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We investigate a Hassell-Varley type predator-prey model with stochastic perturbations. By perturbing the growth rate of prey
population and death rate of predator population with white noise terms, we construct a stochastic differential equation model
to discuss the effects of the environmental noise on the dynamical behaviors. Applying the comparison theorem of stochastic
equations and Itô’s formula, the unique positive global solution to the model for any positive initial value is obtained. We find out
some sufficient conditions for stochastically asymptotically boundedness, permanence, persistence in mean and extinction of the
solution. Furthermore, a series of numerical simulations to illustrate our mathematical findings are presented. The results indicate
that the stochastic perturbations do not cause drastic changes of the dynamics in the deterministic model when the noise intensity
is small under some conditions, but while the noise intensity is sufficiently large, the species may die out, which does not happen
in the deterministic model.

1. Introduction

It is well known that predator-prey interaction is one of
basic interspecies relations for ecosystems, and it is also the
basic block of more complicated food chain, food web, and
biophysical network structure [1]. Because of the universal
existence of predator and prey and their importance in ecol-
ogy, the dynamical relationship between them has long been
and will continue to be one of the dominant themes [2, 3].

The classical predator-prey model has received extensive
attentions from mathematicians as well as ecologists [4–7],
and it can be expressed by a model of nonlinear ordinary
differential equations as follows:

𝑑𝑁

𝑑𝑡
= 𝑓 (𝑁)𝑁 − 𝑏𝑔 (𝑁, 𝑃) 𝑃,

𝑑𝑃

𝑑𝑡
= 𝑃 (𝑐𝑔 (𝑁, 𝑃) − 𝑑) ,

(1)

where 𝑁 = 𝑁(𝑡) and 𝑃 = 𝑃(𝑡) denote the density of prey
and predator population at time 𝑡, respectively. Parameters 𝑏,
𝑐, and 𝑑 are positive constants. 𝑏 stands for capturing rate of
prey by predator, 𝑐 is conversion rate of prey into predator,
and 𝑑 is the natural death rate of the predator. The function
𝑓(𝑁) represents the density-dependent specific growth rate

of prey in absence of predator. The amount of prey biomass
consumed by each predator per unit of time is described by
the functional response 𝑔(𝑁, 𝑃).

In this paper, we consider the usual logistic form of the
growth function for prey in the absence of predator as

𝑓 (𝑁) = 𝑟 (1 −
𝑁

𝐾
) , (2)

where 𝑟 (> 0) is the natural growth rate of prey and𝐾 (> 0) is
the environmental carrying capacity.The functional response
𝑔(𝑁, 𝑃) is taken as

𝑔 (𝑁, 𝑃) =
𝑁

𝑁 + 𝑚𝑃𝛼
, (3)

which is called the Hassell-Varley type functional response
and 𝛼 ∈ (0, 1) is the Hassell-Varley constant [8] and 𝑚 (> 0)

stands for half capturing saturation constant. The predator-
prey model with Hassell-Varley type functional response has
been studied in the ecological literature [6, 9–11].

For more biological motivation in population dynamics,
we take into account the density-dependence of predator
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population. And the correspondingHassell-Varley type pred-
ator-prey model is described by the following form:

𝑑𝑁

𝑑𝑡
= 𝑟𝑁(1 −

𝑁

𝐾
) −

𝑏𝑁𝑃

𝑁 + 𝑚𝑃𝛼
,

𝑑𝑃

𝑑𝑡
= 𝑃(

𝑐𝑁

𝑁 + 𝑚𝑃𝛼
− 𝑑 − ℎ𝑃) ,

𝑁 (0) = 𝑁
0
> 0, 𝑃 (0) = 𝑃

0
> 0,

(4)

where ℎ𝑃 stands for the density-dependence of the predator
population and ℎ > 0.

On the other hand, most natural phenomena do not fol-
low strictly deterministic laws but rather oscillate randomly
about some average. So that the population density never
attains a fixed value with the advancement of time but rather
exhibits continuous oscillation around some average values
[12, 13]. In fact, there are many benefits to be gained by using
stochastic models because real life is full of random fluctua-
tions (i.e., the effects of noise), which undeniably arise from
either environmental variability or internal species.The basic
mechanism and factors of population growth like resources
and vital rates—birth, death, immigration, and emigration—
change nondeterministically due to continuous fluctuations
in the environment (e.g., variation in intensity of sunlight,
temperature, water level, etc.) [2, 3, 14]. Recent advances
in stochastic differential equations enable a lot of authors
to introduce noise into the model of physical phenomena,
whether it is a random noise in the system of differential
equations or environmental fluctuations in parameters [15–
31]. So far as our knowledge is concerned, the work of a mod-
ified Hassell-Varley type predator-prey model with stochastic
perturbations seems rare. Motivated by these, we attempt to
study the stochastic behaviors of the modified Hassell-Varley
type predation model in a random fluctuating environment.

The organization of this paper is as follows. In Section 2,
we present a stochasticmodel corresponding to the determin-
istic model (4) and discuss it in detail. In Section 3, we use
numerical simulations to reveal the influence of noise on the
dynamical behaviors of the model. A brief discussion is given
in Section 4.

