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The fuzzy Sylvester matrix equation 𝐴𝑋̃ + 𝑋̃𝐵 = 𝐶̃ in which A, B are 𝑚 × 𝑚 and 𝑛 × 𝑛 crisp matrices, respectively, and 𝐶̃ is an
𝑚× 𝑛 LR fuzzy numbers matrix is investigated. Based on the Kronecker product of matrices, we convert the fuzzy Sylvester matrix
equation into an LR fuzzy linear system. Then we extend the fuzzy linear system into two systems of linear equations according to
the arithmetic operations of LR fuzzy numbers. The fuzzy approximate solution of the original fuzzy matrix equation is obtained
by solving the crisp linear systems. The existence condition of the LR fuzzy solution is also discussed. Some examples are given to
illustrate the proposed method.

1. Introduction

System of simultaneous matrix equations plays a major role
in various areas such as mathematics, physics, statistics,
engineering, and social sciences. Inmany problems in various
areas of science, which can be solved by solving a linear
matrix equation, some of the system parameters are vague
or imprecise, and fuzzy mathematics is better than crisp
mathematics for mathematical modeling of these problems,
and hence solving a linear matrix equation where some or all
elements of the system are fuzzy is important.The concept of
fuzzy numbers and arithmetic operationswith these numbers
were first introduced and investigated by Zadeh [1], Dubois
and Prade [2], andNahmias [3]. A different approach to fuzzy
numbers and the structure of fuzzy number spaces was given
by Puri and Ralescu [4], Goetschel and Voxman [5], and Wu
and Ma [6, 7].

Since Friedman et al. [8] proposed a general model for
solving an 𝑛 × 𝑛 fuzzy linear systems whose coefficients
matrix are crisp and the right-hand side is an arbitrary fuzzy
number vector by a embedding approach, some works [9–
20] have been done about how to deal with some advanced
fuzzy linear systems such as dual fuzzy linear systems (DFLS),
general fuzzy linear systems (GFLS), full fuzzy linear systems
(FFLS), dual full fuzzy linear systems (DFFLS), and general
dual fuzzy linear systems (GDFLS). However, for a fuzzy

linear matrix equation which always has a wide use in
control theory and control engineering, few works have been
done in the past decades. In 2009, Allahviranloo et al. [21]
studied the fuzzy linear matrix equation, (FLME) of the
form 𝐴𝑋̃𝐵 = 𝐶̃. By using the parametric form of the fuzzy
number, they derived necessary and sufficient conditions for
the existence of the set of fuzzy solutions and designed a
numerical procedure for calculating the solutions of the fuzzy
matrix equations. In 2011, Guo andGong [22, 23] investigated
a class of simple fuzzy matrix equations 𝐴𝑋̃ = 𝐵̃ by the
undetermined coefficients method and studied least squares
solutions of the inconsistent fuzzy matrix equation 𝐴𝑋̃ = 𝐵̃

by using generalized inverses of matrices. In 2011, Guo [24]
studied the approximate solution of fuzzy Sylvester matrix
equations with triangular fuzzy numbers. Lately, Guo and
Shang [25] considered the fuzzy symmetric solutions of fuzzy
matrix equation 𝐴𝑋̃ = 𝐵̃.

The LR fuzzy number and its arithmetic operations
were first introduced by Dubois and Prade. We know that
triangular fuzzy numbers are just specious cases of LR fuzzy
numbers. In particular, Allahviranloo et al. [26] have showed
us that the weak fuzzy solution of fuzzy linear systems
𝐴𝑥̃ = 𝑏 does not exist sometimes when 𝑥̃, 𝑏̃ are denoted
by triangular fuzzy numbers. Recently, he also considered
the LR fuzzy linear systems [27] by the linear programming
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with equality constraints. In this paper we consider the fuzzy
approximate solution of LR fuzzy Sylvester matrix equation
𝐴𝑋̃ + 𝑋̃𝐵 = 𝐶̃. In fact, the fuzzy Sylvester matrix equation
𝐴𝑋̃ + 𝑋̃𝐵 = 𝐶̃ has numerous applications in control theory,
signal processing, filtering, model reduction, decoupling
techniques for ordinary andpartial differential equations, and
block-diagonalization of matrices and so on. But there was
little research work on it.The contributions of this paper is to
generalize Dubois’ definition and arithmetic operation of LR
fuzzy numbers and then use this result to solve fuzzy Sylvester
matrix systems numerically. The structure of this paper is
organized as follows.

In Section 2, we recall the LR fuzzy number, generalize
the definition of LR fuzzy numbers, and present the concept
of the LR fuzzy Sylvester matrix equation. The model to the
fuzzy Sylvester matrix equation is proposed in detail and
the fuzzy approximate solution of the original fuzzy matrix
systems is derived from solving the crisp systems of linear
equations in Section 3. Some examples are given in Section 4
and the conclusion is drawn in Section 5.

2. Preliminaries

2.1. The LR Fuzzy Numbers

Definition 1 (see [1]). A fuzzy number is a fuzzy set like 𝑢 :

𝑅 → 𝐼 = [0, 1] which satisfies

(1) 𝑢 is upper semicontinuous;
(2) 𝑢 is fuzzy convex, that is, 𝑢(𝜆𝑥+(1−𝜆)𝑦)≥min{𝑢(𝑥),

𝑢(𝑦)} for all 𝑥, 𝑦 ∈ 𝑅, 𝜆 ∈ [0, 1];
(3) 𝑢 is normal, that is, there exists 𝑥

0
∈ 𝑅 such that

𝑢(𝑥
0
) = 1;

(4) Supp 𝑢 = {𝑥 ∈ 𝑅 | 𝑢(𝑥) > 0} is the support of the 𝑢,
and its closure cl(supp 𝑢) is compact.

Let 𝐸1 be the set of all fuzzy numbers on 𝑅.

Definition 2 (see [2]). 𝐴 fuzzy number 𝑀̃ is said to be an LR
fuzzy number if

𝜇
𝑀̃
(𝑥) =

{{{

{{{

{

𝐿(
𝑚 − 𝑥

𝛼
) , 𝑥 ≤ 𝑚, 𝛼 > 0,

𝑅(
𝑥 − 𝑚

𝛽
) , 𝑥 ≥ 𝑚, 𝛽 > 0,

(1)

where𝑚 is the mean value of 𝑀̃ and 𝛼 and 𝛽 are left and right
spreads, respectively. The function 𝐿(⋅) is called the left shape
function of an LR fuzzy number and it satisfies:

(1) 𝐿(𝑥) = 𝐿(−𝑥);
(2) 𝐿(0) = 1 and 𝐿(1) = 0;
(3) 𝐿(𝑥) is nonincreasing on [0,∞).

The definition of a right shape function 𝑅(⋅) is usually
similar to that of 𝐿(⋅).

An LR fuzzy number 𝑀̃ is symbolically shown as

𝑀̃ = (𝑚, 𝛼, 𝛽)LR. (2)

Clearly, 𝑀̃ = (𝑚, 𝛼, 𝛽)LR is positive (negative) if and only
if𝑚 − 𝛼 > 0 (𝑚 + 𝛽 < 0).

