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We study the duopoly model proposed byMatsumoto and Nonaka (2006), in which two firms produce two complementary goods,
and there are externalities of different signs. We analyze the topological complexity of the model by computing its topological
entropy with prescribed accuracy, and, in addition, we show when such topological complexity is physically observable by char-
acterizing the attractors. Finally, we exploit the fact that reaction maps have negative Schwarzian derivative to show the existence
of absolutely continuous (with respect to Lebesgue measure) ergodic measures, and, as an economic application, we compute the
average profit for almost all initial conditions.

1. Introduction: The Model and Our Aims

In [1] a two-market model consisting in two firms, which
produce differentiated goods is introduced.Thefirst firmpro-
duces good 𝑥 in the firstmarket, and the second one produces
good 𝑦 in the second market. It is assumed that externalities
of different signs exist. An externality occurs when the
actions of firms directly affect the production capabilities of
other firms other than through the price mechanism of the
market. In this case, the positive externality comes from the
market demand; that is, the sales possibilities of one firm are
positively influenced by the production of the other firm.The
negative externality is due to the cost functions of each firm,
since the cost depends not only on its own production but
also on the other firm’s production.

In this frame, we are ready to introduce the equations of
the model. Although in [1] a more general model is intro-
duced, we are interested in the following particular case.
Inverse demand functions are given by
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(1)

where 𝑝
1
and 𝑝

2
are the market prices of goods 𝑥 and 𝑦,

respectively, and 𝛼 ∈ [1, 2] ⊂ R and 𝛽 ∈ [0, 2] ⊂ R. Each
firm decides future production depending on the other firm’s
choice and production externalities. Cost functions are given
by
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and thus, the profit function of each firm is given by
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(3)

It is assumed that each firm tends to maximize its profit. In
order to get it, the firms can choose their production levels
which would affect the other firm. The first firm maximizes
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Figure 1: Parametric regions for the composition maps 𝐹
𝛼,𝛽

(a) and 𝐺
𝛼,𝛽

(b) according to the number of pieces of monotonicity.

the profit with respect to 𝑥, and the same occurs for the sec-
ond firm respect to 𝑦, that is,

𝜕Π
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(𝑥, 𝑦) = 0,
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(4)

Hence, by solving (4), and under naive future expecta-
tions, the reaction functions of the firms are given by
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2

,

𝑔
𝛽
(𝑥) = (𝛽𝑥 − 1)

2

.

(5)

This is a static situation, but we are interested in the dynamic
interactions between the two firms along the time. The func-
tion

𝑅
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is the reaction function for the outcome (𝑥, 𝑦). The iterations
are given by
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that is,
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where 𝛼 ∈ [1, 2] ⊂ R and 𝛽 ∈ [0, 2] ⊂ R. The parametric
region, [1, 2] × [0, 2] ⊂ R2, is not chosen in an arbitrary way.
Observe that the reactionmap𝑅

𝛼,𝛽
is amap from [0, 1]×[0, 1]

into [0, 1] × [0, 1]. Note that
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or, in other words,
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and therefore, one might expect that the dynamics of the
whole system can be derived from the one-dimensional maps
𝐹
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Our aims are, on one hand, to give an analytical proof of
the existence of chaos in the model. This proof will be given
by computations of topological entropy of the system with
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Figure 2: Graphics of the map 𝐹
𝛼,𝛽

for 𝛼 = 1.5 and 𝛽 = 0.3, 0.8, 1.2, and 1.8 for each graphic.

prescribed accuracy. As positive topological entropy will
imply the existence of chaos in the sense of Li and Yorke, we
will be able to give a proof of existence of chaos for a wide
range of parameter values. On the other hand, we will be
able to describe the nature of attractors of the system, and we
will go beyond to the seminal work [1] proving the existence
of absolutely continuous ergodic measures. The existence of
such measures will allow us to obtain some consequences
from both dynamic and economic points of view. Finally,
we must emphasize that our approach is somewhat different
from that made in [2]. Moreover, our scheme can be adapted
to analyze the dynamics of models given by maps with the
form of 𝑅

𝛼,𝛽
.

The paper is organized as follows. In Section 2 we study
the complexity of the model. For that, we compute the topo-
logical entropy using different algorithms depending on the
number of pieces of monotonicity of the functions involved

in the model. As an approach to the attractors, their number
is studied in Section 3. On one hand, the fact that the
Schwarzian derivative of the function is negative allows us to
know the possibilities of themetric attractors that can appear.
On the other hand, a real computation of the attractors allows
us to realize that topological chaos need not be physically
observed, with the Lyapunov exponents being the key for
analyzing these phenomena. The Lyapunov exponent gives
us the key to study that situation. Invariant measures and
average profits are considered in Section 4. Finally, Section 5
is devoted to conclusions.

2. Computing Topological Entropy

The goal of this section is to compute the topological
entropy of the system. Topological entropy was introduced
in [3] by Adler, Konheim, and McAndrew. When 𝑓 is
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Figure 3: Graphics of the map 𝐺
𝛼,𝛽

for (a) 𝛼 = 1.5 and = 0.6, (b) 𝛼 = 1.3 and 𝛽 = 1.5, and (c) 𝛼 = 1.9 and 𝛽 = 1.9.

a continuous piecewisemonotone function, theMisiurewicz-
Szlenk’s theorem, [4], gives us the following characterization
of the topological entropy ℎ(𝑓).