2. The Stochastic Model and Analysis

In this section, we investigate the effects of fluctuating envi-
ronments on the dynamical behaviors of model (4). Assum-
ing that random fluctuations in the environment would
display themselves as fluctuations in the growth rate of prey
population𝑁 and in the death rate of predator population 𝑃,
then the parameters 𝑟 and 𝑑 in model (4) can be replaced by

𝑟 → 𝑟 + 𝜎
1
�̇�
1
(𝑡) , −𝑑 → −𝑑 + 𝜎

2
�̇�
2
(𝑡) . (5)

In this way, model (4) will be reduced to the following form:

𝑑𝑁 = 𝑁(𝑟 −
𝑟

𝐾
𝑁 −

𝑏𝑃

𝑁 + 𝑚𝑃𝛼
)𝑑𝑡 + 𝜎

1
𝑁𝑑𝐵
1
(𝑡) ,

𝑑𝑃 = 𝑃(
𝑐𝑁

𝑁 + 𝑚𝑃𝛼
− 𝑑 − ℎ𝑃)𝑑𝑡 + 𝜎

2
𝑃𝑑𝐵
2
(𝑡) ,

(6)

where 𝜎2
1
and 𝜎2
2
are known as the intensities of environmen-

tal noise and �̇�
𝑖
(𝑡) (𝑖 = 1, 2) is a standard white noise; that

is, 𝐵
𝑖
(𝑡) (𝑖 = 1, 2) is a Brownian motion defined in a com-

plete probability space (Ω,F,P) with a filtration {F
𝑡
}
𝑡∈𝑅
+

satisfying the usual conditions (i.e., it is right continuous and
increasing whileF

0
contains all P-null sets) [14].

2.1. Positive and Global Solution. For model (6), there is a
positive local solution.

Lemma 1. There is a unique local solution (𝑁(𝑡), 𝑃(𝑡)) for 𝑡 ∈
[0, 𝜏
𝑒
) tomodel (6) almost surely for initial value (𝑁

0
, 𝑃
0
) ∈ 𝑅
2

+
,

where 𝜏
𝑒
is the explosion time.

The proof of this lemma is rather standard and hence is
omitted.

Lemma 1 only tells us that there is a unique positive local
solution to model (6). Next, we show that this solution is
global which is more interesting.

In particular, let us consider the one-dimensional sto-
chastic population model

𝑑𝑁 (𝑡) = 𝑟𝑁 (𝑡) (1 −
𝑁 (𝑡)

𝐾
)𝑑𝑡 + 𝜎

1
𝑁(𝑡) 𝑑𝐵

1
(𝑡) , 𝑡 ≥ 0,

𝑁 (0) = 𝑁
0
;

(7)

there is an explicit solution

𝑁(𝑡) = exp{(𝑟 −
𝜎
2

1

2
) 𝑡 + 𝜎

1
𝐵
1
(𝑡)}

× (
1

𝑁
0

+
𝑟

𝐾
∫

𝑡

0

exp {(𝑟 −
𝜎
2

1

2
) 𝑠

+𝜎
1
𝐵
1
(𝑠) } 𝑑𝑠)

−1

.

(8)

From model (6), we have

𝑑𝑁 (𝑡) ≤ 𝑟𝑁 (𝑡) (1 −
𝑁 (𝑡)

𝐾
)𝑑𝑡 + 𝜎

1
𝑁(𝑡) 𝑑𝐵

1
(𝑡) . (9)

By the comparison theorem of stochastic equations [14], we
have𝑁(𝑡) ≤ 𝑁(𝑡) a.s. 𝑡 ∈ [0, 𝜏

𝑒
).

Besides, for the following equation

𝑑𝑁 (𝑡) = 𝑁 (𝑡) (𝑟 −
𝑏

𝑚
−
𝑟

𝐾
𝑁 (𝑡)) 𝑑𝑡

+ 𝜎
1
𝑁(𝑡) 𝑑𝐵

1
(𝑡) , 𝑁 (0) = 𝑁

0
,

(10)

there is a unique solution as

𝑁(𝑡) = exp{(𝑟 − 𝑏

𝑚
−
𝜎
2

1

2
) 𝑡 + 𝜎

1
𝐵
1
(𝑡)}

× (
1

𝑁
0

+
𝑟

𝐾
∫

𝑡

0

exp {(𝑟 − 𝑏

𝑚
−
𝜎
2

1

2
) 𝑠

+𝜎
1
𝐵
1
(𝑠) })

−1

.

(11)
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In model (6), for 𝛼 ∈ (0, 1), we can get

𝑑𝑁 (𝑡) ≥ 𝑁 (𝑡) (𝑟 −
𝑏

𝑚
−
𝑟

𝐾
𝑁 (𝑡)) 𝑑𝑡

+ 𝜎
1
𝑁(𝑡) 𝑑𝐵

1
(𝑡) ;

(12)

then𝑁(𝑡) ≥ 𝑁(𝑡) a.s. 𝑡 ∈ [0, 𝜏
𝑒
).

