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The contribution of the flow signal is generally addressed by theweight function in the researches of the electromagnetic flowmeters,
and various mathematical technologies were concentrated on the methodologies for solving the value of the weight function.
However, it is still difficult to avoid the abstruse mathematical theories and the complex calculation when the solution domain is
irregular in shape.This paper treats the problemwithin the intuitive physical perspective, and the approach, inwhich the proportion
of the current is considered as the substitute for the weight function with the hypothetic current excitation source, is presented.
A simple mathematical modeling of the current is built by means of the resistive network without the redundant assumption, and
the strict mathematical derivation for the conventional asymmetric flow in the circular flowmeter is made to verify the feasibility
and the correctness of the approach.The distributions of the weight function in various situations are obtained with the simulation
employed, using the resistive network modeling, and the advantages of the approach are discussed.

1. Introduction

The study on the weight function is regarded as the gen-
eral and essential focus in the field of the electromagnetic
flowmeter (EMF). In 1954, the first analytical study for the
EMF was performed by Shercliff [1] based on the two-
dimensional rectilinear flow and the uniformly distributed
magnetic field. The microscopic characteristics of the induc-
tion electromotive force were demonstrated with the weight
function method he proposed which is now widely used in
analyzing the EMF. In 1970, Bevir [2] made further progress
on the weight function theory with the virtual current
introduced and extended it to the three-dimensional case.
In 1971, Smyth [3] investigated the weight functions for the
circular and rectangular channel EMFs by means of Green’s
function and conformal mapping. In 1983, O’Sullivan and
Wyatt [4] researched the weight functions for electrodes with
different geometries, and various maps of the distribution
were obtained. In 1986, Hemp and Versteeg [5] solved the
virtual current potential and the magnetic scalar potential
by the expansion of Double Fourier series and simplified
the calculation of the weight function significantly. In 1989,
Zhang [6] proposed the alternating iteration method for

solving the Laplace equation and applied it to achieve the
semianalytical solution of the weight function for the EMF,
on condition that the mixed boundary exists. In 2009, Hu et
al. [7] divided the complex geometry by different auxiliary
surfaces to obtain the corresponding analytical solutions
of the weight function with the method of separation of
variables.

Much effort has been made to solve the weight function
for different situations by virtue of the mathematical skills in
previous studies, based on the theory of the virtual current.
The distribution of the weight function is especially the same
as that of the virtual current if the magnetic field is uniform.
However, the physical meaning of the weight function was
less mentioned for the purpose of the calculation, by which
the simple and direct approach to solve the weight function
can be obtained.

In this paper, the theoretical background is briefly intro-
duced, and the physical meaning of the weight function
is proposed with the innovative modeling of the resistive
network built, which results in the analytical solution of the
weight function for the conventional asymmetric flow in the
circular flowmeter. Besides, the simulations of the weight
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function are also involved to verify the correctness of the
methodology addressed, and the conclusion is presented.

2. Theoretical Background

As is known, the basic measurement principle of the EMF
is Faraday’s Law, and the potential between two electrodes
fulfills the integral equation which can be expressed as
follows:

𝑈
𝐴𝐵
= 𝑈
𝐴
− 𝑈
𝐵
= ∫
𝜏

󳨀→
𝑊 ⋅
󳨀→V 𝑑𝜏, (1)

where 󳨀→𝑊 is given by

󳨀→
𝑊 =

󳨀→
𝐵 ×
󳨀→
𝑗 . (2)

Here, 󳨀→𝑊 is the weight vector which is the extension of the
weight function termed by Bevir and is considered as the
general index for the distribution. 󳨀→𝐵 is the magnetic flux
vector, and 󳨀→𝑗 is the current vector, which characterizes the
current density on condition that the unit current passes from
the positive electrode to the negative electrode. However,
the current does not exist in the flow channel with the
practical application of the EMF, and thus the current is called
“virtual current.” With the uniform magnetic field assumed,
the distribution of the weight function is equal to that of the
virtual current, and its value can be calculated by the partial
differential equations.

Generally, there are no electric power and magnetic
source inside the sensor, and the electrical potential 𝜑 and
magnetic potential 𝐹 within the flow area satisfy the Laplace’
equations,

∇
2
𝜑 = 0

∇
2
𝐹 = 0,

(3)

and the virtual current density 󳨀→𝑗 and magnetic flux vector 󳨀→𝐵
can be further denoted by

󳨀→
𝑗 = −∇𝜑

󳨀→
𝐵 = −∇𝐹.