Theorem 1. Let 𝑓: [0, 1] → [0, 1] be a piecewise continuous
monotone functions and 𝑐(𝑓) the number of pieces of mono-
tonicity. Then,

ℎ (𝑓) = lim
𝑛→∞

1

𝑛

log (𝑐 (𝑓𝑛)) . (12)

Although our system is two-dimensional, the compu-
tation of topological entropy can be reduced to a one-
dimensional problem. For that, we use the power formula [3],

ℎ (𝑅
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) =

1

2

ℎ (𝑅
2

𝛼,𝛽
) , (13)

and the commutativity formula [5],
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𝛼
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𝛽
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to obtain
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𝛼,𝛽
) = ℎ (𝐺

𝛼,𝛽
) . (15)

Next, we must recognize that Misiurewicz-Szlenk for-
mula is not useful for computing topological entropy of our
model, so we are forced to use numerical algorithms which
are based on the number ofmonotone pieces of𝐹

𝛼,𝛽
and𝐺

𝛼,𝛽
.

Therefore, wewillmake a precise description ofmonotonicity
regions for these maps.

2.1. Monotonicity Regions of 𝐹
𝛼,𝛽

and 𝐺
𝛼,𝛽

. We study the
shape of the composition map, where shape means in this
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Figure 7: We draw a sample of 100 points of three orbits with initial
values 0.25, 0.5, and 1 when the parameter values are 𝛼 = 1.8 and
𝛽 = 1.85. The picture shows the convergence to a two-periodic orbit
which maps 0.033582 to 0.000140067 and vice versa.

case the number of pieces of monotonicity that each map
has depending on the values of the parameters 𝛼 and 𝛽. This
will be used in the next section to compute the topological
entropy.

The map 𝐹
𝛼,𝛽
: [0, 1] → [0, 1], 𝐹

𝛼,𝛽
(𝑥) = (𝑓

𝛼
∘ 𝑔
𝛽
)(𝑥), in

terms of monotonicity, has the following structure in the
parametric space (see Figure 1).

(i) 𝐹
𝛼,𝛽

is a monotone decreasing map if (𝛼, 𝛽) ∈ 𝐹
0
,

where

𝐹
0
:= {(𝛼, 𝛽) ∈ [1, 2] × [0, 2] : 0 ≤ 𝛽 ≤ 1 − √1 − 1

𝛼

} ; (16)

see example for 𝛼 = 1.5 and 𝛽 = 0.3 in Figure 2(a).
(ii) 𝐹
𝛼,𝛽

is a unimodal map with a minimum for 𝑥 =

(1/𝛽)(1 − √1 − 1/𝛼) if (𝛼, 𝛽) ∈ 𝐹
1
, where

𝐹
1
:= {(𝛼, 𝛽) ∈ [1, 2] × [0, 2] : 1 − √1 − 1

𝛼

< 𝛽 ≤ 1} ; (17)

see example for 𝛼 = 1.5 and 𝛽 = 0.8 in Figure 2(b).

(iii) 𝐹
𝛼,𝛽

is a bimodal map with a minimum for 𝑥 = (1/
𝛽)(1 − √1 − 1/𝛼) and a maximum for 𝑥 = 1/𝛽 if
(𝛼, 𝛽) ∈ 𝐹

2
, where

𝐹
2
:= {(𝛼, 𝛽) ∈ [1, 2] × [0, 2] : 1 < 𝛽 ≤ 1 + √1 − 1

𝛼

} ; (18)

see example for 𝛼 = 1.5 and 𝛽 = 1.2 in Figure 2(c).
(iv) 𝐹
𝛼,𝛽

is a trimodal map with two minima (for 𝑥 =

(1/𝛽)(1 − √1 − 1/𝛼) and 𝑥 = (1/𝛽)(1 + √1 − 1/𝛼))
and a maximum for 𝑥 = 1/𝛽 if (𝛼, 𝛽) ∈ 𝐹

3
, where

𝐹
3
:= {(𝛼, 𝛽) ∈ [1, 2] × [0, 2] : 1 + √1 − 1

𝛼

< 𝛽} ; (19)

see example for 𝛼 = 1.5 and 𝛽 = 1.8 in Figure 2(d).
Themap𝐺

𝛼,𝛽
: [0, 1] → [0, 1], 𝐺

𝛼,𝛽
(𝑥) = (𝑔

𝛽
∘𝑓
𝛼
)(𝑥), has

the following structure in the parametric space (see Figure 1).
(i) 𝐺
𝛼,𝛽

is a unimodal map with a maximum (for 𝑥 = 1−
1/𝛼) if (𝛼, 𝛽) ∈ 𝐺

1
, where

𝐺
1
:= {(𝛼, 𝛽) ∈ [1, 2] × [0, 2] : 𝛽 ≤ 1} ; (20)

see example for 𝛼 = 1.5 and 𝛽 = 0.6 in Figure 3(a).
(ii) 𝐺
𝛼,𝛽

is a bimodalmapwith amaximum for𝑥 = 1−1/𝛼
and aminimum for𝑥 = 1−1/𝛼+1/𝛼√𝛽 if (𝛼, 𝛽) ∈ 𝐺

2
,

where

𝐺
2
:= {(𝛼, 𝛽) ∈ [1, 2] × [1, 2] : 1 ≤ 𝛼 ≤ 1 + 1

√𝛽

} ; (21)

see example for 𝛼 = 1.3 and 𝛽 = 1.5 in Figure 3(b).
(iii) 𝐺

𝛼,𝛽
is a trimodal map with a maximum for 𝑥 = 1 −

1/𝛼 and twominima in the points𝑥 = 1−1/𝛼−1/𝛼√𝛽
and 𝑥 = 1 − 1/𝛼 + 1/𝛼√𝛽 if (𝛼, 𝛽) ∈ 𝐺

3
, where

𝐺
3
:= {(𝛼, 𝛽) ∈ [1, 2] × [1, 2] :1 + 1

√𝛽

< 𝛼} ; (22)

see example for 𝛼 = 1.9 and 𝛽 = 1.9 in Figure 3(c).
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Figure 9: (a) We compute (27) for samples of length 𝑛 = 100000, 𝛼 = 1.3, 1 < 𝛽 ≤ 2, and constant step size ℎ = 0.01 for 𝛽. We see that (27)
is clearly positive when 𝛽 is in a neighborhood of 1.5. (b) We do the same when 𝛼 = 1.35, but now we cannot conclude clearly the existence
of different attractors.