Also, two LR fuzzy numbers 𝑀̃ = (𝑚, 𝛼, 𝛽)LR and 𝑁̃ =

(𝑛, 𝛾, 𝛿)LR are said to be equal, if and only if 𝑚 = 𝑛, 𝛼 = 𝛾,
and 𝛽 = 𝛿.

Noticing that 𝛼, 𝛽 > 0 in Definition 2, which limits its
applications, we extend the definition of LR fuzzy numbers
as follows.

Definition 3 (generalized LR fuzzy numbers). (1) If 𝛼 < 0 and
𝛽 > 0, we define 𝑀̃ = (𝑚, 0,max{−𝛼, 𝛽})LR and

𝜇
𝑀̃
(𝑥) =

{{

{{

{

0, 𝑥 < 𝑚,

𝑅(
𝑥 − 𝑚

max {−𝛼, 𝛽}
) , 𝑥 ≥ 𝑚.

(3)

(2) If 𝛼 > 0 and 𝛽 < 0, we define 𝑀̃ = (𝑚,max{𝛼,
−𝛽}, 0)LR and

𝜇
𝑀̃
(𝑥) =

{{

{{

{

𝐿(
𝑥 − 𝑚

max {𝛼, −𝛽}
) , 𝑥 ≥ 𝑚,

0, 𝑥 < 𝑚.

(4)

(3) If 𝛼 < 0 and 𝛽 < 0, we define 𝑀̃ = (𝑚, −𝛽, −𝛼)LR and

𝜇
𝑀̃
(𝑥) =

{{{

{{{

{

𝐿(
𝑚 − 𝑥

−𝛽
) , 𝑥 < 𝑚,

𝑅 (
𝑥 − 𝑚

−𝛼
) , 𝑥 ≥ 𝑚.

(5)

Based on the extension principle, the arithmetic opera-
tions for LR fuzzy numbers were defined. For arbitrary LR
fuzzy numbers 𝑀̃ = (𝑚, 𝛼, 𝛽)LR and 𝑁̃ = (𝑛, 𝛾, 𝛿)LR, we have

(1) addition

𝑀̃ + 𝑁̃ = (𝑚, 𝛼, 𝛽)LR + (𝑛, 𝛾, 𝛿)LR = (𝑚 + 𝑛, 𝛼 + 𝛾, 𝛽 + 𝛿)LR,

(6)

(1) scalar multiplication

𝜆 × 𝑀̃ = 𝜆 × (𝑚, 𝛼, 𝛽)LR

= {
(𝜆𝑚, 𝜆𝛼, 𝜆𝛽)LR, 𝜆 > 0,

(𝜆𝑚, −𝜆𝛽, −𝜆𝛼)RL, 𝜆 < 0.

(7)

2.2. Some Results on Matrix Theory. Let 𝐴 be an 𝑚 × 𝑛 real
matrix and (⋅)⊤ denote the transpose of a matrix (⋅). We recall
that a generalized inverse 𝐺 of 𝐴 is an 𝑛 × 𝑚 matrix which
satisfies one or more of Penrose equations

(1) 𝐴𝐺𝐴 = 𝐴, (2) 𝐺𝐴𝐺 = 𝐺,

(3) (𝐴𝐺)
⊤
= 𝐴𝐺, (4) (𝐺𝐴)

⊤
= 𝐺𝐴.

(8)

For a subset {𝑖, 𝑗, 𝑘} of set {1, 2, 3, 4}, the set of 𝑛 ×

𝑚 matrices satisfying the equations contained in {𝑖, 𝑗, 𝑘}

is denoted by 𝐴{𝑖, 𝑗, 𝑘}. A matrix in 𝐴{𝑖, 𝑗, 𝑘} is called an
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{𝑖, 𝑗, 𝑘}-inverse of𝐴 and is denoted by𝐴{𝑖, 𝑗, 𝑘}. In particular,
the matrix 𝐺 is called a {1}-inverse or a 𝑔-inverse of 𝐴 if it
satisfies (1). As usual, the 𝑔-inverse of 𝐴 is denoted by 𝐴−. If
𝐺 satisfies (2) then it is called a {2}-inverse and If 𝐺 satisfies
(1) and (2) then it is called a reflexive inverse or a {1, 2}-
inverse of𝐴. TheMoore-Penrose inverse of𝐴 is the matrix𝐺
which satisfies (1)–(4). Anymatrix𝐴 admits a uniqueMoore-
Penrose inverse, denoted by 𝐴†.

Lemma 4 (see [28]). For a system of linear equations

𝐴𝑥 = 𝑏. (9)

When it is consistent, its solution can be expressed by 𝑥 = 𝐺𝑏

in which𝐺 ∈ 𝐴{1}; when it has an infinite number of solutions,
its minimal norm solution can be expressed by 𝑥 = 𝐺𝑏 in which
𝐺 ∈ 𝐴{1, 4}. When it is inconsistent, its least squares solutions
can be expressed by 𝑥 = 𝐺𝑏 in which𝐺 ∈ 𝐴{1, 3}. In particular,
𝑥 = 𝐴

†
𝑏 is the minimum norm least square solution to the

above linear system.

Definition 5 (see [28]). Suppose𝐴 = (𝑎
𝑖𝑗
) ∈ 𝑅
𝑚×𝑛

, 𝐵 = (𝑏
𝑖𝑗
) ∈

𝑅
𝑝×𝑞; the matrix in block form

𝐴 ⊗ 𝐵 = (

𝑎
11
𝐵 𝑎
12
𝐵 ⋅ ⋅ ⋅ 𝑎

1𝑛
𝐵

𝑎
21
𝐵 𝑎
12
𝐵 ⋅ ⋅ ⋅ 𝑎

2𝑛
𝐵

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑎
𝑚1
𝐵 𝑎
𝑚2
𝐵 ⋅ ⋅ ⋅ 𝑎

𝑚𝑛
𝐵

) ∈ 𝑅
𝑚𝑝×𝑛𝑞 (10)

is said to be the Kronecker product of matrices 𝐴 and 𝐵,
which denoted simply 𝐴 ⊗ 𝐵 = (𝑎

𝑖𝑗
𝐵).

2.3. The Fuzzy Sylvester Matrix Equation

Definition 6. Amatrix 𝐴̃ = (𝑎̃
𝑖𝑗
) is called an LR fuzzy matrix,

if each element 𝑎̃
𝑖𝑗
of 𝐴̃ is an LR fuzzy number.

For example, we represent 𝑚 × 𝑛 LR fuzzy matrix 𝐴̃ =

(𝑎̃
𝑖𝑗
), that 𝑎̃

𝑖𝑗
= (𝑎

𝑖𝑗
, 𝛼
𝑖𝑗
, 𝛽
𝑖𝑗
)LR with new notation 𝐴̃ =

(𝐴,𝑀,𝑁), where 𝐴 = (𝑎
𝑖𝑗
), 𝑀 = (𝛼

𝑖𝑗
) and 𝑁 = (𝛽

𝑖𝑗
) are

three 𝑚 × 𝑛 crisp matrices. Particularly, an 𝑛 dimensions LR
fuzzy numbers vector 𝑥̃ can be denoted by (𝑥, 𝑥𝑙, 𝑥𝑟), where
𝑥 = (𝑥

𝑖
), 𝑥𝑙 = (𝑥𝑙

𝑖
), and 𝑥𝑟 = (𝑥𝑟

𝑖
) are three 𝑛 dimensions crisp

vectors.