Consequently, we obtain

𝑁(𝑡) ≤ 𝑁 (𝑡) ≤ 𝑁 (𝑡) a.s. 𝑡 ∈ [0, 𝜏
𝑒
) . (13)

On the other hand, the equation

𝑑𝑃 (𝑡) = 𝑃 (𝑡) (𝑐 − 𝑑 − 𝑐𝑚 − ℎ𝑃 (𝑡)) 𝑑𝑡 + 𝜎
2
𝑃 (𝑡) 𝑑𝐵

2
(𝑡) ,

𝑃 (0) = 𝑃
0
,

(14)

has a unique solution as follows:

𝑃 (𝑡) = exp{(𝑐 − 𝑑 − 𝑐𝑚 −
𝜎
2

2

2
) 𝑡 + 𝜎

2
𝐵
2
(𝑡)}

× (
1

𝑃
0

+ ℎ∫

𝑡

0

exp {(𝑐 − 𝑑 − 𝑐𝑚 −
𝜎
2

2

2
) 𝑠

+𝜎
2
𝐵
2
(𝑠) } 𝑑𝑠)

−1

.

(15)

Considering the predator population 𝑃(𝑡) in model (6), we
have

𝑑𝑃 (𝑡) ≤ 𝑃 (𝑡) (𝑐 − 𝑑) 𝑑𝑡 + 𝜎
2
𝑃 (𝑡) 𝑑𝐵

2
(𝑡) ,

𝑑𝑃 (𝑡) = 𝑃 (𝑡) (𝑐 − 𝑑 −
𝑐𝑚𝑃
𝛼

(𝑡)

𝑁 (𝑡) + 𝑚𝑃𝛼 (𝑡)
− ℎ𝑃 (𝑡)) 𝑑𝑡

+ 𝜎
2
𝑃 (𝑡) 𝑑𝐵

2
(𝑡)

≥ 𝑃 (𝑡) (𝑐 − 𝑑 − 𝑐𝑚 − ℎ𝑃 (𝑡)) 𝑑𝑡 + 𝜎
2
𝑃 (𝑡) 𝑑𝐵

2
(𝑡) .

(16)

By the comparison theorem, we obtain 𝑃(𝑡) ≥ 𝑃(𝑡) a.s. 𝑡 ∈
[0, 𝜏
𝑒
); then

𝑃 (𝑡) ≤ 𝑃 (𝑡) ≤ 𝑃
0
exp{(𝑐 − 𝑑 −

𝜎
2

2

2
) 𝑡 + 𝜎

2
𝐵
2
(𝑡)}

= 𝑃 (𝑡) a.s. 𝑡 ∈ [0, 𝜏
𝑒
) .

(17)

From the representation of solutions𝑁(𝑡),𝑁(𝑡),𝑃(𝑡), and
𝑃(𝑡), we can see that they are all existence for 𝑡 ∈ [0,∞);
that is, 𝜏

𝑒
= ∞. Therefore, we have the following theorem to

show that the positive solution of model (6) is global, which
is essential for a population system.

Theorem 2. There is a unique positive solution (𝑁(𝑡), 𝑃(𝑡))
of model (6) almost surely for any initial value (𝑁

0
, 𝑃
0
) ∈

𝑅
2

+
. Moreover there exist functions 𝑁(𝑡), 𝑁(𝑡), 𝑃(𝑡), and 𝑃(𝑡)

defined as (8), (11), (15), and (17) such that

𝑁(𝑡) ≤ 𝑁 (𝑡) ≤ 𝑁 (t) ,

𝑃 (𝑡) ≤ 𝑃 (𝑡) ≤ 𝑃 (𝑡) a.s. 𝑡 ≥ 0.
(18)

2.2. Stochastic Boundedness. In this subsection, we show that
the solution (𝑁(𝑡), 𝑃(𝑡)) of model (6) with any positive initial
value is uniformly bounded in mean.

Theorem 3. The solution (𝑁(𝑡), 𝑃(𝑡)) of model (6) with any
positive initial value has the property that

lim sup
𝑡→∞

E [𝑁 (𝑡)] ≤ 𝐾,

lim sup
𝑡→∞

E [𝑃 (𝑡)] ≤ 𝑐𝐾(𝑟 + 𝑑)
2

4𝑟𝑏𝑑
.

(19)

Proof. From (7), we obtain

lim sup
𝑡→∞

E [𝑁 (𝑡)] ≤ 𝐾; (20)

combining𝑁(𝑡) ≤ 𝑁(𝑡), then

lim sup
𝑡→∞

E [𝑁 (𝑡)] ≤ 𝐾. (21)

Set

𝑀(𝑡) = 𝑁 (𝑡) +
𝑏

𝑐
𝑃 (𝑡) ; (22)

then

𝑑𝑀(𝑡) = (𝑟𝑁 (𝑡) (1 −
𝑁 (𝑡)

𝐾
) −

𝑏

𝑐
𝑃 (𝑡) (𝑑 + ℎ𝑃 (𝑡))) 𝑑𝑡

+ 𝜎
1
𝑁(𝑡) 𝑑𝐵

1
(𝑡) +

𝜎
2
𝑏

𝑐
𝑃 (𝑡) 𝑑𝐵

2
(𝑡)

= ((𝑟 + 𝑑)𝑁 (𝑡) −
𝑟

𝐾
𝑁
2

(𝑡) −
𝑏ℎ

𝑐
𝑃
2

(𝑡) − 𝑑𝑀 (𝑡)) 𝑑𝑡

+ 𝜎
1
𝑁(𝑡) 𝑑𝐵

1
(𝑡) +

𝜎
2
𝑏

𝑐
𝑃 (𝑡) 𝑑𝐵

2
(𝑡) .

