) ≥ 0. (67)

It follows from the assumption (DA3) that

𝐹 (𝐽𝑧
0
, 𝐽𝑦) + ⟨𝐴𝐽𝑧

0
, 𝐽𝑦 − 𝐽𝑧

0
⟩ + 𝜑 (𝐽𝑦) − 𝜑 (𝐽𝑧

0
)

≥ lim sup
𝑛→∞

𝐹 (𝐽𝑧
𝑛
, 𝐽𝑦)

+ lim
𝑛→∞

(⟨𝐴𝐽𝑧
𝑛
, 𝐽𝑦 − 𝐽𝑧

𝑛
⟩ + 𝜑 (𝐽𝑦) − 𝜑 (𝐽𝑧

𝑛
))

≥ 0.

(68)

This implies that 𝑧
0
∈ 𝐻(𝑦), and hence𝐻(𝑦) is closed, for

each 𝑦 ∈ 𝐶.
Therefore, ⋂

𝑦∈𝐶
𝐻(𝑦) = 𝐽(GMEP(𝐹, 𝐴, 𝜑)) is closed.

(4.2) Next, we will show that 𝐽(GMEP(𝐹, 𝐴, 𝜑)) is convex.
Let 𝑧∗
1
, 𝑧
∗

2
∈ 𝐽(GMEP(𝐹, 𝐴, 𝜑)); then, we have 𝑧

∗

1
= 𝐽𝑧
1
∈

𝐽(𝐶) and 𝑧
∗

2
= 𝐽𝑧
2
∈ 𝐽(𝐶), where 𝑧

1
, 𝑧
2
∈ 𝐶.

For 𝑘, 𝑡 ∈ (0, 1), let 𝑧∗ = 𝑘𝑧
∗

1
+ (1 − 𝑘)𝑧

∗

2
, and for any

𝑦 ∈ 𝐶, we set 𝑥∗
𝑡
= 𝑡𝐽𝑦 + (1 − 𝑡)𝑧

∗.
It follows from (DA1) and (DA4) that

0 = 𝐹 (𝑥
∗

𝑡
, 𝑥
∗

𝑡
) + 𝜑 (𝑥

∗

𝑡
) − 𝜑 (𝑥

∗

𝑡
)

≤ 𝐹 (𝑥
∗

𝑡
, 𝑡𝐽𝑦 + (1 − 𝑡) 𝑧

∗

)

+ 𝜑 (𝑡𝐽𝑦 + (1 − 𝑡) 𝑧
∗

) − 𝜑 (𝑥
∗

𝑡
)

≤ 𝑡𝐹 (𝑥
∗

𝑡
, 𝐽𝑦) + (1 − 𝑡) 𝐹 (𝑥

∗

𝑡
, 𝑧
∗

)

+ 𝑡𝜑 (𝑥
∗

𝑡
) + (1 − 𝑡) 𝜑 (𝐽𝑦) − 𝜑 (𝑥

∗

𝑡
)

≤ 𝑡𝐹 (𝑥
∗

𝑡
, 𝐽𝑦) + (1 − 𝑡) 𝜑 (𝐽𝑦) − (1 − 𝑡) 𝜑 (𝑥

∗

𝑡
)

≤ 𝐹 (𝑥
∗

𝑡
, 𝐽𝑦) + 𝜑 (𝐽𝑦) − 𝜑 (𝑥

∗

𝑡
) ,

(69)