(4)

According to (2), (3), and (4), the weight function is obtained
by the following equation:

󳨀→
𝑊 = ∇𝐹 × ∇𝜑 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
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󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󳨀→
𝑋
𝑒
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝐹

𝜕𝑧

𝜕𝐹

𝜕𝑥

𝜕𝜑

𝜕𝑧

𝜕𝜑

𝜕𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󳨀→
𝑌
𝑒
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝐹

𝜕𝑥

𝜕𝐹

𝜕𝑦

𝜕𝜑

𝜕𝑥

𝜕𝜑

𝜕𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󳨀→
𝑍
𝑒
,

(5)

where 󳨀→𝑋
𝑒
, 󳨀→𝑌
𝑒
, and

󳨀→
𝑍
𝑒
are the unit vectors, respectively, in

cartesian coordinate system.
From the previous equations, the solution of the weight

function is mainly determined by the distribution of the

U(x, y + Δy)

U(x − Δx, y) U(x, y) U(x + Δx, y)

U(x, y − Δy)

Figure 1: The cartesian grid of the resistive network.

virtual current which can be presented by the potential func-
tion. In previous researches, the methodologies for solving
the direct analytical problems of the Laplace’s equations to
achieve the weight functionwere focused on, especially in the
case of the various solution domains.

Different from the theory of the virtual current, this
paper is concerned with the physical understanding of the
weight function, which simply presents the proportion of the
real current distribution. With the current excitation source
assumed, the real current flows from the positive electrode to
the negative electrode in the case of the static fluid, and the
new modeling of the resistive network is established as the
analogue of the flow, through which the weight function can
be solved with an explicit physical explanation.

3. Modeling and Derivation

The EMF is generally assumed as the cylinder, and the
electrodes are symmetrically placed in the circumference.The
voltage signal is induced between the electrodes when the
conductive fluid flows through the uniform magnetic field.
The field theory analysis is made conventionally to build the
virtual current model which depends on the mathematical
skill of the partial differential equations other than the explicit
physical meaning.

Based on the previous situation, a new approach for
modeling is presented. The flow is regarded as the resistive
network, and the current and potential in the fluid domain
are solved with Kirchhoff ’s Current Law (KCL) employed.

Two different kinds of the grid system are considered in
this model, the cartesian grid and the polar grid. The former
grid shown in Figure 1 is established with several vertical and
horizontal resistances.
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Figure 2: The polar grid of the resistive network.

According to the Kirchhoff ’s Current Law (KCL), in
which the sum of the nodal current is zero, the mathematical
expression is directly obtained as

𝑈 (𝑥, 𝑦 + Δ𝑦) − 𝑈 (𝑥, 𝑦)

𝜌Δ𝑦
+
𝑈 (𝑥, 𝑥 + Δ𝑥) − 𝑈 (𝑥, 𝑦)

𝜌Δ𝑥

+
𝑈 (𝑥, 𝑦 − Δ𝑦) − 𝑈 (𝑥, 𝑦)

𝜌Δ𝑦

+
𝑈 (𝑥, 𝑥 − Δ𝑥) − 𝑈 (𝑥, 𝑦)

𝜌Δ𝑥
= 0,

(6)

where 𝜌 is the flow resistivity, andΔ𝑥 andΔ𝑦 are the unit step
of the grid along the 𝑥 axis and the 𝑦 axis, respectively. Here,
let Δ𝑥 = Δ𝑦 = Δ, with the equal interval step introduced:

𝑈 (𝑥, 𝑦 + Δ) + 𝑈 (𝑥, 𝑦 − Δ) + 𝑈 (𝑥 + Δ, 𝑦)

+ 𝑈 (𝑥 − Δ, 𝑦) − 4𝑈 (𝑥, 𝑦) = 0.

(7)

The left part of the equation above is found to be
the Laplacian operator, and (7) is equal to the equation
∇
2
𝑈(𝑥, 𝑦) = 0, through which the feasibility and the

correctness of themodeling using the resistive network can be
verified. Nevertheless, it is difficult to approach the boundary
with the cartesian grid utilized because of the pipe section in
shape, and the latter grid, that is the polar grid, is then used
to make up for the deficiency, demonstrated in Figure 2.

Similarly, the equation is established on the basis of the
Kirchhoff ’s Current Law (KCL):

𝑈 (𝑟 + Δ𝑟, 𝜃) − 𝑈 (𝑟, 𝜃)

𝜌Δ𝑟
+
𝑈 (𝑟, 𝜃 − Δ𝜃) − 𝑈 (𝑟, 𝜃)

𝜌 (𝑟Δ𝜃)

+
𝑈 (𝑟 − Δ𝑟, 𝜃) − 𝑈 (𝑟, 𝜃)

𝜌Δ𝑟

+
𝑈 (𝑟, 𝜃 + Δ𝜃) − 𝑈 (𝑟, 𝜃)

𝜌 (𝑟Δ𝜃)
= 0.