Definition 7. Thematrix system

(

𝑎
11

𝑎
12

⋅ ⋅ ⋅ 𝑎
1𝑚

𝑎
21

𝑎
12

⋅ ⋅ ⋅ 𝑎
2𝑚

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑎
𝑚𝑛1

𝑎
𝑚2

⋅ ⋅ ⋅ 𝑎
𝑚𝑚

)(

𝑥̃
11

𝑥̃
12

⋅ ⋅ ⋅ 𝑥̃
1𝑛

𝑥̃
21

𝑥̃
12

⋅ ⋅ ⋅ 𝑥̃
2𝑛

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑥̃
𝑚1

𝑥̃
𝑚2

⋅ ⋅ ⋅ 𝑥̃
𝑚𝑛

)

+(

𝑥̃
11

𝑥̃
12

⋅ ⋅ ⋅ 𝑥̃
1𝑛

𝑥̃
21

𝑥̃
12

⋅ ⋅ ⋅ 𝑥̃
2𝑛

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑥̃
𝑚1

𝑥̃
𝑚2

⋅ ⋅ ⋅ 𝑥̃
𝑚𝑛

)(

𝑏
11

𝑏
12

⋅ ⋅ ⋅ 𝑏
1𝑛

𝑏
21

𝑏
12

⋅ ⋅ ⋅ 𝑏
2𝑛

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑏
𝑛1

𝑏
𝑛2

⋅ ⋅ ⋅ 𝑏
𝑛𝑛

)

=(

𝑐̃
11

𝑐̃
12

⋅ ⋅ ⋅ 𝑐̃
1𝑛

𝑐̃
21

𝑐̃
12

⋅ ⋅ ⋅ 𝑐̃
2𝑛

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑐̃
𝑚1

𝑐̃
𝑚2

⋅ ⋅ ⋅ 𝑐̃
𝑚𝑛

),

(11)

where 𝐴 and 𝐵 are real matrices and 𝐶 is an LR fuzzy matrix,
that is, 𝑎

𝑖𝑗
, 𝑏
𝑖𝑗
∈ 𝑅, 𝑐̃

𝑖𝑗
∈ 𝐸, is called an LR fuzzy Sylvester

matrix equations (LRFSMEs).
Using matrix notation, we have

𝐴𝑋̃ + 𝑋̃𝐵 = 𝐶̃. (12)

Up to the rest of this paper, we suppose that 𝐶̃ is a positive
LR fuzzy numbers matrix and use the formulas given in
Definition 3.

An LR fuzzy numbers matrix

𝑋̃ = (𝑥
𝑖𝑗
, 𝑥
𝑙

𝑖𝑗
, 𝑥
𝑟

𝑖𝑗
)
LR
, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 (13)

is called an LR solution of the fuzzy Sylvester matrix equation
(11) if 𝑋̃ satisfies (12).

3. Method for Solving LRFSMEs

In this section we investigate the fuzzy Sylvester matrix
equations (12). Firstly, we set up a computing model for
solving LRFSME. Then we define the LR fuzzy solution of
LRFSME and obtain its solution representation by means of
generalized inverses of matrices. Finally, we give a sufficient
condition for strong fuzzy approximate solution to the fuzzy
Sylvester matrix equation.

3.1. TheModel. At first, we convert the fuzzy Sylvester matrix
equation (12) into an LR fuzzy system of linear equations
based on the Kronecker product of matrices.

Definition 8. Let 𝐴̃ = (𝑎̃
𝑖𝑗
) = (𝑎

𝑖𝑗
, 𝑎
𝑙

𝑖𝑗
, 𝑎
𝑟

𝑖𝑗
)LR ∈ 𝐸

𝑚×𝑛, 𝑎̃
𝑖
=

(𝑎̃
1𝑖
, 𝑎̃
2𝑖
, . . . , 𝑎̃

𝑚𝑖
)
𝑇, 𝑖 = 1, . . . , 𝑛. Then the 𝑚𝑛 dimensions

fuzzy numbers vector

Vec (𝐴̃) = (

𝑎̃
1

𝑎̃
2

...
𝑎̃
𝑛

) (14)

is called the extension on column of the fuzzy matrix 𝐴̃.

Theorem 9 (see [25]). Let 𝐴 = (𝑎
𝑖𝑗
) belong to 𝑅𝑚×𝑚, 𝑋̃ =

(𝑥̃
𝑖𝑗
) = (𝑥

𝑖𝑗
, 𝑥
𝑙

𝑖𝑗
, 𝑥
𝑟

𝑖𝑗
) belong to 𝐸𝑚×𝑛, and 𝐵 = (𝑏

𝑖𝑗
) belong to

𝑅
𝑛×𝑛. Then

Vec (𝐴𝑋̃𝐵) = (𝐵𝑇 ⊗ 𝐴)Vec (𝑋̃) . (15)

Theorem 10. Let 𝐴 = (𝑎
𝑖𝑗
) belong to 𝑅𝑚×𝑚, 𝑋̃ = (𝑥̃

𝑖𝑗
) =

(𝑥
𝑖𝑗
, 𝑥
𝑙

𝑖𝑗
, 𝑥
𝑟

𝑖𝑗
) belong to 𝐸𝑚×𝑛, and 𝐵 = (𝑏

𝑖𝑗
) belong to 𝑅𝑛×𝑛. Then

Vec (𝐴𝑋̃ + 𝑋̃𝐵) = (𝐼
𝑛
⊗ 𝐴 + 𝐵

𝑇
⊗ 𝐼
𝑚
)Vec (𝑋̃) , (16)

where 𝐼
𝑛
and 𝐼
𝑚
denote unit matrices with order 𝑛 and order

𝑚, respectively.
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Proof. Setting 𝐵 = 𝐼
𝑛
in (15), we have

Vec (𝐴𝑋̃) = (𝐼
𝑛
⊗ 𝐴)Vec (𝑋̃) . (17)

Similarly, the result

Vec (𝑋̃𝐵) = (𝐵𝑇 ⊗ 𝐼
𝑚
)Vec (𝑋̃) (18)

is obvious when we replace 𝐴 with 𝐼
𝑚
in (15).

We combine (17) and (18) and obtain the following
conclusion:

Vec (𝐴𝑋̃ + 𝑋̃𝐵) = Vec (𝐴𝑋̃) + Vec (𝑋̃𝐵)

= (𝐼
𝑛
⊗ 𝐴 + 𝐵

𝑇
⊗ 𝐼
𝑚
)Vec (𝑋̃) .