0 = ⟨𝐴𝑥
∗

𝑡
, 𝑥
∗

𝑡
− 𝑥
∗

𝑡
⟩

= ⟨𝐴𝑥
∗

𝑡
, (𝑥
∗

𝑡
− 𝐽𝑦) + (𝐽𝑦 − 𝑥

∗

𝑡
)⟩

= ⟨𝐴𝑥
∗

𝑡
, 𝑥
∗

𝑡
− 𝐽𝑦⟩ + ⟨𝐴𝑥

∗

𝑡
, 𝐽𝑦 − 𝑥

∗

𝑡
⟩

= ⟨𝐴𝑥
∗

𝑡
, 𝑥
∗

𝑡
− 𝐽𝑦⟩ − ⟨𝐴𝑥

∗

𝑡
, 𝑥
∗

𝑡
− 𝐽𝑦⟩

≤ ⟨𝐴𝑥
∗

𝑡
, 𝑥
∗

𝑡
− 𝐽𝑦⟩

= ⟨𝐴𝑥
∗

𝑡
, 𝑡𝐽𝑦 + (1 − 𝑡) 𝑧

∗

− 𝐽𝑦⟩

= ⟨𝐴𝑥
∗

𝑡
, 𝑡𝐽𝑦 + (1 − 𝑡) 𝑧

∗

− (𝑡 + (1 − 𝑡)) 𝐽𝑦⟩

= ⟨𝐴𝑥
∗

𝑡
, (1 − 𝑡) (𝑧

∗

− 𝐽𝑦)⟩

= (1 − 𝑡) ⟨𝐴𝑥
∗

𝑡
, 𝑧
∗

− 𝐽𝑦⟩

= (𝑡 − 1) ⟨𝐴𝑥
∗

𝑡
, 𝐽𝑦 − 𝑧

∗

⟩

≤ ⟨𝐴𝑥
∗

𝑡
, 𝐽𝑦 − 𝑧

∗

⟩ .

(70)

Adding two inequalities (69) and (70), we get

0 ≤ 𝐹 (𝑥
∗

𝑡
, 𝐽𝑦) + ⟨𝐴𝑥

∗

𝑡
, 𝐽𝑦 − 𝑧

∗

⟩ + 𝜑 (𝐽𝑦) − 𝜑 (𝑥
∗

𝑡
) . (71)

Letting 𝑡 ↓ 0. It follows from (DA3) and the hemicontinuous
of 𝐴 that

𝐹 (𝑧
∗

, 𝐽𝑦) + ⟨𝐴𝑧
∗

, 𝐽𝑦 − 𝑧
∗

⟩ + 𝜑 (𝐽𝑦) − 𝜑 (𝑧
∗

) ≥ 0, ∀𝑦 ∈ 𝐶.

(72)

Hence, 𝑧∗ ∈ 𝐽(GMEP(𝐹, 𝐴, 𝜑)), and thus 𝐽(GMEP(𝐹, 𝐴, 𝜑))

is convex.
This completes the proof.

4. Iterative Algorithm for Strong
Convergence Theorem

In this section, we modify Halpern-Mann iteration to find
the common solution of a generalized mixed equilibrium
problem and a fixed point problem in Banach spaces.

Theorem 26. Let 𝐸 be a uniformly smooth and strictly convex
real Banach space, let 𝐶 be a nonempty, closed and convex
subset of 𝐸 such that 𝐽(𝐶) is closed, and convex of 𝐸∗, let us
assume that a bifunction 𝐹 : 𝐽(𝐶) × 𝐽(𝐶) → R satisfies
the following conditions (DA1)–(DA4), let 𝐶∗ be a nonempty,
closed and convex subset of 𝐸∗, let 𝐴 : 𝐶

∗

→ 𝐸 be an 𝛼-
inverse strongly skew monotone, let 𝜑 : 𝐽(𝐶) → R be a
convex, and lower semicontinuous, and let 𝑇 : 𝐶 → 𝐶 be
a closed and -𝜙-nonexpansive mapping. Assume that Ω :=

GMEP(𝐹, 𝐴, 𝜑) ∩ Fix(𝑇) is nonempty. Let {𝑥
𝑛
} be a sequence

generated by

𝑥
0
∈ 𝐶 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦,

u
𝑛
∈ 𝐶 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡
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𝐹 (𝐽𝑢
𝑛
, 𝐽𝑦) + ⟨𝐴𝐽𝑢