(8)

The grid is generated minutely, such that

lim
Δ𝑟→0

Δ𝜃→0

Δ𝑟

𝑟Δ𝜃
= 1. (9)

The partial differential equation is obtained with the combi-
nation of (8) and (9)

𝜕
2
𝑈

𝜕𝑟2
+
1

𝑟2
⋅
𝜕
2
𝑈

𝜕𝜃2
= 0. (10)

With the method of separation of variables, the equation
has the particular solution which has the form as follows:

𝑈 (𝑟, 𝜃) = 𝑅 (𝑟)Φ (𝜃) . (11)

Substituting (11) into (10), the equation can be arranged
as follows:

𝑟
2

𝑅

𝜕
2
𝑅

𝜕𝑟2
= −
1

Φ

𝜕
2
Φ

𝜕𝜃2
= 𝑛
2
, (12)

where 𝑛 is the constant based on the structure of the equation.
Equation (12) is considered separately. The first section

of it is the Euler equation, while the second section of it is
the second-order linear homogeneous equation of constant
coefficients. Then the analytical solution of the potential is

𝑈 (𝑟, 𝜃) = 𝑅 (𝑟)Φ (𝜃)

=

∞

∑

𝑛=0

𝐶
1
𝑟
(1+√4𝑛

2
+1)/2
[𝐶
3
sin (𝑛𝜃) + 𝐶4 cos (𝑛𝜃)]

=

∞

∑

𝑛=0

𝑟
(1+√4𝑛

2
+1)/2
[𝐾
1
sin (𝑛𝜃) + 𝐾2 cos (𝑛𝜃)] ,

(13)

where 𝐾
1
and 𝐾

2
are denoted as the coefficient terms related

the constant 𝑛.
The boundary condition is used to determine the coef-

ficients. According to Kirchhoff ’s Current Law (KCL), the
expression of the pipe boundary is obtained:

𝑈 (𝑟, 𝜃 + Δ𝜃) − 𝑈 (𝑟, 𝜃)

𝜌 (𝑟Δ𝜃)

+
𝑈 (𝑟, 𝜃 − Δ𝜃) − 𝑈 (𝑟, 𝜃)

𝜌 (𝑟Δ𝜃)

+
𝑈 (𝑟 − Δ𝑟, 𝜃) − 𝑈 (𝑟, 𝜃)

𝜌Δ𝑟
= 0.

(14)

The current represented by the first two terms of the
equation does not exist because of the insulating material
expect the electrodes in the senior, and the continuous form
of (14) is

𝜕𝑈

𝜕𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑎

= 0, (15)

where 𝑎 presents the pipe radius.
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For the electrodes, it is generally regarded as the point
charges, and the expression at the electrodes is conventionally
set as a constant by means of the mathematical skill without
the physical meaning. In this paper, with the assumed current
excitation source, the expression at the electrodes can be
obtained:

𝜕𝑈

𝜕𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑎,𝜃=𝜋/2

= 𝜌𝐼,

𝜕𝑈

𝜕𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑎,𝜃=−(𝜋/2)

= −𝜌𝐼.

(16)

Combined with (13), (15), and (16), the equation is
arranged as follows:

∞

∑

𝑛=0

1 + √4𝑛2 + 1

2
𝑎
(√4𝑛
2
+1−1)/2

(𝐾
1
sin 𝑛𝜃 + 𝐾

2
cos 𝑛𝜃)

=

{{{{{{{

{{{{{{{

{

𝜌𝐼 𝜃 =
𝜋

2

−𝜌𝐼 𝜃 = −
𝜋

2

0 ∀𝜃 ̸=
𝜋

2
, −
𝜋

2
.