2.2. Practical Computation of Topological Entropy. Algo-
rithms for computing the topological entropy for the special
case of unimodal maps are given in [6, 7]. An algorithm
for bimodal maps (with three pieces of monotonicity) is
described in [8], and an algorithm for a particular class of
piecewise continuous maps with four pieces of monotonicity
is described in [9]. These three types of algorithms cover
all the cases involved in the dynamical system that we are
considering for the composition maps 𝐹

𝛼,𝛽
and 𝐺

𝛼,𝛽
. The

results obtained for the model can be observed in Figure 4.
Figures 5(a), 5(b), 5(c), and 5(d) show the topological

entropy with accuracy 10−4, where 𝛼 takes the values 1.25,
1.30, 1.50, and 1.85.

For 𝛽 = 1.1, and 𝛽 = 1.15 the topological entropy with
accuracy 10−4 is given by Figures 6(a) and 6(b).

2.3. Existence of Chaotic Maps. Before stating the existence
of chaos, we must recall what we understand for chaos. A
continuous interval map 𝑓 : 𝐼 → 𝐼 is chaotic in the sense of
Li and Yorke (LY-chaotic) if there is an uncountable set 𝑆 ⊂ 𝑋
(called scrambled set of 𝑓) such that for any 𝑥, 𝑦 ∈ 𝑆, 𝑥 ̸= 𝑦, it
is held that

lim inf
𝑛→∞

𝑑 (𝑓
𝑛
(𝑥) , 𝑓

𝑛
(𝑦)) = 0,

lim sup
𝑛→∞

𝑑 (𝑓
𝑛
(𝑥) , 𝑓

𝑛
(𝑦)) > 0.

(23)



8 Abstract and Applied Analysis

1.2 1.4 1.6 1.8 2.0

0.2

0.4

0.6

0.8

1.0

(a)

1.2 1.4 1.6 1.8 2.0

0.2

0.4

0.6

0.8

1.0

(b)

1.2 1.4 1.6 1.8 2.0

0.2

0.4

0.6

0.8

1.0

(c)

1.2 1.4 1.6 1.8 2.0

0.2

0.4

0.6

0.8

1.0

(d)

Figure 10: For 𝛼 = 1.3, (a) and (b) show the bifurcation diagram for initial conditions 0 and 1, respectively. The bifurcation diagrams are
constructed with generating orbits of length 100200 and representing just the last 200 points. (c) and (d) show the same when 𝛼 = 1.35.

Positive topological entropy implies chaos in the sense of
Blanchard et al. [10], and therefore, the above computations
of topological entropy are an analytical proof of the existence
of chaos in the model. Even more, we can prove that positive
topological entropy is equivalent to chaos in the sense of
Li-Yorke. For that, we just need to notice that when the
topological entropy is equal to zero, the map is not chaotic
because the relative extreme points of the composition maps
𝑓
𝛼
∘ 𝑔
𝛽
and 𝑔

𝛽
∘ 𝑓
𝛼
are nonflat since the second derivative

in these points is nonzero, (remember that a critical point is
nonflat if some higher derivative is nonzero). Then, by [11,
Theorem A], 𝐶∞ maps with nonflat turning points have no
wandering intervals (i.e., for a continuous interval map 𝑓, an
interval 𝐽 is called wandering if 𝐽, 𝑓(𝐽), 𝑓(𝐽)2, . . . are disjoint
and no point 𝑥 ∈ 𝐽 is asymptotically periodic), and by [12,
Lemma 2.7], a map with zero topological entropy is chaotic
if and only if it has wandering intervals. Hence, our model is
not chaotic when the topological entropy is zero.

Therefore, we have two regions the nonchaotic one where
every trajectory has the property that for any 𝜖 > 0 there is
a periodic trajectory which is 𝜖 close to it [13]. In practice,
one might check that a computer simulation shows the con-
vergence to a periodic orbit when parameters are in the
nonchaotic region. For the second region one could expect

a similar situation, but as we will show in the next section,
the topological chaos we have shown to exist, could not be
observed. For instance, for 𝛼 = 1.8 and 𝛽 = 1.85, the
topological entropy of 𝑔

𝛽
∘ 𝑓
𝛼
is positive, but the time series

of several orbits reveal a periodic motion (see Figure 7).

3. Chaos, Attractors, and
Schwarzian Derivative

Westart this sectionwith someuseful definitions. Let𝑓 : 𝐼 →
𝐼 be a map. A probabilistic measure 𝜇 is said to be invariant
for𝑓 if 𝜇(𝐴) = 𝜇(𝑓−1(𝐴)) for any Borel set𝐴 ⊂ 𝐼. In addition,
the measure is ergodic if the equality 𝑓(𝐴) = 𝐴 implies that
𝜇(𝐴) = 0 or 1. Denote by M(𝑋, 𝑓) and E(𝑋, 𝑓) the set of
invariant and ergodic measures of 𝑓, respectively.

Given 𝑥 ∈ 𝐼, define its 𝜔-limit set 𝜔(𝑥, 𝑓) as the set of
limits points of its orbit. Recall that a metric attractor is a
subset 𝐴 ⊂ [0, 1] such that 𝑓(𝐴) ⊆ 𝐴, 𝑂(𝐴) = {𝑥 : 𝜔(𝑥, 𝑓) ⊂
𝐴} has positive Lebesgue measure, and there is no proper
subset 𝐴 ⫋ 𝐴 with the same properties. 𝑂(𝐴) is called the
basin of the attractor.