𝑛
, 𝐽𝑦 − 𝐽𝑢

𝑛
⟩ +

1

𝑟
𝑛

⟨𝑢
𝑛
− 𝑥
𝑛
, 𝐽 (𝑦 − 𝑢

𝑛
)⟩

+ 𝜑 (𝐽𝑦) − 𝜑 (𝐽𝑢
𝑛
) ≥ 0, ∀𝑦 ∈ 𝐶,

𝑥
𝑛+1

= 𝛼
𝑛
𝑥
0
+ (1 − 𝛼

𝑛
) (𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑇𝑢
𝑛
) , ∀𝑛 ∈ N,

(73)

where 𝐽 is the duality mapping on 𝐸 and {𝛼
𝑛
} is a sequence in

[0, 1], {𝛽
𝑛
} ⊂ [𝑎, 𝑏], for some 0 < 𝑎 < 𝑏 < 1 and {𝑟

𝑛
} ⊂ [𝑐,∞),

for some 𝑐 > 0 such that
∞

∑
𝑛=0

𝛼
𝑛
< ∞,

∞

∑
𝑛=0

𝛽
𝑛
< ∞, lim inf

𝑛→∞

𝑟
𝑛
> 0. (74)

Then, the sequence {𝑅
Ω
(𝑥
𝑛
)} converges strongly to some point in

Ω, where 𝑅
Ω
is the sunny generalized nonexpansive retraction

from 𝐸 onto Ω.

Proof. We will complete this proof by the following three
steps.

Step 1. We will show that the sequences {𝑥
𝑛
} and {𝑢

𝑛
} are

bounded.
Let 𝑢
𝑛
= 𝑆
𝑟
𝑛

𝑥
𝑛
and 𝑦
𝑛
= 𝛽
𝑛
𝑥
𝑛
+(1−𝛽

𝑛
)𝑇𝑢
𝑛
, for any 𝑛 ≥ 1.

Then,

𝑥
𝑛+1

= 𝛼
𝑛
𝑥
0
+ (1 − 𝛼

𝑛
) 𝑦
𝑛
. (75)

From Theorem 25 and Lemma 23, we know that GMEP
(𝐹, 𝐴, 𝜑) and Fix(𝑇) are closed, and convex subset of 𝐸.
Therefore, Ω is nonempty, closed and convex subset of 𝐸.

For any 𝑝 ∈ Ω, 𝑇 is a closed and -𝜙-nonexpansive
mapping, we compute

𝜙 (𝑦
𝑛
, 𝑝) ≤ 𝜙 (𝛽

𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑇𝑢
𝑛
, 𝑝)

=
𝛽𝑛𝑥𝑛 + (1 − 𝛽

𝑛
) 𝑇𝑢
𝑛


2

− 2 ⟨𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑇𝑢
𝑛
, 𝐽𝑝⟩ +

𝑝

2

=
𝛽𝑛𝑥𝑛 + (1 − 𝛽

𝑛
) 𝑇𝑢
𝑛


2

− 2𝛽
𝑛
⟨𝑥
𝑛
, 𝐽𝑝⟩ − 2 (1 − 𝛽

𝑛
) ⟨𝑇𝑢
𝑛
, 𝐽𝑝⟩

+ (𝛽
𝑛
+ (1 − 𝛽

𝑛
))

𝑝

2

≤ 𝛽
𝑛

𝑥𝑛

2

+ (1 − 𝛽
𝑛
)
𝑇𝑢
𝑛


2

− 2𝛽
𝑛
⟨𝑥
𝑛
, 𝐽𝑝⟩ − 2 (1 − 𝛽

𝑛
) ⟨𝑇𝑢
𝑛
, 𝐽𝑝⟩

+ (𝛽
𝑛
+ (1 − 𝛽

𝑛
))

𝑝

2

= 𝛽
𝑛
(
𝑥𝑛


2

− 2 ⟨𝑥
𝑛
, 𝐽𝑝⟩ +

𝑝

2

)

+ (1 − 𝛽
𝑛
) (

𝑇𝑢
𝑛


2

− 2 ⟨𝑇𝑢
𝑛
, 𝐽𝑝⟩ +

𝑝

2

)

= 𝛽
𝑛
𝜙 (𝑥
𝑛
, 𝑝) + (1 − 𝛽

𝑛
) 𝜙 (𝑇𝑢

𝑛
, 𝑝)

≤ 𝛽
𝑛
𝜙 (𝑥
𝑛
, 𝑝) + (1 − 𝛽

𝑛
) 𝜙 (𝑢
𝑛
, 𝑝)

= 𝛽
𝑛
𝜙 (𝑥
𝑛
, 𝑝) + (1 − 𝛽

𝑛
) 𝜙 (𝑆
𝑟
𝑛

𝑥
𝑛
, 𝑝)