(23)

Integrating the above equation from 0 to 𝑡, we obtain

𝑀(𝑡) = 𝑀 (0) + ∫

𝑡

0

( (𝑟 + 𝑑)𝑁 (𝑠)

−
𝑟

𝐾
𝑁
2

(𝑠) −
𝑏ℎ

𝑐
𝑃
2

(𝑠) − 𝑑𝑀 (𝑠)) 𝑑𝑠

+ 𝜎
1
∫

𝑡

0

𝑁(𝑠) 𝑑𝐵
1
(𝑠) +

𝜎
2
𝑏

𝑐
∫

𝑡

0

𝑃 (𝑠) 𝑑𝐵
2
(𝑠) ,

(24)

and taking expectations leads to

E [𝑀 (𝑡)] = 𝑀 (0) + ∫

𝑡

0

E [(𝑟 + 𝑑)𝑁 (𝑠) − 𝑟

𝐾
𝑁
2

(𝑠)

−
𝑏ℎ

𝑐
𝑃
2

(𝑠) − 𝑑𝑀 (𝑠)] 𝑑𝑠;

(25)
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then

𝑑E [𝑀 (𝑡)]

𝑑𝑡
= (𝑟 + 𝑑)E [𝑁 (𝑡)]

−
𝑟

𝐾
E [𝑁2 (𝑡)] − 𝑏ℎ

𝑐
E [𝑃2 (𝑡)] − 𝑑E [𝑀 (𝑡)]

≤ (𝑟 + 𝑑)E [𝑁 (𝑡)] − 𝑟

𝐾
(E [𝑁 (𝑡)])2

−
𝑏ℎ

𝑐
(E [𝑃 (𝑡)])2 − 𝑑E [𝑀 (𝑡)]

≤
𝐾(𝑟 + 𝑑)

2

4𝑟
− 𝑑E [𝑀 (𝑡)] .

(26)

By the comparison theorem, we can get

lim sup
𝑡→∞

E [𝑀 (𝑡)]

= lim sup
𝑡→∞

(E [𝑁 (𝑡)] + 𝑏
𝑐
E [𝑃 (𝑡)]) ≤ 𝐾(𝑟 + 𝑑)

2

4𝑟𝑑
.

(27)

Therefore, we obtain

lim sup
𝑡→∞

E [𝑃 (𝑡)] ≤ 𝑐𝐾(𝑟 + 𝑑)
2

4𝑟𝑏𝑑
. (28)

This completes the proof.

2.3. The Long Time Behavior. It is well known that the
property of permanence is more desirable since it means
the long time survival in a population dynamics. Now, the
definition of stochastic permanence will be given below [32,
33].

Definition 4. The solution (𝑁(𝑡), 𝑃(𝑡)) of model (6) is said to
be stochastically permanent, if, for any 𝜀 ∈ (0, 1), there exists
a pair of positive constants 𝛿 = 𝛿(𝜀) and 𝜒 = 𝜒(𝜀) such that,
for any initial value (𝑁

0
, 𝑃
0
) ∈ 𝑅
2

+
, the solution (𝑁(𝑡), 𝑃(𝑡)) to

model (6) has the properties that

lim inf
𝑡→∞

P {|𝑁 (𝑡) , 𝑃 (𝑡)| ≥ 𝛿} ≥ 1 − 𝜀,

lim inf
𝑡→∞

P {|𝑁 (𝑡) , 𝑃 (𝑡)| ≤ 𝜒} ≥ 1 − 𝜀.
(29)

Lemma 5. For any initial value (𝑁
0
, 𝑃
0
) ∈ R2

+
, the solution

(𝑁(𝑡), 𝑃(𝑡)) satisfies that

lim sup
𝑡→∞

E [(𝑁2 + 𝑃2)
−𝜃/2

] ≤
𝐶

𝑘
, (30)

where 𝐶 = 𝐶(𝜃) is a positive constant and 𝜃, 𝑘 are arbitrary
positive constants satisfying

𝜃min{𝑟 − 𝑏

𝑚
, 𝑐 − 𝑑} >

𝜃 (𝜃 + 1)

2
max {𝜎2

1
, 𝜎
2

2
} + 𝑘. (31)

Proof. Set a function

𝑉 (𝑁, 𝑃) =
1

𝑁 + 𝑃
, (32)

for (𝑁(𝑡), 𝑃(𝑡)) ∈ 𝑅2
+
; using Itô’s formula, we have

𝑑𝑉 = − 𝑉
2

[𝑁(𝑟 −
𝑟

𝐾
𝑁 −

𝑏𝑃

𝑁 + 𝑚𝑃𝛼
)

+𝑃(
𝑐𝑁

𝑁 + 𝑚𝑃𝛼
− 𝑑 − ℎ𝑃) ] 𝑑𝑡

+ 𝑉
3

[𝜎
2

1
𝑁
2

+ 𝜎
2

2
𝑃
2

] 𝑑𝑡 − 𝑉
2

[𝜎
1
𝑁𝑑𝐵
1
+ 𝜎
2
𝑃𝑑𝐵
2
] .