By [14, Theorem 4.1], for a multimodal map 𝑓 : 𝐼 → 𝐼

without wandering intervals, there are three possibilities for
its metric attractors.
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(b) 𝑥0 = 1/𝛽, 𝑦0 = 0.001
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(c) 𝑥0 = 1/𝛽, 𝑦0 = 1
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(d) 𝑥0 = 1/𝛽, 𝑦0 = 𝐺(1)
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(e) 𝑥0 = 1/𝛽(1 − √1 − 1/𝛼), 𝑦0 = 1
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(f) 𝑥0 = 1/𝛽(1 − √1 − 1/𝛼), 𝑦0 = 0.999

Figure 11: For 𝛼 = 1.3 and 𝛽 = 1.56, we make 200000 iterations and draw the last 100000 in the 𝑋𝑌-axis. Except for (b) and (e), the initial
conditions are taken to be the extremum of 𝐹

𝛼,𝛽
and 𝐺

𝛼,𝛽
. (a) and (e) are not attractors because the initial conditions are synchronized; in

(a) 𝑔
𝛽
(𝑥
0
) = 𝑦

0
, and in (e) (𝑔

𝛽
∘ 𝑓
𝛼
∘ 𝑔
𝛽
(𝑥
0
)) = 𝑦

0
. These are 𝜔-limit sets from initial conditions in a set of zero two-dimensional Lebesgue

measures. If we change the initial conditions slightly, we obtain the attractors (b) and (f). Finally, (c) and (d) are two different attractors with
the same projection in the 𝑋- and 𝑌-axis, while for (b) and (f) the projections are different. Attractors (b) and (f) are possible because 𝐹

𝛼,𝛽

and 𝐺
𝛼,𝛽

have two different attractors consisting of two-periodic transitive intervals (of type (A3)).

(A1) A periodic orbit (recall that 𝑥 is periodic if 𝑓𝑛(𝑥) = 𝑥
for some 𝑛 ∈ N).

(A2) A solenoidal attractor, which is basically a Cantor
set in which the dynamics is quasiperiodic. More
precisely, the dynamics on the attractor is conjugated
to a minimal translation, in which each orbit is

dense on the attractor. The dynamics of 𝑓 restricted
to the attractor is simple; neither positive topologi-
cal entropy nor Li-Yorke chaos can be obtained. Its
dynamics is often known as quasiperiodic.

(A3) A union of periodic intervals, 𝐽
1
, . . . , 𝐽

𝑘
, such that

𝑓
𝑘
(𝐽
𝑖
) = 𝐽
𝑖
and 𝑓𝑘(𝐽

𝑖
) ̸= 𝐽
𝑗
, 1 ≤ 𝑖 < 𝑗 ≤ 𝑘, and such
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Figure 12: For 𝛼 = 1.3 and 𝛽 = 1.2 we make 200000 iterations and draw the last 100000 in the 𝑋𝑌 axis. We take initial conditions 𝑥
0
= 1/𝛽

in both cases and 𝑦
0
= 0.001 for (a) and 𝑦

0
= (𝑔
𝛽
∘ 𝑓
𝛼
)(0.001) for (b).
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(a) 𝛼 = 1.86, 𝛽 = 1.25, 𝑥0 = 1/𝛽, and 𝑦0 = 1 − 1/𝛼
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(b) 𝛼 = 1.86, 𝛽 = 1.54, 𝑥0 = 1/𝛽, and 𝑦0 = 1 − 1/𝛼
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(c) 𝛼 = 1.86, 𝛽 = 1.56, 𝑥0 = 1/𝛽, and 𝑦0 = 1 − 1/𝛼
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(d) 𝛼 = 1.86, 𝛽 = 1.74, 𝑥0 = 1/𝛽, and 𝑦0 = 1 − 1/𝛼

Figure 13: For 𝛼 = 1.86 we have drawn several different 𝜔-limits. We make 200000 iterations and draw the last 100000 in the 𝑋𝑌 axis. We
can see that for these parameter values the function is chaotic, but it could happen that the chaos is not physically observable.

that 𝑓𝑘 is topologically mixing. Topologically mixing
property implies the existence of dense orbits on each
periodic interval (under the iteration of 𝑓𝑘).

Moreover, if 𝑓 has an attractor of types (A2) and (A3),
then itmust contain the orbit of a turning point, and therefore
its number is boundedby the turning points. In the case of our

model, we can strengthen the above result by noticing that
𝐹
𝛼,𝛽

and 𝐺
𝛼,𝛽

have negative Schwarzian derivative. Namely,
the Schwarzian derivative [15–17] at a point 𝑥 is given by

𝑆 (𝑓) (𝑥) =

𝑓

(𝑥)

𝑓

(𝑥)

−

3

2

(

𝑓

(𝑥)

𝑓

(𝑥)

)

2

. (24)
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Figure 14: We take orbits of length 𝑛 = 10000 of 𝑔
𝛽
∘ 𝑓
𝛼
with initial

conditions on the image of the turning points and estimate the
Lyapunov exponent for (𝛼, 𝛽) ∈ [1, 2]×[0, 2]with step size of 0.01. In
red we draw those values of the parameter for which the maximum
of Lyapunov exponents for the turning points is smaller than or
equal to 0.