(19)

Theorem 11. Thematrix 𝑋̃ ∈ 𝐸
𝑚×𝑛 is the solution of the fuzzy

linear matrix equation (12) if and only if that 𝑥̃ = Vec(𝑋̃) is
the solution of the following [LR] linear fuzzy system:

𝐺𝑥̃ = 𝑦̃, (20)

where 𝐺 = (𝐼
𝑛
⊗ 𝐴 + 𝐵

𝑇
⊗ 𝐼
𝑚
) and 𝑦̃ = Vec(𝐶̃).

Proof. Applying the extension operation to two sides of (12)
and according to the Definition 8 andTheorem 10, we have

𝐺𝑥̃ = 𝑦̃, (21)

where 𝐺 = (𝐼
𝑛
⊗ 𝐴 + 𝐵

𝑇
⊗ 𝐼
𝑚
) is an 𝑚𝑛 × 𝑚𝑛 matrix and

𝑦̃ = Vec(𝐶̃) is an 𝑚𝑛 LR fuzzy numbers vector. Thus the 𝑋̃
is the solution of (16) is equivalent to that 𝑥̃ = Vec(𝑋̃) is the
solution of (20).

For simplicity, we denote 𝑝 = 𝑚𝑛 in (20); thus

𝐺 = (

𝑔
11

𝑔
12

⋅ ⋅ ⋅ 𝑔
1,𝑝

𝑔
21

𝑎
12

⋅ ⋅ ⋅ 𝑔
2,𝑝

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑔
𝑝,1

𝑔
𝑝,2

⋅ ⋅ ⋅ 𝑔
𝑝,𝑝

), 𝑦̃ = (

𝑦̃
1

𝑦̃
2

...
𝑦̃
𝑝

). (22)

Secondly, we extend the fuzzy LR linear system (16)
into two systems of linear equations according to arithmetic
operations of LR fuzzy numbers.

Theorem 12. The LR fuzzy linear system (16) can be extended
into the following two crisp systems of linear equations:

𝐺𝑥 = 𝑦, (23)

𝑆 (
𝑥
𝑙

𝑥
𝑟) = (

𝑦
𝑙

𝑦
𝑟) , (24)

where 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑝
)
𝑇, 𝑥𝑙 = (𝑥

𝑙

1
, 𝑥
𝑙

2
, . . . , 𝑥

𝑙

𝑝
)
𝑇

, 𝑥𝑟 =

(𝑥
𝑟

1
, 𝑥
𝑟

2
, . . . , 𝑥

𝑟

𝑝
)
𝑇, 𝑦𝑙 = (𝑦𝑙

1
, 𝑦
𝑙

2
, . . . , 𝑦

𝑙

𝑝
)
𝑇

, 𝑦𝑟 = (𝑦𝑟
1
, 𝑦
𝑟

2
, . . . , 𝑦

𝑟

𝑝
)
𝑇,

𝑆 is a 2𝑝 × 2𝑝 matrix, and (𝑠
𝑖𝑗
), 1 ≤ 𝑖, 𝑗 ≤ 2𝑝 are determined

as follows:

𝑔
𝑖𝑗
≥ 0 ⇒ 𝑠

𝑖𝑗
= 𝑠
𝑝+𝑖,𝑝+𝑗

= 𝑔
𝑖𝑗
,

𝑔
𝑖𝑗
< 0 ⇒ 𝑠

𝑖,𝑗+𝑝
= 𝑠
𝑝+𝑖,𝑗

= −𝑔
𝑖𝑗
, 1 ≤ 𝑖, 𝑗 ≤ 𝑝,

and any 𝑠
𝑘𝑡
which is not determined by the above items is zero,

1 ≤ 𝑘, 𝑡 ≤ 2𝑝.

Proof. Let 𝑥̃ = (𝑥̃
1
, 𝑥̃
2
, . . . , 𝑥̃

𝑝
)
⊤, 𝑥̃
𝑗
= (𝑥
𝑗
, 𝑥
𝑙

𝑗
, 𝑥
𝑟

𝑗
)
LR
, and let

𝑔
𝑖
be the 𝑖th row of 𝐺, 𝐺 ∈ R𝑝×𝑝, 𝑔

𝑖
= (𝑔
𝑖1
, 𝑔
𝑖2
, . . . , 𝑔

𝑖,𝑝
),

𝑖 = 1, . . . , 𝑝. We can represent 𝐺𝑥̃ in the form

[𝐺𝑥̃]𝑖 = 𝑔𝑖𝑥̃, 𝑖 = 1, . . . , 𝑝. (25)

Let 𝑄+
𝑖
= {𝑗 : 𝑔

𝑖𝑗
≥ 0} and 𝑄−

𝑖
= {𝑗 : 𝑔

𝑖𝑗
< 0}. We have

[𝐺𝑥̃]𝑖 = ∑

𝑗∈𝑄
+

𝑖

𝑔
𝑖𝑗
𝑥̃
𝑗
+ ∑

𝑗∈𝑄
−

𝑖

𝑔
𝑖𝑗
𝑥̃
𝑗
, 𝑖 = 1, . . . , 𝑝, (26)

that is,

[𝐺𝑥̃]𝑖 = ( ∑

𝑗∈𝑄
+

𝑖

𝑔
𝑖𝑗
𝑥
𝑗
+ ∑

𝑗∈𝑄
−

𝑖

𝑔
𝑖𝑗
𝑥
𝑗
, ∑

𝑗∈𝑄
+

𝑖

𝑔
𝑖𝑗
𝑥
𝑙

𝑗
− ∑

𝑗∈𝑄
−

𝑖

𝑔
𝑖𝑗
𝑥
𝑟

𝑗
,

∑

𝑗∈𝑄
+

𝑖

𝑔
𝑖𝑗
𝑥
𝑟

𝑗
− ∑

𝑗∈𝑄
−

𝑖

𝑔
𝑖𝑗
𝑥
𝑙

𝑗
)

LR

, 𝑖 = 1, . . . , 𝑝.

(27)

Considering the given LR fuzzy vector 𝑦̃ = (𝑦̃
1
, 𝑦̃
2
, . . . ,

𝑦̃
𝑝
)
⊤
, 𝑦̃
𝑖
= (𝑦
𝑖
, 𝑦
𝑙

𝑖
, 𝑦
𝑟

𝑖
)LR for the right-hand side of (16), we

can write the system (27) as

(𝑔
𝑖
𝑥, ∑

𝑗∈𝑄
+

𝑖

𝑔
𝑖𝑗
𝑥
𝑙

𝑗
− ∑

𝑗∈𝑄
−

𝑖

𝑔
𝑖𝑗
𝑥
𝑟

𝑗
, ∑

𝑗∈𝑄
+

𝑖

𝑔
𝑖𝑗
𝑥
𝑟

𝑗
− ∑

𝑗∈𝑄
−

𝑖

𝑔
𝑖𝑗
𝑥
𝑙

𝑗
)

LR

= (𝑦
𝑖
, 𝑦
𝑙

𝑖
, 𝑦
𝑟

𝑖
)
LR
, 𝑖 = 1, . . . , 𝑝,

(28)

where 𝑥 = (𝑥
1
, . . . , 𝑥

𝑝
)
𝑇.