≤ 𝛽
𝑛
𝜙 (𝑥
𝑛
, 𝑝) + (1 − 𝛽

𝑛
) 𝜙 (𝑥
𝑛
, 𝑝)

= 𝜙 (𝑥
𝑛
, 𝑝) ,

(76)

and we have

𝜙 (𝑥
𝑛+1

, 𝑝) ≤ 𝜙 (𝛼
𝑛
𝑥
0
+ (1 − 𝛼

𝑛
) 𝑦
𝑛
, 𝑝)

=
𝛼𝑛𝑥0 + (1 − 𝛼

𝑛
) 𝑦
𝑛


2

− 2 ⟨𝛼
𝑛
𝑥
0
+ (1 − 𝛼

𝑛
) 𝑦
𝑛
, 𝐽𝑝⟩ +

𝑝

2

=
𝛼𝑛𝑥0 + (1 − 𝛼

𝑛
) 𝑦
𝑛


2

− 2𝛼
𝑛
⟨𝑥
0
, 𝐽𝑝⟩ − 2 (1 − 𝛼

𝑛
) ⟨𝑦
𝑛
, 𝐽𝑝⟩

+ (𝛼
𝑛
+ (1 − 𝛼

𝑛
))

𝑝

2

≤ 𝛼
𝑛

𝑥0

2

+ (1 − 𝛼)
𝑦𝑛


2

− 2𝛼
𝑛
⟨𝑥
0
, 𝐽𝑝⟩ − 2 (1 − 𝛼

𝑛
) ⟨𝑦
𝑛
, 𝐽𝑝⟩

+ (𝛼
𝑛
+ (1 − 𝛼

𝑛
))

𝑝

2

= 𝛼
𝑛
(
𝑥0


2

− 2 ⟨𝑥
0
, 𝐽𝑝⟩ +

𝑝

2

)

+ (1 − 𝛼
𝑛
) (

𝑦𝑛

2

− 2 ⟨𝑦
𝑛
, 𝐽𝑝⟩ +

𝑝

2

)

= 𝛼
𝑛
𝜙 (𝑥
0
, 𝑝) + (1 − 𝛼

𝑛
) 𝜙 (𝑦
𝑛
, 𝑝)

≤ 𝛼
𝑛
𝜙 (𝑥
0
, 𝑝) + (1 − 𝛼

𝑛
) 𝜙 (𝑥
𝑛
, 𝑝)

≤ 𝛼
𝑛
𝜙 (𝑥
0
, 𝑝) + 𝜙 (𝑥

𝑛
, 𝑝) .

(77)

By virtue of ∑
∞

𝑛=0
𝛼
𝑛

< ∞, it follows from Lemma 16 that
lim
𝑛→∞

𝜙(𝑥
𝑛
, 𝑝) exists.

Therefore, {𝜙(𝑥
𝑛
, 𝑝)} is bounded, and so {𝑥

𝑛
} is bounded.

Hence, {𝑢
𝑛
} and {𝑦

𝑛
} are also bounded.

Step 2.We will show that 𝑅
Ω
(𝑥
𝑛
) is bounded.

Let 𝑧
𝑛
= 𝑅
Ω
(𝑥
𝑛
) and 𝑝 ∈ Ω. Then, 𝑧

𝑛
∈ Ω.

It follows from Lemma 12(2) that

𝜙 (𝑥
𝑛
, 𝑧
𝑛
) = 𝜙 (𝑥

𝑛
, 𝑅
Ω
(𝑥
𝑛
))

≤ 𝜙 (𝑥
𝑛
, 𝑝) − 𝜙 (𝑅

Ω
(𝑥
𝑛
) , 𝑝)

≤ 𝜙 (𝑥
𝑛
, 𝑝) .

(78)

Since {𝑥
𝑛
} is bounded. Therefore, {𝑧

𝑛
} is bounded.

Hence, 𝑅
Ω
(𝑥
𝑛
) is bounded.