(17)

Multiplying sin 𝑛𝜃 on the both sides of the equation, with
the definite integration applied, (17) is arranged, and 𝐾

1
can

be solved:

1 + √4𝑛2 + 1

2
𝜋𝐾
1
⋅ 𝑎
(√4𝑛
2
+1−1)/2

= 2𝜌𝐼 sin 𝑛𝜋
2

(18)

𝐾
1
=

1

1 + √4𝑛2 + 1

⋅
4𝜌𝐼

𝜋
sin 𝑛𝜋
2
𝑎
(1−√4𝑛

2
+1)/2
. (19)

It is noticed that 𝐾
1
is not equal to zero, so 𝑛 is the odd

number. Assume that 𝑛 = 2𝑚 − 1, 𝐾
1
is transformed as

𝐾
1
=

(−1)
𝑚−1

1 + √4(2𝑚 − 1)
2
+ 1

⋅
4𝜌𝐼

𝜋
𝑎
(1−√4(2𝑚−1)

2
+1)/2
. (20)

Similarly, multiplying cos 𝑛𝜃 on both sides of the equa-
tion, with the definite integration employed, (17) can also be
arranged, and 𝐾

2
is determined:

1 + √4𝑛2 + 1

2
𝜋𝐾
2
⋅ 𝑎
(√4𝑛
2
+1−1)/2

= 0, (21)

𝐾
2
= 0. (22)

By means of (13), (19), and (22), the analytical solution of
the potential is

𝑈 (𝑟, 𝜃) =

∞

∑

𝑚=1

𝑟
(1+√4(2𝑚−1)

2
+1)/2

×

{{

{{

{

(−1)
𝑚−1

1 + √4(2𝑚 − 1)
2
+ 1

⋅
4𝜌𝐼

𝜋
𝑎
(1−√4(2𝑚)

2
+1)/2 sin [(2𝑚 − 1) 𝜃]

}}

}}

}

.

(23)

For simplification, (1 + √4(2𝑚 − 1)2 + 1)/2 is equivalent
to 2𝑚−1 in the infinite series, and then the potential is finally
obtained as follows:

𝑈 (𝑟, 𝜃)

=

∞

∑

𝑚=1

𝑟
2𝑚−1
{
(−1)
𝑚−1

2𝑚 − 1
⋅
4𝜌𝐼

𝜋
𝑎
−(2𝑚−2) sin [(2𝑚 − 1) 𝜃]} .

(24)

Based on the Kirchhoff ’s Current Law (KCL), the radial
current and the circumferential current of the arbitrary point
in the flow domain are addressed as

𝐼
𝑟
= lim
Δ𝑟→0

𝑈 (𝑟 + Δ𝑟, 𝜃) − 𝑈 (𝑟, 𝜃)

𝜌Δ𝑟
=
1

𝜌
⋅
𝜕𝑈 (𝑟, 𝜃)

𝜕𝑟

=
4𝐼

𝜋

∞

∑

𝑚=1

{(−1)
𝑚−1
(
𝑟

𝑎
)

2𝑚−2

sin [(2𝑚 − 1) 𝜃]} ,

𝐼
𝜃
= lim
Δ𝜃→0

𝑈 (𝑟, 𝜃 + Δ𝜃) − 𝑈 (𝑟, 𝜃)

𝜌𝑟Δ𝜃
=
1

𝜌𝑟
⋅
𝜕𝑈 (𝑟, 𝜃)

𝜕𝜃

=
4𝐼

𝜋

∞

∑

𝑚=1

{(−1)
𝑚−1
(
𝑟

𝑎
)

2𝑚−2

cos [(2𝑚 − 1) 𝜃]} .

(25)

The 𝑦 axis is selected as the unified direction of the
current; thus, the actual current is given by the sum of the
component along the 𝑦 axis, including the radial current and
the circumferential current, shown as follows:

𝐼 (𝑟, 𝜃) = 𝐼𝑦 = 𝐼𝑟 sin 𝜃 + 𝐼𝜃 cos 𝜃

=
4𝐼

𝜋

∞

∑

𝑚=1

{(−1)
𝑚−1
(
𝑟

𝑎
)

2𝑚−2

cos [(2𝑚 − 2) 𝜃]} .
(26)

According to the definition, the weight function not only
reflects the degree of the contribution of the flow signal
generated from the motion of the flow through the magnetic
field, but also describes the attenuation coefficient of the
induced voltage caused by the geometric position of the
points in the effective domain. From the physical meaning,
the weight function is actually the distribution proportion.
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Figure 3: (a)–(f) The distributions of the weight function [8, 9] and the current simulated using the proposed approach.
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Figure 4: (a)-(b) The solutions of the weight function for EMFs with long-arc electrodes using resistive network modeling.

Thus, it is extended in this paper and regarded as the
proportion of the current in the total current. Consider the
following:

𝑊̂ (𝑟, 𝜃) =
𝐼 (𝑟, 𝜃)

𝐼

=
4

𝜋

∞

∑

𝑚=1

{(−1)
𝑚−1
(
𝑟

𝑎
)

2𝑚−2

cos [(2𝑚 − 2) 𝜃]} .