Suppose 𝐺𝑥̃ = 𝑦̃ has a solution. Then, the corresponding
mean value 𝑥 = (𝑥

1
, . . . , 𝑥

𝑝
)
𝑇 of the solution must lie in the

following crisp linear systems:

𝐺𝑥 = 𝑦, (29)

that is,

(

𝑔
11

𝑔
12

⋅ ⋅ ⋅ 𝑔
1,𝑝

𝑔
21

𝑎
12

⋅ ⋅ ⋅ 𝑔
2,𝑝

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑔
𝑝,1

𝑔
𝑝,2

⋅ ⋅ ⋅ 𝑔
𝑝,𝑝

)(

𝑥
1

𝑥
2

...
𝑥
𝑝

) =(

𝑦
1

𝑦
2

...
𝑦
𝑝

). (30)
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Meanwhile, the left spread 𝑥𝑙 = (𝑥
𝑙

1
, . . . , 𝑥

𝑙

𝑝
)
𝑇

and the right
spread 𝑥

𝑟
= (𝑥
𝑟

1
, . . . , 𝑥

𝑟

𝑝
)
𝑇 of the solution are obtained by

solving the following crisp linear systems:

(

𝑠
11

𝑠
12

⋅ ⋅ ⋅ 𝑠
1,2𝑝

𝑠
21

𝑠
12

⋅ ⋅ ⋅ 𝑠
2,2𝑝

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑠
2𝑝,1

𝑠
2𝑝,2

⋅ ⋅ ⋅ 𝑠
2𝑝,2𝑝

)

(
(
(
(
(
(
(
(
(
(
(

(

𝑥
𝑙

1

𝑥
𝑙

2

...
𝑥
𝑙

𝑝

𝑥
𝑟

1

𝑥
𝑟

2

...
𝑥
𝑟

𝑝

)
)
)
)
)
)
)
)
)
)
)

)

=

(
(
(
(
(
(
(
(
(
(
(

(

𝑦
𝑙

1

𝑦
𝑙

2

...
𝑦
𝑙

𝑝

𝑦
𝑟

1

𝑦
𝑟

2

...
𝑦
𝑟

𝑝

)
)
)
)
)
)
)
)
)
)
)

)

, (31)

in which (𝑠
𝑖𝑗
), 1 ≤ 𝑖, 𝑗 ≤ 2𝑝 are determined as follows:

𝑔
𝑖𝑗
≥ 0 ⇒ 𝑠

𝑖𝑗
= 𝑠
𝑝+𝑖,𝑝+𝑗

= 𝑔
𝑖𝑗
,

𝑔
𝑖𝑗
< 0 ⇒ 𝑠

𝑖,𝑗+𝑝
= 𝑠
𝑝+𝑖,𝑗

= −𝑔
𝑖𝑗
, 1 ≤ 𝑖, 𝑗 ≤ 𝑝,

and any 𝑠
𝑘𝑡
which is not determined by the above items is zero,

1 ≤ 𝑘, 𝑡 ≤ 2𝑝. Moreover, 𝑆 has the following structure:

𝑆 = (
𝐸 𝐹

𝐹 𝐸
) ≥ 0 (32)

and satisfies 𝐺 = 𝐸 − 𝐹.

3.2. Computing the Model. In order to solve the LR fuzzy
Sylvester matrix equation (12), we need to consider the LR
fuzzy system of linear equations (20). In order to solve (20),
we need to consider the systems of linear equations (23) and
(24). For instance, whenmatrix𝐺 in (23) andmatrix 𝑆 in (24)
are both invertible, their solutions are expressed by

𝑥 = 𝐺
−1
𝑦, (33)

(
𝑥
𝑙

𝑥
𝑟) = 𝑆

−1
(
𝑦
𝑙

𝑦
𝑟) , (34)

respectively.
The following Lemma shows when the matrix 𝑆 is non-

singular and how to calculate 𝑆−1.

Lemma 13 (see [8]). Thematrix 𝑆 is nonsingular if and only if
the matrices 𝐺 = 𝐸 − 𝐹 and 𝐸 + 𝐹 are both nonsingular. If 𝑆−1
exists it must have the same structure as 𝑆, that is,

𝑆
−1
= (

𝐿 𝐻

𝐻 𝐿
) , (35)

where
𝐿 = (1/2)((𝐸 + 𝐹)

−1
+ (𝐸 − 𝐹)

−1
),

𝐻 = (1/2)((𝐸 + 𝐹)
−1
− (𝐸 − 𝐹)

−1
).

It seems that we have obtained the solution of the original
fuzzy linear matrix system (20) as follows:

𝑥̃ = (𝑥, 𝑥
𝑙
, 𝑥
𝑟
)
LR

= (𝐺
−1
𝑦, (𝐼𝑝 𝑂) 𝑆

−1
(
𝑦
𝑙

𝑦
𝑟) , (𝑂 𝐼

𝑝) 𝑆
−1
(
𝑦
𝑙

𝑦
𝑟))

LR
,

(36)

where 𝐼
𝑝
is a 𝑝 order unit matrix and 𝑂 is a 𝑝 order null

matrix. But the solution vector may still not be an appropriate
LR fuzzy numbers vector except for 𝑥𝑙 ≥ 0, 𝑥𝑟 ≥ 0. So one gives
the definition of LR fuzzy solutions to (11) by the fuzzy linear
systems (20) as follows.

Definition 14. Let 𝑥̃ = (𝑥̃
1
, 𝑥̃
2
, . . . , 𝑥̃

𝑝
)
⊤, 𝑥̃
𝑗
= (𝑥
𝑗
, 𝑥
𝑙

𝑗
, 𝑥
𝑟

𝑗
)
LR
,

𝑗 = 1, . . . , 𝑝. If

𝑥 = (𝑥
1
, . . . , 𝑥

𝑝
)
⊤ (37)

is an exact solution of (23), 𝑥𝑙 = (𝑥
𝑙

1
, . . . , 𝑥

𝑙

𝑝
)
⊤

and 𝑥
𝑟
=

(𝑥
𝑟

1
, . . . , 𝑥

𝑟

𝑝
)
⊤ are an exact solution of (24); respectively, such

that 𝑥𝑙 ≥ 0, 𝑥
𝑟
≥ 0, we call 𝑥̃ = (𝑥, 𝑥

𝑙
, 𝑥
𝑟
)LR an LR fuzzy

solution of (11).
When linear equation (23) or (24) is inconsistent, we

can consider its approximate solution. An approximation
solution which is often used is the least squares solution of
(23) or (24), defined by minimizing the Frobenius norm of
(𝑦 − 𝐺𝑥) or (𝑌 − 𝑆𝑋).