Step 3. We will show that {𝑅
Ω
(𝑥
𝑛
)} converges strongly to

some point in Ω.
From (78), we have 𝜙(𝑥

𝑛
, 𝑧
𝑛
) ≤ 𝜙(𝑥

𝑛
, 𝑝). Replacing 𝑥

𝑛
by

𝑥
0
, we get 𝜙(𝑥

0
, 𝑧
𝑛
) ≤ 𝜙(𝑥

0
, 𝑝).

Therefore, {𝜙(𝑥
0
, 𝑧
𝑛
)} is bounded.



12 Journal of Applied Mathematics

Now, we know that 𝜙(𝑥
𝑛+1

, 𝑧
𝑛
) ≤ 𝛼
𝑛
𝜙(𝑥
0
, 𝑧
𝑛
) + 𝜙(𝑥

𝑛
, 𝑧
𝑛
).

By Lemma 12(2), we get

𝜙 (𝑥
𝑛+1

, 𝑧
𝑛+1

) = 𝜙 (𝑥
𝑛+1

, 𝑅
Ω
(𝑥
𝑛+1

))

≤ 𝜙 (𝑥
𝑛+1

, 𝑧
𝑛
) − 𝜙 (𝑅

Ω
(𝑥
𝑛+1

) , 𝑧
𝑛
)

≤ 𝜙 (𝑥
𝑛+1

, 𝑧
𝑛
)

≤ 𝛼
𝑛
𝜙 (𝑥
0
, 𝑧
𝑛
) + 𝜙 (𝑥

𝑛
, 𝑧
𝑛
) .

(79)

Since {𝜙(𝑥
0
, 𝑧
𝑛
)} is bounded.There exists𝑀 > 0 such that

|𝜙(𝑥
0
, 𝑧
𝑛
)| ≤ 𝑀.

By the assumption ∑
∞

𝑛=0
𝛼
𝑛
< ∞, we have

∞

∑
𝑛=0

𝜙 (𝑥
0
, 𝑧
𝑛
) ≤ 𝑀

∞

∑
𝑛=0

𝛼
𝑛
< ∞. (80)

It follows from Lemma 16 that lim
𝑛→∞

𝜙(𝑥
𝑛
, 𝑧
𝑛
) exists.

For any 𝑚 ∈ N, we get

𝜙 (𝑥
𝑛+𝑚

, 𝑝) ≤ 𝜙 (𝑥
𝑛
, 𝑝) +

𝑚−1

∑
𝑗=0

𝛼
𝑛+𝑗

𝜙 (𝑥
0
, 𝑝) ,

𝜙 (𝑥
𝑛+𝑚

, 𝑧
𝑛
) ≤ 𝜙 (𝑥

𝑛
, 𝑧
𝑛
) +

𝑚−1

∑
𝑗=0

𝛼
𝑛+𝑗

𝜙 (𝑥
0
, 𝑧
𝑛
) .

(81)

Since 𝑧
𝑛+𝑚

= 𝑅
Ω
(𝑥
𝑛+𝑚

) and from Lemma 12(2), we have

𝜙 (𝑥
𝑛+𝑚

, 𝑧
𝑛+𝑚

) + 𝜙 (𝑧
𝑛+𝑚

, 𝑧
𝑛
)

≤ 𝜙 (𝑥
𝑛+𝑚

, 𝑧
𝑛
) ≤ 𝜙 (𝑥

𝑛
, 𝑧
𝑛
) +

𝑚−1

∑
𝑗=0

𝛼
𝑛+𝑗

𝜙 (𝑥
0
, 𝑝) .

(82)

Hence,

𝜙 (𝑧
𝑛+𝑚

, 𝑧
𝑛
) ≤ 𝜙 (𝑥

𝑛
, 𝑧
𝑛
) − 𝜙 (𝑥

𝑛+𝑚
, 𝑧
𝑛+𝑚

)

+

𝑚−1

∑
𝑗=0

𝛼
𝑛+𝑗

𝜙 (𝑥
0
, 𝑝) .