Since 𝑆(𝑓 ∘ 𝑔)(𝑥) = 𝑆𝑓(𝑔(𝑥)) ⋅ (𝑔

(𝑥))
2
+ 𝑆𝑔(𝑥) and

the maps 𝑓
𝛼
and 𝑔

𝛽
have negative Schwarzian derivative the

same occurs to the composition maps 𝐹
𝛼,𝛽

and 𝐺
𝛼,𝛽

. Since
attractors of type (A1) must also attract the orbit of a turning
point when the map has negative Schwarzian derivative, we
have that the number of attractors of𝐹

𝛼,𝛽
and𝐺

𝛼,𝛽
is bounded

to at most 3. Even more, when 𝐹
𝛼,𝛽

and 𝐺
𝛼,𝛽

have three
monotone pieces, then their value in two turning points
agree, which implies that in fact, the number of attractors of
𝐹
𝛼,𝛽

and𝐺
𝛼,𝛽

can be atmost 2.The following result shows that
the attractors of 𝐹

𝛼,𝛽
and 𝐺

𝛼,𝛽
are deeply connected.

Proposition 2. Let𝑓, 𝑔 : 𝐼 → 𝐼 be𝐶1maps such that𝜔(𝑥, 𝑓∘
𝑔) is an attractor of 𝑓∘𝑔. Then 𝜔(𝑔(𝑥), 𝑔 ∘𝑓) = 𝑔(𝜔(𝑥, 𝑓 ∘𝑔))
is an attractor of 𝑔 ∘ 𝑓.

Proof. As usual, denote by 𝜆 the one-dimensional Lebesgue
measure. Let 𝐴 ⊂ 𝐼 with 𝜆(𝐴) > 0 such that for any 𝑦 ∈ 𝐴
we have 𝜔(𝑦, 𝑓 ∘ 𝑔) = 𝜔(𝑥, 𝑓 ∘ 𝑔). Since 𝑓 is 𝐶1, we have that
𝜆(𝑓
−1
(𝐴)) > 0. Now, let 𝑧 ∈ 𝑓−1(𝐴), and fix 𝑦 ∈ 𝐴 such that

𝑦 = 𝑓(𝑧). For any 𝑛 ∈ N we have

(𝑔 ∘ 𝑓)
𝑛

(𝑧) = 𝑔 ((𝑓 ∘ 𝑔)
𝑛−1

(𝑓 (𝑧)))

= 𝑔 ((𝑓 ∘ 𝑔)
𝑛−1

(𝑦)) ,

(25)

from which we conclude that 𝜔(𝑔(𝑥), 𝑔 ∘ 𝑓) = 𝑔(𝜔(𝑥, 𝑓 ∘ 𝑔))
is an attractor of 𝑔 ∘ 𝑓.
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Figure 15: Average profits of firm 1 (a) and firm 2 (b) for 𝑛 =

10000 and step size for parameters 𝛼 and 𝛽 equal to 0.01. The initial
conditions are 𝑥

0
the maximum of 𝑓

𝛼
∘ 𝑔
𝛽
and 𝑦

0
the maximum of

𝑔
𝛽
∘ 𝑓
𝛼
(type max-max).

The attractors of the map 𝑅
𝛼,𝛽

can be obtained by com-
bining the attractors of 𝑓

𝛼
∘ 𝑔
𝛽
and 𝑔

𝛽
∘ 𝑓
𝛼
. Basically, we must

use the inclusion [18, Theorem 2]

𝜔 ((𝑥, 𝑦) , 𝑅
𝛼,𝛽
)

⊆ [𝜔 (𝑥, 𝑓
𝛼
∘ 𝑔
𝛽
) ∪ 𝜔 (𝑦, 𝑔

𝛽
∘ 𝑓
𝛼
)]

× [𝜔 (𝑔
𝛽
(𝑦) , 𝑓

𝛼
∘ 𝑔
𝛽
) ∪ 𝜔 (𝑓

𝛼
(𝑥) , 𝑔

𝛽
∘ 𝑓
𝛼
)] ,

(26)

and, in view of Proposition 2, check whether the attractors
of 𝑓
𝛼
∘ 𝑔
𝛽
and 𝑔

𝛽
∘ 𝑓
𝛼
we are considering are linked or not.

In any case, it should be noticed that even when 𝑓
𝛼
∘ 𝑔
𝛽
and

𝑔
𝛽
∘ 𝑓
𝛼
have just one attractor, the map 𝑅

𝛼,𝛽
may have several

of them depending on their distribution in the𝑋𝑌 plane (see,
e.g., [18, 19] and the examples of attractors in Figure 12).

Obviously, if 𝑓
𝛼
∘ 𝑔
𝛽
and 𝑔

𝛽
∘ 𝑓
𝛼
have 2 attractors, the

number of different attractors of 𝑅
𝛼,𝛽

increases. So, still we
have a practical work to do to decide whether 𝑓

𝛼
∘ 𝑔
𝛽
and

𝑔
𝛽
∘ 𝑓
𝛼
have one or two attractors. We fix the map 𝑓

𝛼
∘ 𝑔
𝛽
and
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(c) Projection of the average profit of firm 1 with min-max initial condi-
tions

1.0 1.2 1.4 1.6 1.8 2.0
1.0

1.2

1.4

1.6

1.8

2.0

(d) Projection of the average profit of firm 1 with max-max initial condi-
tions

Figure 16: Average profit for firm 1 with different initial conditions. Note that in projections, the darker the color is, the lower the average
profit is.

realize that if it has three or four monotone pieces, then the
image of its turning points is in {0, 1}. We take

1

𝑛

𝑛−1

∑

𝑖=0

(𝑓
𝛼
∘ 𝑔
𝛽
)

𝑖

(1) −

1

𝑛

𝑛−1

∑

𝑖=0

(𝑓
𝛼
∘ 𝑔
𝛽
)