(33)

Choosing a positive constant 𝜃 and by Itô’s formula, we get

L(1 + 𝑉)𝜃 = 𝜃(1 + 𝑉)𝜃−1 {−𝑉2 [𝑁(𝑟 − 𝑟

𝐾
𝑁 −

𝑏𝑃

𝑁 + 𝑚𝑃𝛼
)

+𝑃(
𝑐𝑁

𝑁 + 𝑚𝑃𝛼
− 𝑑 − ℎ𝑃) ]

+𝑉
3

[𝜎
2

1
𝑁
2

+ 𝜎
2

2
𝑃
2

] }

+
𝜃 (𝜃 − 1)

2
𝑉
4

(1 + 𝑉)
𝜃−2

[𝜎
2

1
𝑁
2

+ 𝜎
2

2
𝑃
2

] .

(34)

Let 𝑘 > 0 be sufficiently small such that it satisfies (31); by
Itô’s formula, then

Le𝑘𝑡(1 + 𝑉)𝜃

= e𝑘𝑡(1 + 𝑉)𝜃−2 {𝑘(1 + 𝑉)2 − 𝜃𝑉2

× [𝑁(𝑟 −
𝑟

𝐾
𝑁 −

𝑏𝑃

𝑁 + 𝑚𝑃𝛼
)

+𝑃(
𝑐𝑁

𝑁 + 𝑚𝑃𝛼
− 𝑑 − ℎ𝑃) ]

− 𝜃𝑉
3

[𝑁(𝑟 −
𝑟

𝐾
𝑁 −

𝑏𝑃

𝑁 + 𝑚𝑃𝛼
)

+𝑃(
𝑐𝑁

𝑁 + 𝑚𝑃𝛼
− 𝑑 − ℎ𝑃) ]

+ 𝜃𝑉
3

[𝜎
2

1
𝑁
2

+ 𝜎
2

2
𝑃
2

]

+
𝜃 (𝜃 − 1)

2
𝑉
4

[𝜎
2

1
𝑁
2

+ 𝜎
2

2
𝑃
2

]} .

(35)

Based on the following inequality,

𝑉
3

(𝜎
2

1
𝑁
2

+ 𝜎
2

2
𝑃
2

) ≤ max {𝜎2
1
, 𝜎
2

2
}𝑉. (36)
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Therefore, we obtain

Le𝑘𝑡(1 + 𝑉)𝜃

≤ e𝑘𝑡(1 + 𝑉)𝜃−2 [𝑘(1 + 𝑉)2

− 𝜃𝑉
2

(𝑁(𝑟 −
𝑟

𝐾
𝑁 −

𝑏𝑃

𝑁 + 𝑚𝑃𝛼
)

+ 𝑃(
𝑐𝑁

𝑁 + 𝑚𝑃𝛼
− 𝑑 − ℎ𝑃))

− 𝜃𝑉
3

(𝑁(𝑟 −
𝑟

𝐾
𝑁 −

𝑏𝑃

𝑁 + 𝑚𝑃𝛼
)

+𝑃(
𝑐𝑁

𝑁 + 𝑚𝑃𝛼
− 𝑑 − ℎ𝑃))

+ 𝜃𝑉max {𝜎2
1
, 𝜎
2

2
}

+
𝜃 (𝜃 − 1)

2
𝑉
2max {𝜎2

1
, 𝜎
2

2
}]

= e𝑘𝑡(1 + 𝑉)𝜃−2 [𝑘 + (2𝑘 − 𝜃𝑉2

× (𝑟𝑁 −
𝑟

𝐾
𝑁
2

−
𝑏𝑁𝑃

𝑁 + 𝑚𝑃𝛼

+
𝑐𝑁𝑃

𝑁 + 𝑚𝑃𝛼
− 𝑑𝑃 − ℎ𝑃

2

)

+𝜃max {𝜎2
1
, 𝜎
2

2
} )𝑉

− (𝜃(𝑟𝑁 −
𝑟

𝐾
𝑁
2

−
𝑏𝑁𝑃

𝑁 + 𝑚𝑃𝛼

+
𝑐𝑁𝑃

𝑁 + 𝑚𝑃𝛼
− 𝑑𝑃 − ℎ𝑃

2

)

−
𝜃 (𝜃 − 1)

2
max {𝜎2

1
, 𝜎
2

2
})𝑉
2

]

≤ e𝑘𝑡(1 + 𝑉)𝜃−2

× [𝑘 + 𝜃𝑉
2

(
𝑟

𝐾
𝑁
2

+ ℎ𝑃
2

)