(83)

We set 𝑟 = sup{‖𝑧
𝑛
‖ : 𝑛 ∈ N}. From Lemma 20, it follows

that there exists a strictly increasing, continuous, and convex
function ℎ : [0, 2𝑟] → R such that ℎ(0) = 0 and

ℎ (
𝑧𝑛 − 𝑧

𝑛+𝑚

) ≤ 𝜙 (𝑧
𝑛+𝑚

, 𝑧
𝑛
)

≤ 𝜙 (𝑥
𝑛
, 𝑧
𝑛
) − 𝜙 (𝑥

𝑛+𝑚
, 𝑧
𝑛+𝑚

)

+

𝑚−1

∑
𝑗=0

𝛼
𝑛+𝑗

𝜙 (𝑥
0
, 𝑧
𝑛
) .

(84)

Since {𝜙(𝑥
𝑛
, 𝑧
𝑛
)} is convergent sequence, {𝜙(𝑥

0
, 𝑧
𝑛
)} is

bounded, and ∑
∞

𝑛=0
𝛼
𝑛
< ∞, then, we obtain

lim
𝑛→∞

𝑧𝑛 − 𝑧
𝑛+𝑚

 = 0, ∀𝑚 ∈ N. (85)

This implies that {𝑧
𝑛
} is a Cauchy sequence.

Note thatΩ is closed.
Thus, there exists 𝑝 ∈ Ω such that 𝑧

𝑛
→ 𝑝.

Therefore, the sequence 𝑅
Ω
(𝑥
𝑛
) converges strongly to

some point 𝑝 ∈ Ω.
This completes the proof.

If we set 𝐴 ≡ 0 in Theorem 26, then Theorem 26 reduces
to the following corollary which extends and improves the
following result of Saewan et al. [14].

Corollary 27. Let𝐸 be a uniformly smooth and strictly convex
real Banach space, let 𝐶 be a nonempty, closed, and convex
subset of 𝐸 such that 𝐽(𝐶) is closed and convex of 𝐸∗, let us
assume that a bifunction 𝐹 : 𝐽(𝐶) × 𝐽(𝐶) → R satisfies
the following conditions (DA1)–(DA4), let 𝐶∗ be a nonempty,
closed, and convex subset of 𝐸∗, let 𝜑 : 𝐽(𝐶) → R be a convex
and lower semicontinuous, and let 𝑇 : 𝐶 → 𝐶 be a closed
and -𝜙-nonexpansivemapping. Assume thatΩ := MEP(𝐹, 𝜑)∩
Fix(𝑇) is nonempty. Let {𝑥

𝑛
} be a sequence generated by

𝑥
0
∈ 𝐶 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦,

𝑢
𝑛
∈ 𝐶 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡

𝐹 (𝐽𝑢
𝑛
, 𝐽𝑦) +

1

𝑟
𝑛

⟨𝑢
𝑛
− 𝑥
𝑛
, 𝐽 (𝑦 − 𝑢

𝑛
)⟩ + 𝜑 (𝐽𝑦) − 𝜑 (𝐽𝑢

𝑛
)≥ 0,

∀𝑦 ∈ 𝐶,

𝑥
𝑛+1

= 𝛼
𝑛
𝑥
0
+ (1 − 𝛼

𝑛
) (𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑇𝑢
𝑛
) , ∀𝑛 ∈ N,

(86)

where 𝐽 is the duality mapping on 𝐸 and {𝛼
𝑛
} is a sequence in

[0, 1], {𝛽
𝑛
} ⊂ [𝑎, 𝑏], for some 0 < 𝑎 < 𝑏 < 1 and {𝑟n} ⊂ [𝑐,∞),

for some 𝑐 > 0 such that

∞

∑
𝑛=0

𝛼
𝑛
< ∞,

∞

∑
𝑛=0

𝛽
𝑛
< ∞, lim inf

𝑛→∞

𝑟
𝑛
> 0. (87)

Then, the sequence {𝑅
Ω
(𝑥
𝑛
)} converges strongly to some point in

Ω, where 𝑅
Ω
is the sunny generalized nonexpansive retraction

from 𝐸 onto Ω.

If we set 𝐴 ≡ 0 and 𝜑 ≡ 0 in Theorem 26, then
Theorem 26 reduces to the following corollary which extends
and improves the following result of Chen et al. [13].