𝑖

(0) (27)

and converge it to

∫𝑓
𝛼
∘ 𝑔
𝛽
𝑑𝑢 − ∫𝑓

𝛼
∘ 𝑔
𝛽
𝑑], (28)

where 𝑢 and ] are mutually independent ergodic measures of
𝑓
𝛼
∘ 𝑔
𝛽
(see, e.g., [20]). Since different ergodic measures must

be supported in different attractors, when the expression (27)

tends to zero when 𝑛 tends to infinity we have an evidence
that just one attractor exists. Hence, we make simulations to
compute (27) showing the results in Figure 8. Note that we
have to be cautiouswhen 0 or 1 is eventually periodic, because
in such case its trajectory ranges all the attractors if the
periodic orbit is an attractor, which need not happen (e.g., we
can address that the well-known example of the map 𝑓(𝑥) =
4𝑥(1 − 𝑥) has a dense orbit, and hence, its attractor is the
whole interval, and the image of its turning point is 1, which
is eventually the fixed point 0). Fortunately, the probability of
finding such pathological examples is 0, but this is the case
for 𝛽 = 2 and 𝛼 > 1.

Taking into account the results obtained for generating
Figure 8, we see that for 𝛼 = 1.3 there are values of 𝛽 around
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(d) Projection of the average profit of firm 2 with max-max initial
conditions

Figure 17: Average profit for firm 2 with different initial conditions. Note that in projections, the darker the color is, the lower the average
profit is.

1.5 for which it seems that two different attractors of 𝐺
𝛼,𝛽

may coexist. Figure 9 shows a refinement of Figure 8 for 𝛼 =
1.3 and 1.35. The bifurcation diagrams (see Figure 10) also
suggest the existence of two different attractors for 𝛼 = 1.3
but not for 1.35.

As an example, we show different types of attractors and
limit sets (but nonmetric attractors) obtained for the param-
eter values 𝛼 = 1.3 and 𝛽 = 1.56 (see Figure 11 and the
explanations therein).

When 𝛼 = 1.35 the map 𝑔
𝛽
∘ 𝑓
𝛼
seems to have only one

attractor, and, for 𝛽 = 1.2, we see in Figure 12 that several
of them may exist (see [18] for an analytical explanation of
this fact). Figure 13 shows different types of attractors that can
appear when we fix 𝛼 = 1.86.

Once we have described the attractors of 𝑅
𝛼,𝛽

, we go back
to the idea of explaining when topological chaos cannot be
physically observed. To that end, it is worth to notice that for
a 𝐶1 interval map 𝑓, a periodic point 𝑥 ∈ 𝐼 of period 𝑝 is
an attractor when |∏𝑝

𝑖=1
𝑓

(𝑓
𝑖
(𝑥))| ≤ 1, and therefore, its

Lyapunov exponent (see, e.g., [14]) is

𝜆 (𝑓) (𝑥) = lim sup
𝑛→∞

1

𝑛

𝑛

∑

𝑖=1

log 

𝑓

(𝑓
𝑖
(𝑥))






≤ 0. (29)

Since turning points characterize the attractors of 𝑓
𝛼
∘ 𝑔
𝛽
and

𝑔
𝛽
∘ 𝑓
𝛼
, we conclude that attractors of type (A3) may exist

if and only if 𝜆(𝑔
𝛽
∘ 𝑓
𝛼
)(𝑐) > 0 for some turning point 𝑐 of

𝑔
𝛽
∘𝑓
𝛼
.The following graphic shows themaximum Lyapunov
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Figure 18: Number of fixed points of the composition 𝑓
𝛼
∘ 𝑔
𝛽
. In

𝐴
1
there is one fixed point; in𝐴

2
there are three fixed points. When

(𝛼, 𝛽) = (2, 2) there are four fixed points.

exponent for the parametric region. Figure 14 shows the
maximum of {𝜆(𝑔

𝛽
∘ 𝑓
𝛼
)(𝑐
𝑖
), 𝑖 = 1, 2}, where 𝑐

1
and 𝑐
2
are the

turning points that have different forward images by 𝑔
𝛽
∘ 𝑓
𝛼
.

It is observed that there is a white band in the upper right
side of the projection; this corresponds with the region where
the fixed point is a local attractor. The topological entropy in
these points is positive, but the chaos is not physically
observable. Figure 14 explains the results obtained in Figure 7
because the parameter values 𝛼 = 1.8 and 𝛽 = 1.85 are clearly
in a region with negative Lyapunov exponents.

4. On Invariant Measures and Average Profits

One of the main results in [1] states that for 𝛼 = 2 and 𝛽 = 2
the map 𝑅

𝛼,𝛽
has an invariant measure 𝜇 which is absolutely

continuous with respect to the two-dimensional Lebesgue
measure. Such invariant measure is supported on the whole
square [0, 1]2, and therefore, for almost every initial condi-
tion, (𝑥, 𝑦) (up to a set of zero Lebesgue measure) holds that

lim
𝑛→∞

1

𝑛

𝑛−1

∑

𝑖=0

Π(𝑅
𝑖

𝛼,𝛽
(𝑥, 𝑦)) = ∫

[0,1]
2

Π𝑑𝜇, (30)

where Π = (Π
1
, Π
2
) is the profit function. Therefore, even

when its dynamics is chaotic, with probability one, the aver-
age profit can be estimated, and it decidedwhether the chaotic
regime is more profitable than profits at equilibrium points

or not. The same estimations can be done also for other eco-
nomic quantities like production or costs.

The aim of this section is to prove that we can state the
same result for a wide range of parameter values of 𝛼 and 𝛽.
Note that now we have to take into account several facts.

(i) The map 𝑅
𝛼,𝛽

may have several attractors. Therefore,
we can have several average values.