(27)

Let𝑁 = 𝑚 − 1; then (27) is arranged as

𝑊̂ (𝑟, 𝜃) =
4

𝜋

∞

∑

𝑁=0

(−1)
𝑁
⋅ (
𝑟

𝑎
)

2𝑁

cos [(2𝑁) 𝜃] . (28)

On basis of the identities,
∞

∑

𝑁=0

(−1)
𝑁
⋅ (
𝑟

𝑎
)

2𝑁

cos [(2𝑁) 𝜃]

=

1 + (𝑟
2
/𝑎
2
) cos 2𝜃

1 + (2𝑟2/𝑎2) cos 2𝜃 + (𝑟4/𝑎4)

=

𝑎
2
(𝑎
2
+ 𝑥
2
− 𝑦
2
)

𝑎4 + 2𝑎2 (𝑥2 − 𝑦2) + (𝑥2 + 𝑦2)
2
,

(29)

the analytical expression of the weight function is solved as

𝑊̂ (𝑟, 𝜃) =
4

𝜋

∞

∑

𝑁=0

(−1)
𝑁
⋅ (
𝑟

𝑎
)

2𝑁

cos [(2𝑁) 𝜃]

= 𝐾 ⋅

∞

∑

𝑁=0

(−1)
𝑁
⋅ (
𝑟

𝑎
)

2𝑁

cos [(2𝑁) 𝜃] ,

(30)

where𝐾 is the constant.

The normalization processing of the weight function is
then made by dividing 𝑊̂(0, 0), where

𝑊̂ (0, 0) =
4

𝜋

∞

∑

𝑁=0

(−1)
𝑁
⋅ (
𝑟

𝑎
)

2𝑁
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=0

=
4

𝜋
⋅

1

1 + (𝑟/𝑎)
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=0

=
4

𝜋
= 𝐾.

(31)

Thus, the normalized expression of the weight function is
finally obtained:

𝑊(𝑟, 𝜃) =
𝑊̂ (𝑟, 𝜃)

𝑊̂ (0, 0)

=

∞

∑

𝑁=0

(−1)
𝑁
⋅ (
𝑟

𝑎
)

2𝑁

cos [(2𝑁) 𝜃]

=

1 + (𝑟
2
/𝑎
2
) cos 2𝜃

1 + (2𝑟2/𝑎2) cos 2𝜃 + (𝑟4/𝑎4)
.

(32)

With the transformation to the cartesian coordinate
system, the solution is

𝑊(𝑥, 𝑦) =

𝑎
2
(𝑎
2
+ 𝑥
2
− 𝑦
2
)

𝑎4 + 2𝑎2 (𝑥2 − 𝑦2) + (𝑥2 + 𝑦2)
2
. (33)

4. Results and Discussion

Depending on (33), the solution of the weight function is
exactly the same as the classical one, using the approach of the
resistive network modeling, which validates the correctness
of the scheme in this paper. From the simulation of the
current with the modeling employed, it is demonstrated that
the proportion of the current in the total current greatly
reflects the weight function and it can be the analysis object
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for the research on the weight function with its modeling
presented. In Figures 3(a) to 3(f), the weight functions
for both full pipe and partially filled pipe are numerically
identical to the proportion of the current in the total current
from the simulation results.

In the previous studies on the classical situation, it
was generally assumed that the electrodes were two point
charges with different polarities, which caused the Neumann
boundary condition, and the assumption of the conventional
modeling previous brought the complexity to establish the
Neumann equation in which the value of the partial deriva-
tive component determined by some mathematical skills [1,
6] is not explicit. With the characterization of the weight
function by using the proportion of the current introduced
in this paper, the mathematical constraint of the natural
boundary condition is weakened, and the convenience for the
calculation is provided.

With the methodology addressed, the weight functions
for the EMFs which possess various kinds of electrodes can
also be solved and the problems of the boundary condition
are transformed to the difficulties of the modeling of the
electrodes contacting the fluid, and thus, the reasonable
selection of the model for boundary electrodes is essential
by using the resistive network in the research on the weight
function in the field of the electromagnetic flowmeter (see
Figure 4).

5. Conclusions

The approach for solving the weight function is developed
with the strict derivation of the mathematical expressions.
The principle of the methodology is simple and effective,
with the intuitive physical meaning of the weight function
introduced, and it also possesses practical value to some
extent in the field of the analysis on EMF. However, the
boundary condition is various for different kinds of EMF, and
the uniform modeling of the electrodes with complex geo-
metric structure is to be further studied with this approach
proposed.
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