For instance, we seek𝑋∗ ∈ 𝑅2𝑝 to (31) such that
󵄩󵄩󵄩󵄩𝑌 − 𝑆𝑋

∗󵄩󵄩󵄩󵄩𝐹
= min ‖𝑌 − 𝑆𝑋‖𝐹, (38)

that is, minimizing the sum of squares of moduli of (𝑌 − 𝑆𝑋)

‖𝑌 − 𝑆𝑋‖
2

𝐹
=

𝑃

∑

𝑖=1

[

[

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑏
𝑙

𝑖
−

𝑝

∑

𝑗=1

(𝑠
𝑖𝑗
𝑥
𝑙

𝑗
+ 𝑠
𝑖,𝑝+𝑗

𝑥
𝑟

𝑗
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑏
𝑟

𝑖
−

𝑝

∑

𝑗=1

(𝑠
𝑝+𝑖,𝑗

𝑥
𝑙

𝑗
+ 𝑠
𝑝+𝑖,𝑝+𝑗

𝑥
𝑟

𝑗
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

]

]

.

(39)

By the generalized inverse theory [28], we know

𝑋
∗
= (

𝑥
𝑙

𝑥
𝑟)

∗

= 𝑆
{1,3}

(
𝑦
𝑙

𝑦
𝑟) , (40)

where 𝑆{1,3} is the least squares inverse of the matrix 𝑆.
Now we define the LR fuzzy approximate solution of the

fuzzymatrix equations (11) from the fuzzy linear systems (20).

Definition 15. Let 𝑥̃ = (𝑥̃
1
, 𝑥̃
2
, . . . , 𝑥̃

𝑝
)
⊤, 𝑥̃
𝑗
= (𝑥
𝑗
, 𝑥
𝑙

𝑗
, 𝑥
𝑟

𝑗
)LR,

𝑗 = 1, . . . , 𝑝. If 𝑥 = (𝑥
1
, . . . , 𝑥

𝑝
)
𝑇, or 𝑥𝑙 = (𝑥

𝑙

1
, . . . , 𝑥

𝑙

𝑝
)
𝑇

and 𝑥
𝑟
= (𝑥
𝑟

1
, . . . , 𝑥

𝑟

𝑝
)
𝑇 are least squares solutions of (23)

and (24); respectively, such that 𝑥𝑙 ≥ 0, 𝑥
𝑟
≥ 0, then we say

𝑥̃ = (𝑥, 𝑥
𝑙
, 𝑥
𝑟
)LR is an LR fuzzy approximate solution of (11).

Let 𝐺 belong to 𝑅
𝑝×𝑝 and 𝑦̃ be a 𝑝 arbitrary LR fuzzy

numbers vector.Then the solutions of linear systems (23) and
(24) can be expressed uniformly by

𝑥 = 𝐺
†
𝑦, (41)

(
𝑥
𝑙

𝑥
𝑟) = 𝑆

†
(
𝑦
𝑙

𝑦
𝑟) , (42)

respectively, no matter (23) and (24) are consistent or not.
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It seems that the solution of the LR fuzzy linear system
(20) can be expressed as

𝑥̃ = (𝑥, 𝑥
𝑙
, 𝑥
𝑟
)
LR

= (𝐺
†
𝑦, (𝐼𝑝 𝑂) 𝑆

†
(
𝑦
𝑙

𝑦
𝑟) , (𝑂 𝐼

𝑝) 𝑆
†
(
𝑦
𝑙

𝑦
𝑟))

LR
.

(43)

But it is not the case except for 𝑥𝑙 ≥ 0 and 𝑥𝑟 ≥ 0. In this case,
we have a fuzzy set solution not fuzzy number solution. To
find the fuzzy number solution, we can approximate the fuzzy
set solution by a fuzzy number by one of the approximation
methods finally.

Now we give a sufficient condition for LR fuzzy solution
to the fuzzy Sylvester matrix equation.

3.3. A Sufficient Condition for LR Fuzzy Solution. To illustrate
the expression (43) of an appropriate LR fuzzy solution vector,
we now discuss the generalized inverses of matrix 𝑆 in a
special structure.

Lemma 16 (see [18]). Let

𝑆 = (
𝐸 𝐹

𝐹 𝐸
) . (44)

Then the matrix

𝑆
†
= (

(𝐸 + 𝐹)
†
+ (𝐸 − 𝐹)

†
(𝐸 + 𝐹)

†
− (𝐸 − 𝐹)

†

(𝐸 + 𝐹)
†
− (𝐸 − 𝐹)

†
(𝐸 + 𝐹)

†
+ (𝐸 − 𝐹)

†
) (45)

is the Moore-Penrose inverse of the matrix 𝑆, where (𝐸 +

𝐹)
†
, (𝐸−𝐹)

† are Moore-Penrose inverses of matrices 𝐸+𝐹 and
𝐸 − 𝐹, respectively.

Thekey points tomake the solution vector be an LR fuzzy
solution are 𝑥𝑙 ≥ 0 and 𝑥𝑟 ≥ 0. Since 𝑦𝑙 ≥ 0, 𝑦𝑟 ≥ 0 and

𝑥
𝑙
= (𝐼𝑝 𝑂) 𝑆

†
(
𝑦
𝑙

𝑦
𝑟
) , 𝑥

𝑟
= (𝑂 𝐼

𝑝) 𝑆
†
(
𝑦
𝑙

𝑦
𝑟
) , (46)

the nonnegativity of 𝑥𝑙 and 𝑥𝑟 is equivalent to the condition
𝑆
†
≥ 0.
By the above analysis, one has the following conclusion.

Theorem 17. Let 𝐺 belong to 𝑅𝑝×𝑝 and 𝑆† nonnegative. Then
the solution of the LR fuzzy linear system (12) is expressed by

𝑥̃ = (𝐺
†
𝑦, (𝐼𝑝 𝑂) 𝑆

†
(
𝑦
𝑙

𝑦
𝑟
) , (𝑂 𝐼

𝑝) 𝑆
†
(
𝑦
𝑙

𝑦
𝑟
))

LR
, (47)

and it admits an LR fuzzy approximate solution.

By further study, one gives a sufficient condition for
obtaining nonnegative LR fuzzy solution of fuzzy Sylvester
matrix equation (12) when its right-hand side 𝐶̃ is a positive
LR fuzzy numbers matrix.

Theorem 18. Let 𝐺† and 𝑆
† be nonnegative matrices, and

𝐺
†
𝑏 − (𝐼

𝑝
𝑂)𝑆
†
(
𝑦
𝑙

𝑦
𝑟
) ≥ 0. Then the LR fuzzy linear system

(12) has a nonnegative LR fuzzy approximate solution as
follows:

𝑥̃ = (𝐺
†
𝑏, (𝐼𝑝 𝑂) 𝑆

†
(
𝑦
𝑙

𝑦
𝑟
) , (𝑂 𝐼

𝑝) 𝑆
†
(
𝑦
𝑙

𝑦
𝑟
))

LR
. (48)

Proof. Since 𝐺† is a nonnegative matrix, we have 𝑥 = 𝐺
†
𝑦 ≥

0.
Now that ( 𝑥𝑙

𝑥
𝑟 ) = 𝑆

†
(
𝑦
𝑙

𝑦
𝑟 ); therefore, with 𝑆

†
≥ 0 and

𝑦
𝑙
≥ 0 and 𝑦𝑟 ≥ 0, we have ( 𝑥𝑙

𝑥
𝑟 ) ≥ 0. Thus 𝑥̃ = (𝑥, 𝑥

𝑙
, 𝑥
𝑟
)LR

is an LR fuzzy vector which satisfies 𝐺𝑥̃ = 𝑦̃. Since 𝑥 −

𝑥
𝑙
= 𝐺
†
𝑏 − (𝐼

𝑝
𝑂)𝑆
†
(
𝑦
𝑙

𝑦
𝑟 ) ≥ 0, the LR fuzzy linear system

(12) has a nonnegative LR fuzzy approximate solution by
Definition 2.