(ii) When we are in the basis of a periodic attractor 𝐴 =
{(𝑥
1
, 𝑦
1
), . . . , (𝑥

𝑘
, 𝑦
𝑘
)}, the equality

lim
𝑛→∞

1

𝑛

𝑛−1

∑

𝑖=0

Π(𝑅
𝑖

𝛼,𝛽
(𝑥, 𝑦)) =

1

𝑘

𝑘

∑

𝑖=1

Π(𝑥
𝑖
, 𝑦
𝑖
) (31)

trivially holds. Therefore, we must concentrate on
attractors constructed from types (A2) and (A3).

(iii) Since, computationally, attractors of type (A2) are not
easily detected and their probability is small, we must
concentrate our efforts on deciding when attractors of
type (A3) support an invariant ergodicmeasurewhich
is absolutely continuous with respect to the Lebesgue
measure. Note that, by, for example, [21], the existence
of dense orbits is not enough to guarantee the exis-
tence of absolutely continuous ergodic measures.

We start with the next result, which states that absolutely
continuous ergodic measures of 𝑓

𝛼
∘𝑔
𝛽
and 𝑔

𝛽
∘𝑓
𝛼
are deeply

connected.

Proposition 3. Let 𝑓, 𝑔 : 𝐼 → 𝐼 be 𝐶1 maps, and let 𝜇 ∈
E(𝐼, 𝑓∘𝑔) be absolutely continuous with respect to the Lebesgue
measure. Then 𝑔𝜇 defined by 𝑔𝜇(𝐴) = 𝜇(𝑔−1(𝐴)) for every
Borel set𝐴 is an absolutely continuous ergodic measure of 𝑔∘𝑓.

Proof. The fact that 𝑔𝜇 ∈ E(𝐼, 𝑔∘𝑓) can be seen in [22]. Now,
let ℎ be a density function for 𝜇; that is, 𝜇(𝐴) = ∫

𝐴
ℎ 𝑑𝜆 for

any Borel set 𝐴. Since

̃
𝑓𝜇 (𝐴) = ∫

𝑓
−1
(𝐴)

ℎ 𝑑𝜆 = ∫

𝐴

(ℎ ∘ 𝑔
−1
) 𝑑𝜆, (32)

we conclude that ℎ ∘ 𝑓 is the density function of ̃𝑓𝜇, and the
proof ends.

Proposition 3 is a great help in detecting the absolutely
continuous ergodic measures of 𝑅

𝛼,𝛽
; we just consider one

map 𝐹
𝛼,𝛽

or 𝐺
𝛼,𝛽

and decide whether they have absolutely
continuous ergodic measures. The absolutely continuous
ergodic measures of 𝑅

𝛼,𝛽
will be constructed by applying

Proposition 3 and taking the product measure, which will
be absolutely continuous but probably not ergodic. If we
denote the product measure by 𝜇

1
× 𝜇
2
, we take the ergodic

decomposition 𝜇
1
× 𝜇
2
= ∑
𝑘

𝑖=1
𝑝
𝑖
]
𝑖
, where ∑𝑘

𝑖=1
𝑝
𝑖
= 1, and

𝑘 is the number of different attractors constructed by the
attractors of 𝐹

𝛼,𝛽
and 𝐺

𝛼,𝛽
supporting the measures 𝜇

1
and

𝜇
2
. The absolutely continuous ergodic measures are therefore

]
1
, . . . , ]

𝑘
. In the case studied in [1] we find that 𝑘 = 1.

So, we fix a turning point of𝐹
𝛼,𝛽

for instance and compute
its Lyapunov exponent 𝜆(𝐹

𝛼,𝛽
)(𝑐). If it is negative or zero,
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Figure 19: Average profits of firms 1 (a) and 2 (b) when we choose the fixed point which gives us the maximum profit of the first firm 1 among
all the fixed points. Note that in projections, the darker the color is, the lower the profit is.

there is nothing to do. So, we assume that it is positive and let
𝐽
1
, . . . , 𝐽

𝑘
be periodic intervals such that ∪𝑘

𝑖=1
𝐽
𝑖
is an attractor

of type (A3). Any ergodicmeasure𝜇 supported on∪𝑘
𝑖=1
𝐽
𝑖
must

satisfy 𝜇(𝐽
𝑖
) = 1/𝑘, 𝑖 = 1, . . . , 𝑘, and then we can consider

𝐹
𝑘

𝛼,𝛽
, the invariant subinterval 𝐽

𝑖
for some 1 ≤ 𝑖 ≤ 𝑘, and the

ergodic measure (for 𝐹𝑘
𝛼,𝛽

) ] given by the formula ](𝐴) =

𝜇(𝐴 ∩ 𝐽
𝑖
) ⋅ 𝑘. Since 𝐹𝑘

𝛼,𝛽
has negative Schwarzian derivative,

by [23], we conclude that ], and therefore, 𝜇, can be chosen to
be absolutely continuouswith respect to the one-dimensional
Lebesgue measure.

For instance, we consider the values 𝛼 = 1.3 and 𝛽 = 1.56.
The possible attractors were studied in detail in Figure 11, and
we obtained the following average profits for the initial values
as we showed in Table 1.

We compute the average profit for each firm. This result
could be different if we change initial conditions when the
number of attractors is different fromone, aswe studied in the
previous section. Thus, for each firm we are going to present

Table 1: We compute average profits for the initial conditions con-
sidered in Figure 11 and following the iteration processes we make
there we check that both firms should produce starting from the ini-
tial conditions on the basis of the attractor (𝑓). Note that the profits
in the fixed point (Cournot equilibrium) are 0.0140236 for firm 1
and 0.148848 for firm 2, and therefore, the only firm interested in
stabilizing the Cournot point will be firm 2.