+ (2𝑘 + 𝜃𝑉
2

(
𝑟

𝐾
𝑁
2

+ ℎ𝑃
2

) − 𝜃𝑉
2

× (𝑟𝑁 −
𝑏𝑁𝑃

𝑁 + 𝑚𝑃𝛼
+

𝑐𝑁𝑃

𝑁 + 𝑚𝑃𝛼
− 𝑑𝑃)

+ 𝜃max {𝜎2
1
, 𝜎
2

2
} )𝑉

− (𝜃(𝑟𝑁 −
𝑏𝑁𝑃

𝑁 + 𝑚𝑃𝛼
+

𝑐𝑁𝑃

𝑁 + 𝑚𝑃𝛼
− 𝑑𝑃)

−
𝜃 (𝜃 − 1)

2
max {𝜎2

1
, 𝜎
2

2
} − 𝑘)𝑉

2

]

≤ e𝑘𝑡(1 + 𝑉)𝜃−2 [ (𝑘 + 𝜃max { 𝑟
𝐾
, ℎ})

+ (2𝑘 + 𝜃max { 𝑟
𝐾
, ℎ}

− 𝜃min{𝑟 − 𝑏

𝑚
, 𝑐 − 𝑑}

+ 𝜃max {𝜎2
1
, 𝜎
2

2
} )𝑉

− (𝜃min{𝑟 − 𝑏

𝑚
, 𝑐 − 𝑑}

−
𝜃 (𝜃 − 1)

2
max {𝜎2

1
, 𝜎
2

2
} − 𝑘)𝑉

2

] .

(37)

There exists a positive constant 𝐶
0
such that Le𝑘𝑡(1 + 𝑉)𝜃 ≤

𝐶
0
e𝑘𝑡; then

E [e𝑘𝑡(1 + 𝑉)𝜃] ≤ (1 + 𝑉 (0))𝜃 + 𝐶0
𝑘
e𝑘𝑡. (38)

So, we can get

lim sup
𝑡→∞

E𝑉𝜃 (𝑡) ≤ lim sup
𝑡→∞

E(1 + 𝑉 (𝑡))𝜃 ≤ 𝐶0
𝑘
. (39)

In addition, we know that (𝑁 + 𝑃)
𝜃

≤ 2
𝜃

(𝑁
2

+ 𝑃
2

)
𝜃/2;

consequently,

lim sup
𝑡→∞

E [(𝑁2 + 𝑃2)
−𝜃/2

] ≤ 2
𝜃lim sup

t→∞
E𝑉𝜃 (𝑡) ≤ 2

𝜃

𝐶
0

𝑘
≜
𝐶

𝑘
.

(40)

The proof is complete.

Based on the results of Theorem 3, Lemma 5, and the
Chebyshev inequality [14], we can obtain the following the-
orem.

Theorem6. Assume thatmax{𝜎2
1
, 𝜎
2

2
} < 2min{𝑟−𝑏/𝑚, 𝑐−𝑑};

the solution of model (6) is stochastically permanent.

In a view of ecology, the coexistence of species may be
a good situation. In the following, we consider the stochas-
tic persistence (i.e., stochastic persistence in mean) of the
species.

Theorem 7. Assume that 𝑟 − 𝜎2
1
/2 > 𝑏/𝑚 holds, for any initial

value 𝑁
0
> 0; then the solution 𝑁(𝑡) to model (6) has the

property

𝐾(𝑟 − 𝑏/𝑚 − 𝜎
2

1
/2)

𝑟

≤ lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝑁(𝑠) d𝑠

≤ lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

𝑁(𝑠) d𝑠 ≤
𝐾 (𝑟 − 𝜎

2

1
/2)

𝑟
a.s.

(41)
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Proof. Denoting𝑉(𝑁) = ln𝑁 and by Itô’s formula, we obtain

𝑑𝑉 = (𝑟 −
𝑟

𝐾
𝑁 (𝑡) −

𝑏𝑃 (𝑡)

𝑁 (𝑡) + 𝑚𝑃𝛼 (𝑡)
−
𝜎
2

1

2
)𝑑𝑡

+𝜎
1
𝑑𝐵
1
(𝑡) .

(42)

Then, we have

ln𝑁(𝑡) = ln𝑁
0
+ (𝑟 −

𝜎
2

1

2
) 𝑡 −

𝑟

𝐾
∫

𝑡

0

𝑁(𝑠) 𝑑𝑠

− 𝑏∫

𝑡

0

𝑃 (𝑠)

𝑁 (𝑠) + 𝑚𝑃𝛼 (𝑠)
𝑑𝑠 + 𝜎

1
𝐵
1
(𝑡) .

(43)

And we get

𝑟

𝐾
∫

𝑡

0

𝑁(𝑠) 𝑑𝑠 ≤ − ln𝑁(𝑡) + ln𝑁
0
+ (𝑟 −

𝜎
2

1

2
) 𝑡 + 𝜎

1
𝐵
1
(𝑡) .

(44)

Dividing 𝑡 on both sides of the previouslymentioned inequal-
ity yields

𝑟

𝐾

1

𝑡
∫

𝑡

0

𝑁(𝑠) 𝑑𝑠 ≤ −
ln𝑁(𝑡)
𝑡

+
ln𝑁
0

𝑡
+ (𝑟 −

𝜎
2

1

2
) +

𝜎
1
𝐵
1
(𝑡)

𝑡
.