The following theorems give some results for such 𝑆
−1,

𝑆
{1,3} and 𝑆

† to be nonnegative. As usual, (⋅)⊤ denotes the
transpose of a matrix (⋅).

Theorem 19 (see [29]). The inverse of a nonnegative matrix
𝑆 is nonnegative if and only if 𝑆 is a generalized permutation
matrix.

Theorem 20 (see [30]). The matrix 𝑆, of rank 𝑟 with no zero
row or zero column, admits a nonnegative {1, 3}-inverse if and
only if there exist some permutation matrices 𝑃, 𝑄 such that

𝑃𝑆𝑄 = [𝑅, ∗] , (49)

where 𝑅 is a direct sum of 𝑟 positive, rank-one matrices.

Theorem 21 (see [29]). Let 𝑆 be a 2𝑚×2𝑛 nonnegative matrix
with rank 𝑟. Then the following assertions are equivalent.

(a) 𝑆† ≥ 0.

(b) There exists a permutation matrix 𝑃, such that 𝑃𝑆 has
the form

𝑃𝑆 =(

(

𝐵
1

𝐵
2

...
𝐵
𝑟

𝑂

)

)

, (50)

where each 𝐵
𝑖
has rank 1 and the rows of 𝐵

𝑖
are

orthogonal to the rows of 𝐵
𝑗
, whenever 𝑖 ̸= 𝑗, the zero

matrix may be absent.
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(c) 𝑆† = (
𝐺𝐶
⊤
𝐺𝐷
⊤

𝐺𝐷
⊤
𝐺𝐶
⊤ ) for some positive diagonal matrix 𝐺.

In this case,

(𝐶 + 𝐷)
†
= 𝐺 (𝐶 + 𝐷)

⊤
,

(𝐶 − 𝐷)
†
= 𝐺 (𝐶 − 𝐷)

⊤
.

(51)

4. Numerical Examples

Example 22. Consider the following fuzzy matrix system:

(
1 0

−1 1
)(

𝑥̃
11

𝑥̃
12

𝑥̃
13

𝑥̃
21

𝑥̃
22

𝑥̃
13

)

+ (

𝑥̃
11

𝑥̃
12

𝑥̃
13

𝑥̃
21

𝑥̃
22

𝑥̃
13

)(

1 0 −1

0 −1 1

1 2 0

)

= (

(3, 2, 1)LR (4, 1, 1)LR (2, 1, 1)LR

(5, 2, 2)LR (3, 1, 2)LR (7, 2, 3)LR
) .

(52)

ByTheorems 9, 10, and 11, the original fuzzy matrix equation
is equivalent to the following LR fuzzy linear system 𝐺𝑥̃ = 𝑦̃,
that is,

(
(
(
(
(

(

−2 0 0 0 1 0

−1 1 0 0 0 1

0 0 0 0 2 0

0 0 −1 −1 0 2

−1 0 1 0 1 0

0 −1 0 1 −1 1

)
)
)
)
)

)

(
(
(
(
(

(

𝑥̃
11

𝑥̃
21

𝑥̃
12

𝑥̃
22

𝑥̃
13

𝑥̃
23

)
)
)
)
)

)

=

(
(
(
(
(

(

(5, 2, 1)LR

(4, 2, 2)LR

(3, 1, 1)LR

(5, 1, 2)LR

(2, 1, 1)LR

(7, 2, 3)LR

)
)
)
)
)

)

.

(53)

From Theorem 12, the model to above fuzzy linear sys-
tem is made of the following two crisp systems of linear
equations:

(
(
(
(

(

−2 0 0 0 1 0

−1 1 0 0 0 1

0 0 0 0 2 0

0 0 −1 −1 0 2

−1 0 1 0 1 0

0 −1 0 1 −1 1

)
)
)
)

)

(
(
(
(

(

𝑥
11

𝑥
21

𝑥
12

𝑥
22

𝑥
13

𝑥
23

)
)
)
)

)

=

(
(
(
(

(

5

4

3

5

2

7

)
)
)
)

)

,

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

2 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 1 1 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0 0 0

0 0 0 0 0 2 0 0 1 1 0 0

0 0 1 0 1 0 1 0 0 0 0 0

0 0 0 1 0 1 0 1 0 0 1 0

0 0 0 0 0 0 2 0 0 0 1 0

1 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 0 2 0

0 0 1 1 0 0 0 0 0 0 0 2

1 0 0 0 0 0 0 0 1 0 1 0

0 1 0 0 1 0 0 0 0 1 0 1

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

𝑥
𝑙

11

𝑥
𝑙

21

𝑥
𝑙

12

𝑥
𝑙

22

𝑥
𝑙

13

𝑥
𝑙

23

𝑥
𝑟

11

𝑥
𝑟

21

𝑥
𝑟

12

𝑥
𝑟

22

𝑥
𝑟

13

𝑥
𝑟

23

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

=

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

2

2

1

1

1

2

1

2

1

2

1

3

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

.

(54)

The coefficient matrices 𝐺 and 𝑆 are both nonsingular; we
can obtain the mean value 𝑥, the left spread 𝑥𝑙, and the right
spread 𝑥𝑟 of the solution to the above fuzzy linear system as
follows:

𝑥 = 𝐺
−1
𝑦

=
(
(
(

(

0.500 0 −0.250 0 0 0

0.500 0.750 −0.500 −0.250 0.250 −0.250

−0.500 0 0.750 0 −1.000

0.500 0.500 −0.250 −0.500 0.500 0.500

0 0 0.500 0 00

0 0.250 0.250 0.250 −0.250 0.250

)
)
)

)

×
(
(
(

(

5

4

3

5

2

7

)
)
)

)

=
(
(
(

(

1.7500

1.5000

−2.250

5.7500

1.5000

4.2500

)
)
)

)

,

(55)