Initial conditions Firm 1 Firm 2
𝑥
0
= 1/𝛽, 𝑦

0
= 0 0.0179073 0.0175666

𝑥
0
= 1/𝛽, 𝑦

0
= 0.001 0.0145578 0.0161027

𝑥
0
= 1/𝛽, 𝑦

0
= 1 −0.00460741 0.052774

𝑥
0
= 1/𝛽, 𝑦

0
= 𝐺 (1) −0.00459554 0.0527484

𝑥
0
= 1/𝛽 (1 − √1 − 1/𝛼) , 𝑦

0
= 1 0.00177609 0.125768

𝑥
0
= 1/𝛽 (1 − √1 − 1/𝛼) , 𝑦

0
= 0.999 0.00190711 0.12623

two different graphics in the square (𝛼, 𝛽) ∈ [1, 2]2 with two
different initial conditions, and we observe the differences
between them. In the square (𝛼, 𝛽) ∈ [1, 2]×[0, 1] there is only
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Figure 20: Average profits of firms 1 (a) and 2 (b) when we choose the fixed point which gives us themaximum profit of the first firm 2 among
all the fixed points. Note that in projections, the darker the color is, the lower the profit is.

at most one turning point.Thenwe study the number of fixed
Cournot points depending on (𝛼, 𝛽) ∈ [1, 2] × [0, 2]. When
there are more than a fixed point we determine in which
fixed point the profit is maximum for each firm. Finally we
compare the average profit with the profit in the fixed point
(in which it is maximum) and compute the residual profit.

Figure 15 shows the average profit of both firms. For that,
we use orbits of length 𝑛 = 10000 and, as initial conditions,
(𝑥, 𝑦), where 𝑥 is the minimum of 𝑓

𝛼
∘ 𝑔
𝛽
when it exists

and 0.4, otherwise, and 𝑦 is the maximum of 𝑔
𝛽
∘ 𝑓
𝛼
. We

will denote this election of initial conditions as min-max
conditions.When𝛽 is greater than one there aremore turning
points which eventually may produce other average profits as
it is shown in Figure 16. Here, we show the profit of firm 1,
taking as initial conditions (𝑥, 𝑦), where 𝑥 is the maximum of
𝑓
𝛼
∘𝑔
𝛽
and𝑦 is themaximumof 𝑔

𝛽
∘𝑓
𝛼
, whichwill be denoted

as max-max conditions, and compare the situation with the

initial conditions min-max previously computed. Figure 17
shows the same scenario for the second firm.

We are interested in analyzingwhether the destabilization
of Cournot points, even in the chaotic regime, is a good
business for both firms. To this end, we compare the average
profits of generic orbits with the expected profit at Cournot
points. Firstly, we have to compute the number of fixed points
of the composition𝑓

𝛼
∘𝑔
𝛽
, which can be seen in Figure 18.The

parameter space can be divided into two regions,𝐴
1
and 𝐴

2
.

In𝐴
1
there is one fixed point while in𝐴

2
the number of fixed

points is three, which will be ordered 𝑥
1
(𝛼, 𝛽) ≤ 𝑥

2
(𝛼, 𝛽) ≤

𝑥
3
(𝛼, 𝛽). As an exception, for (𝛼, 𝛽) = (2, 2), the number of

fixed points are four. In [1,Theorems 1 and 2] the stability and
bifurcation diagrams of stationary points is studied in detail.

In region 𝐴
2
we compute the profit of the first firm for

each fixed point, and we observe that it is maximum for the
fixed point 𝑥

3
(𝛼, 𝛽) and minimum for 𝑥

1
(𝛼, 𝛽), obtaining



Abstract and Applied Analysis 17

0.0 0.5 1.0 1.5 2.0

0.1

0.2

0.3

0.4

0.5

(a)

1.0 1.2 1.4 1.6 1.8 2.0

0.05

0.10

0.15

0.20

(b)

Figure 21: For 𝛼 = 1.3 and 𝛽 ∈ (1, 2], we show the average profits of firms 1 (blue) and 2 (red) with initial conditions 𝑥
0
= (1/𝛽)(1−√1 − 1/𝛼),

𝑦
0
= 0.999. We also show the profit at the Cournot points for firms 1 (dashed and blue) and 2 (dashed and red). The first figure (a) shows in

the𝑋 axis the parameter 𝛽 ∈ [0, 2], and the second one (b) with 𝛽 ∈ [1, 2] is a zoom of the first one.
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Figure 22: In this case 𝛼 = 1.3, but the initial conditions are 𝑥
0
= 1/𝛽 and 𝑦

0
= 0.001. The code is the same as in Figure 21. With these initial

conditions there are points in which the profit of firm 1 (close to 𝛽 = 1.56) is greater than the profit reached in the Cournot point.

the converse situation for the second firm. Figure 19 (resp.,
Figure 20) shows the profit of the first firm (resp., second
firms) against the profit obtained by the second firm (resp.,
second firm) when the fixed point that maximizes the profit
of firm 1 (resp., firm 2) is chosen.

The case 𝛼 = 1.3 was studied in Figure 11 and Table 1. We
compute the profit of both firms in this case to compare the
results see Figures 21 and 22.

5. Conclusions

A duopoly model depending on two parameters is studied in
detail. By computing its topological entropy we characterize
the parameter values which admit the existence of chaotic
behavior of trajectories. We also analyze when the above
mentioned chaotic trajectories either can be observed or
remain on a set of zero Lebesgue measures and therefore are
not physically observed in computer simulations. For that,
we study the metric attractors of the model concluding that

several of them can coexist. The existence of absolutely con-
tinuous ergodicmeasures is proved, andwe showed that, even
when chaotic maps are considered, the average of economic
functions, like profit and production and along the orbits can
attain a finite number of values. The existence of such values
allows us to make decisions on whether the equilibrium
points deserve to be stabilized by choosing strategies that are
distinct from naive expectations.
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