Corollary 28. Let𝐸 be a uniformly smooth and strictly convex
real Banach space, let 𝐶 be a nonempty, closed, and convex
subset of 𝐸 such that 𝐽(𝐶) is closed and convex of 𝐸

∗, let
us assume that a bifunction 𝐹 : 𝐽(𝐶) × 𝐽(𝐶) → R

satisfies the following conditions (DA1)–(DA4), let 𝐶
∗ be a

nonempty, closed, and convex subset of 𝐸∗, and let 𝑇 : 𝐶 →

𝐶 be a closed and -𝜙-nonexpansive mapping. Assume that
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Ω := EP(𝐹) ∩ Fix(𝑇) is nonempty. Let {𝑥
𝑛
} be a sequence

generated by

𝑥
0
∈ 𝐶 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦,

𝑢
𝑛
∈ 𝐶 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡

𝐹 (𝐽𝑢
𝑛
, 𝐽𝑦) +

1

𝑟
𝑛

⟨𝑢
𝑛
− 𝑥
𝑛
, 𝐽 (𝑦 − 𝑢

𝑛
)⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑥
𝑛+1

= 𝛼
𝑛
𝑥
0
+ (1 − 𝛼

𝑛
) (𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑇𝑢
𝑛
) , ∀𝑛 ∈ N,

(88)

where 𝐽 is the duality mapping on 𝐸 and {𝛼
𝑛
} is a sequence in

[0, 1], {𝛽
𝑛
} ⊂ [𝑎, 𝑏], for some 0 < 𝑎 < 𝑏 < 1 and {𝑟

𝑛
} ⊂ [𝑐,∞),

for some 𝑐 > 0 such that
∞

∑
𝑛=0

𝛼
𝑛
< ∞,

∞

∑
𝑛=0

𝛽
𝑛
< ∞, lim inf

𝑛→∞

𝑟
𝑛
> 0. (89)

Then, the sequence {𝑅
Ω
(𝑥
𝑛
)} converges strongly to some point in

Ω, where 𝑅
Ω
is the sunny generalized nonexpansive retraction

from 𝐸 onto Ω.

If we set 𝐴 ≡ 0, 𝜑 ≡ 0, and 𝑇 ≡ 𝐼 (identity mapping)
in Theorem 26, then Theorem 26 reduces to the following
corollary which extends and improves the following result of
Chen et al. [13].

Corollary 29. Let𝐸 be a uniformly smooth and strictly convex
real Banach space, let 𝐶 be a nonempty, closed, and convex
subset of 𝐸 such that 𝐽(𝐶) is closed and convex of 𝐸

∗, let
us assume that a bifunction 𝐹 : 𝐽(𝐶) × 𝐽(𝐶) → R

satisfies the following conditions (DA1)–(DA4), and let𝐶∗ be a
nonempty, closed, and convex subset of 𝐸∗. Assume that 𝐸𝑃(𝐹)

is nonempty. Let {𝑥
𝑛
} be a sequence generated by

𝑥
0
∈ 𝐶 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦,

𝑢
𝑛
∈ 𝐶 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡

𝐹 (𝐽𝑢
𝑛
, 𝐽𝑦) +

1

𝑟
𝑛

⟨𝑢
𝑛
− 𝑥
𝑛
, 𝐽 (𝑦 − 𝑢

𝑛
)⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑥
𝑛+1

= 𝛼
𝑛
𝑥
0
+ (1 − 𝛼

𝑛
) (𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑢
𝑛
) , ∀𝑛 ∈ N,

(90)

where 𝐽 is the duality mapping on 𝐸 and {𝛼
𝑛
} is a sequence in

[0, 1], {𝛽
𝑛
} ⊂ [𝑎, 𝑏], for some 0 < 𝑎 < 𝑏 < 1 and {𝑟

𝑛
} ⊂ [𝑐,∞),

for some 𝑐 > 0 such that
∞

∑
𝑛=0

𝛼
𝑛
< ∞,

∞

∑
𝑛=0

𝛽
𝑛
< ∞, lim inf

𝑛→∞

𝑟
𝑛
> 0. (91)

Then, the sequence {𝑅EP(𝐹)(𝑥𝑛)} converges strongly to some
point inΩ, where 𝑅EP(𝐹) is the sunny generalized nonexpansive
retraction from 𝐸 onto EP(𝐹).
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