𝑋 = (
𝑥
𝑙

𝑥
𝑟
) = 𝑆

−1
𝑌 =

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

0.7500

1.3750

0.2500

0.5000

0.5000

0.3750

0.2500

0.6250

−0.250

0.5000

0.5000

0.6250

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

, (56)

where
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𝑆
−1
=

(
(
(
(
(
(
(
(
(

(

0.5 0 −0.25 0 0 0 0 0 0 0 0 0

−0.13 0.63 −0.18 −0.33 0.13 0.13 −0.34 −0.13 −0.07 −0.13 0.38 0.38

0 0 −0.5 0 1.0 0 −0.5 0 0.25 0 0 0

0.25 −0.25 −0.13 −0.25 −0.25 0.75 0.25 −0.75 −0.63 0.25 0.25 0.25

0 0 0.5 0 0 0 0 0 0 0 0 0

0.13 0.38 0.18 0.38 −0.13 −0.13 −0.13 0.13 0.31 0.13 −0.38 −0.38

0 0 0 0 0 0 0.5 0 −0.25 0 0 0

−0.38 −0.13 −0.06 −0.13 0.38 0.38 −0.13 0.6 −0.18 −0.3 0.13 0.13

−0.5 0 0.25 0 0 0 0 0 −0.5 0 1 0

0.25 −0.75 −0.63 0.25 0.25 0.25 0.25 −0.25 −0.13 −0.25 −0.25 0.75

0 0 0 0 0 0 0 0 0.5 0 0 0

−0.13 0.13 0.31 0.13 −0.38 −0.38 0.13 0.38 0.18 0.38 −0.13 −0.13

)
)
)
)
)
)
)
)
)

)

. (57)

Since 𝑥𝑟
12

is nonpositive, the solution we obtained is not
an LR fuzzy solution of the fuzzy linear system 𝐺𝑥̃ = 𝑦̃ and
given by

𝑥̃ =
(
(
(

(

𝑥̃
11
= (1.7500, 0.7500, 0.2500)LR

𝑥̃
21
= (1.5000, 1.3750, 0.6250)LR

𝑥̃
12
= (−2.250, 0.2500, −0.250)LR

𝑥̃
22
= (5.7500, 0.5000, 0.5000)LR

𝑥̃
13
= (1.5000, 0.5000, 0.5000)LR

𝑥̃
23
= (4.2500, 0.3750, 0.6250)LR

)
)
)

)

. (58)

According to Theorems 12 and Definitions 3 and 14, we
know that the solution of the original fuzzy linear matrix
equation 𝐴𝑋̃ + 𝑋̃𝐵 = 𝐶̃ is a generalized LR fuzzy solution
given by

𝑋̃ = (

𝑥̃
11

𝑥̃
12

𝑥̃
13

𝑥̃
21

𝑥̃
22

𝑥̃
13

) = (

(1.750, 0.750, 0.250)LR (−2.250, 0.250, 0.000)LR (1.500, 0.500, 0.500)LR

(1.500, 1.375, 0.625)LR (5.750, 0.500, 0.500)LR (4.250, 0.375, 0.625)LR
) . (59)

Example 23. Consider the fuzzy Sylvester matrix system

(
−2 0

1 1
)(

𝑥̃
11

𝑥̃
12

𝑥̃
21

𝑥̃
22

) + (

𝑥̃
11

𝑥̃
12

𝑥̃
21

𝑥̃
22

)(
−1 1

−1 0
)

= (

(5, 1, 2)LR (3, 2, 2)LR

(4, 2, 1)LR (2, 1, 1)LR
) .

(60)

By Theorems 9, 10, and 11, the original fuzzy matrix
equation is equivalent to the following LR fuzzy linear system
𝐺𝑥̃ = 𝑦̃, that is,

(

−1 0 1 0

1 2 0 1

−1 0 −2 0

0 −1 1 1

)(

𝑥̃
11

𝑥̃
21

𝑥̃
12

𝑥̃
22

)=(

(5, 1, 2)LR

(4, 2, 1)LR

(3, 2, 2)LR

(2, 1, 1)LR

). (61)

From Theorem 12, the model to the above fuzzy linear
system is made of the following two crisp systems of linear
equations:

(

−1 0 1 0

1 2 0 1

−1 0 −2 0

0 −1 1 1

)(

𝑥
11

𝑥
21

𝑥
12

𝑥
22

) =(

5

4

3

2

) , (62)

(
(
(
(

(

0 0 1 0 1 0 0 0

1 2 0 1 0 0 0 0

0 0 0 0 1 0 2 0

0 0 1 1 0 1 0 0

1 0 0 0 0 0 1 0

0 0 0 0 1 2 0 1

1 0 2 0 0 0 0 0

0 1 0 0 0 0 1 1

)
)
)
)

)

(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

𝑥
𝑙

11

𝑥
𝑙

21

𝑥
𝑙

12

𝑥
𝑙

22

𝑥
𝑟

11

𝑥
𝑟

21

𝑥
𝑟

12

𝑥
𝑟

22

)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

=

(
(
(
(

(

1

2

2

1

2

1

2

1

)
)
)
)

)

. (63)

The coefficient matrices 𝐺 and 𝑆 are both singular; we
can obtain the mean value 𝑥, the left spread 𝑥𝑙, and the right
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spread 𝑥𝑟 of the solution to the above fuzzy linear system by
the same method

𝑥=𝐺
†
𝑦=(

−4.3333

2.3333

0.6667

3.6667

) , (
𝑥
𝑙

𝑥
𝑟
)=𝑆
†
𝑌=

(
(
(
(
(
(
(
(

(

1.333

0.000

0.333

0.667

0.667

0.000

0.667

0.333

)
)
)
)
)
)
)
)

)

.

(64)

Since 𝑥𝑙
𝑖𝑗
, 𝑥
𝑟

𝑖𝑗
, 𝑖, 𝑗 = 1, 2 are nonnegative, the solution

we obtained is an LR fuzzy approximate solution of the fuzzy
linear system 𝐺𝑥̃ = 𝑦̃ and given by

𝑥̃ = (

𝑥̃
11
= (−4.3333, 1.3333, 0.6667)LR

𝑥̃
21
= (2.3333, 0.0000, 0.0000)LR

𝑥̃
12
= (0.6667, 0.3333, 0.6667)LR

𝑥̃
22
= (3.6667, 0.6667, 0.3333)LR

). (65)

According to Theorems 12 and Definition 15, we know
that the fuzzy approximate solution of the original fuzzy
linear matrix equation 𝐴𝑋̃ + 𝑋̃𝐵 = 𝐶̃ is

𝑋̃ = (
𝑥̃
11

𝑥̃
12

𝑥̃
21

𝑥̃
22

)

=(
(−4.3333, 1.3333, 0.6667)LR (0.6667, 0.3333, 0.6667)LR

(2.3333, 0.0000, 0.0000)LR (3.6667, 0.6667, 0.3333)LR
) ,

(66)

and it admits an appropriate LR fuzzy approximate solution.

5. Conclusion

In this work we presented a model for solving fuzzy Sylvester
matrix equations𝐴𝑋̃+𝑋̃𝐵 = 𝐶̃where𝐴 and 𝐵 are𝑚×𝑚 and
𝑛 × 𝑛 crisp matrices, respectively, and 𝐶̃ is an𝑚 × 𝑛 arbitrary
LR fuzzy numbers matrix. The model was proposed in this
way, that is, we converted the fuzzy linear matrix equation
into an LR fuzzy linear systems, then we extended the fuzzy
linear systems into two systems of linear equations. The LR
fuzzy solution of the fuzzy matrix equation was derived from
solving the crisp systems of linear equations. In addition,
the existence condition of LR fuzzy solution was studied.
Numerical examples showed that our method is feasible to
solve this type of fuzzy matrix equations.
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