(45)

Letting 𝑡 → ∞, we know that

lim
𝑡→∞

ln𝑁(𝑡)
𝑡

= 0 a.s.; (46)

Then we obtain

lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

𝑁(𝑠) 𝑑𝑠 ≤
𝐾 (𝑟 − 𝜎

2

1
/2)

𝑟
a.s. (47)

On the other hand,
𝑟

𝐾
∫

𝑡

0

𝑁(𝑠) 𝑑𝑠 ≥ − ln𝑁(𝑡) + ln𝑁
0

+ (𝑟 −
𝜎
2

1

2
) 𝑡 −

𝑏

𝑚
𝑡 + 𝜎
1
𝐵
1
(𝑡) ;

(48)

dividing 𝑡 on both sides and letting 𝑡 → ∞, then

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝑁(𝑠) 𝑑𝑠 ≥
𝐾 (𝑟 − 𝑏/𝑚 − 𝜎

2

1
/2)

𝑟
. (49)

From the above results, inequality (41) holds.

Theorem 8. Assume that 𝑐 − 𝑑 − 𝜎2
2
/2 > 0 holds and that

(𝑁(𝑡), 𝑃(𝑡)) is the solution of model (6) for any initial value
(𝑁
0
, 𝑃
0
) ∈ 𝑅
2

+
; then

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝑁(𝑠)

𝑁 (𝑠) + 𝑚𝑃𝛼 (𝑠)
𝑑𝑠 ≥

𝑑 + 𝜎
2

2
/2

𝑐
,

lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

𝑃
𝛼

(𝑠)

𝑁 (𝑠) + 𝑚𝑃𝛼 (𝑠)
𝑑𝑠 ≤

𝑐 − 𝑑 − 𝜎
2

2
/2

𝑐𝑚
,

(50)

which are stable in time average.

Proof. Denoting 𝑉(𝑃) = ln𝑃 and by Itô’s formula, we have

𝑑𝑉 = (
𝑐𝑁 (𝑡)

𝑁 (𝑡) + 𝑚𝑃𝛼 (𝑡)
− 𝑑 − ℎ𝑃 (𝑡) −

𝜎
2

2

2
)𝑑𝑡 + 𝜎

2
𝑑𝐵
2
(𝑡) .

(51)

Then,

𝑐 ∫

𝑡

0

𝑁(𝑠)

𝑁 (𝑠) + 𝑚𝑃𝛼 (𝑠)
𝑑𝑠

= ln𝑃 (𝑡) − ln𝑃
0
+ (𝑑 +

𝜎
2

2

2
) 𝑡 + ℎ∫

𝑡

0

𝑃 (𝑠) 𝑑𝑠 − 𝜎
2
𝐵
2
(𝑡)

≥ ln𝑃 (𝑡) − ln𝑃
0
+ (𝑑 +

𝜎
2

2

2
) 𝑡 − 𝜎

2
𝐵
2
(𝑡) .

(52)

Dividing 𝑡 on both sides yields

𝑐

𝑡
∫

𝑡

0

𝑁(𝑠)

𝑁 (𝑠) + 𝑚𝑃𝛼 (𝑠)
𝑑𝑠

≥
ln𝑃 (𝑡)
𝑡

−
ln𝑃
0

𝑡
+ 𝑑 +

𝜎
2

2

2
−
𝜎
2
𝐵
2
(𝑡)

𝑡
;

(53)

we obtain

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝑁(𝑠)

𝑁 (𝑠) + 𝑚𝑃𝛼 (𝑠)
𝑑𝑠 ≥

𝑑 + 𝜎
2

2
/2

𝑐
. (54)

Furthermore,

𝑑𝑉 = (𝑐 −
𝑐𝑚𝑃
𝛼

(𝑡)

𝑁 (𝑡) + 𝑚𝑃𝛼 (𝑡)
− 𝑑 − ℎ𝑃 (𝑡) −

𝜎
2

2

2
)𝑑𝑡

+ 𝜎
2
𝑑𝐵
2
(𝑡) ;

(55)

then we can get

𝑐𝑚∫

𝑡

0

𝑃
𝛼

(𝑠)

𝑁 (𝑠) + 𝑚𝑃𝛼 (𝑠)
𝑑𝑠

= − ln𝑃 (𝑡) + ln𝑃
0
+ (𝑐 − 𝑑 −

𝜎
2

2

2
) 𝑡

− ℎ∫

𝑡

0

𝑃 (𝑠) 𝑑𝑠 + 𝜎
2
𝐵
2
(𝑡)

≤ − ln𝑃 (𝑡) + ln𝑃
0
+ (𝑐 − 𝑑 −

𝜎
2

2

2
) 𝑡 + 𝜎

2
𝐵
2
(𝑡) .

(56)

Dividing 𝑡 on both sides, we obtain

lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

𝑃
𝛼

(𝑠)

𝑁 (𝑠) + 𝑚𝑃𝛼 (𝑠)
𝑑𝑠 ≤

𝑐 − 𝑑 − (𝜎
2

2
/2)

𝑐𝑚
. (57)
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2.4. Extinction. From (17), if 𝑐 − 𝑑 − 𝜎
2

2
/2 < 0, then

lim
𝑡→∞

𝑃(𝑡) = 0 a.s. Moreover, from Theorem 7 and (49),
we know that if 𝑟 − 𝑏/𝑚 − 𝜎2

1
/2 > 0 holds, then

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝑁(𝑠) 𝑑𝑠 ≥
𝐾 (𝑟 − 𝑏/𝑚 − 𝜎

2

1
/2)

𝑟
a.s., (58)

which implies that there are a 𝑇
0
> 0 and a positive constant

𝑛
0
such that 𝑁(𝑡) > 𝑛

0
a.s. for 𝑡 ≥ 𝑇

0
. Besides, for all 𝜀 > 0,

there are 𝑇 > 𝑇
0
and Ω

𝜀
such that P(Ω

𝜀
) ≥ 1 − 𝜀 and

𝑏𝑃(𝑡)/𝑁(𝑡) ≤ 𝜀 for 𝑡 ≥ 𝑇. Then we obtain

𝑑𝑁 (𝑡) = 𝑁 (𝑡) (𝑟 −
𝑟

𝐾
𝑁 (𝑡) −

𝑏𝑃 (𝑡)

𝑁 (𝑡) + 𝑚𝑃𝛼 (𝑡)
) 𝑑𝑡

+ 𝜎
1
𝑁(𝑡) 𝑑𝐵

1
(𝑡)

≥ 𝑁 (𝑡) (𝑟 −
𝑟

𝐾
𝑁 (𝑡) −

𝑏𝑃 (𝑡)

𝑁 (𝑡)
) 𝑑𝑡 + 𝜎

1
𝑁(𝑡) 𝑑𝐵

1
(𝑡)

≥ 𝑁 (𝑡) (𝑟 −
𝑟

𝐾
𝑁 (𝑡) − 𝜀) 𝑑𝑡 + 𝜎

1
𝑁(𝑡) 𝑑𝐵

1
(𝑡) ,

(59)

which implies that

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝑁(𝑠) 𝑑𝑠 ≥
𝐾 (𝑟 − 𝜀 − 𝜎

2

1
/2)

𝑟
> 0. (60)

FromTheorem 7 and (47), we have

lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

𝑁(𝑠) 𝑑𝑠 ≤
𝐾 (𝑟 − 𝜎

2

1
/2)

𝑟
a.s. (61)

Therefore, by the arbitrary of 𝜀, we get

lim
𝑡→∞

1

𝑡
∫

𝑡

0

𝑁(𝑠) 𝑑𝑠 =
𝐾 (𝑟 − 𝜎

2

1
/2)

𝑟
a.s. (62)

Combining the above arguments, we can get the theorem
as follows.

Theorem 9. Let (𝑁(𝑡), 𝑃(𝑡)) be the solution of model (6) with
any initial value (𝑁

0
, 𝑃
0
) ∈ 𝑅

2

+
. If 𝑟 − 𝑏/𝑚 − 𝜎

2

1
/2 > 0 and

𝑐 − 𝑑 − 𝜎
2

2
/2 < 0, then

lim
𝑡→∞

1

𝑡
∫

𝑡

0

𝑁(𝑠) 𝑑𝑠 =
𝐾 (𝑟 − 𝜎

2

1
/2)

𝑟
,

lim
𝑡→∞

𝑃 (𝑡) = 0.

(63)

Furthermore, set 𝑢(𝑡) = ln𝑁(𝑡) and V(𝑡) = ln𝑃(𝑡); for the
first equation of model (6) we have

𝑑𝑢 (𝑡) = (𝑟 −
𝑟

𝐾
e𝑢(𝑡) − 𝑏eV(𝑡)

e𝑢(𝑡) + 𝑚e𝛼V(𝑡)
−
𝜎
2

1

2
)𝑑𝑡

+ 𝜎
1
𝑑𝐵
1
(𝑡) ≤ (𝑟 −

𝜎
2

1

2
)𝑑𝑡 + 𝜎

1
𝑑𝐵
1
(𝑡) .

(64)

Taking the comparison theorem of stochastic equations and
the theory of diffusion processes [14], then lim

𝑡→∞
𝑢(𝑡) =

−∞ a.s.; that is,

lim
𝑡→∞

𝑁(𝑡) = 0 a.s. (65)

Similarly, we obtain

lim
𝑡→∞

𝑃 (𝑡) = 0 a.s. (66)

If not, then there is a positive constant𝐻 such that

lim sup
𝑡→∞

𝑃 (𝑡) = 𝐻 > 0 a.s. (67)

Hence, for any given 𝜀 > 0, there exist 𝑡
0
and a set Ω

𝜀
such

that P(Ω
𝜀
) ≥ 1 − 𝜀 and 𝑐𝑁(𝑡)/(𝑁(𝑡) + 𝑚𝑃𝛼(𝑡)) ≤ 𝜀 for 𝑡 ≥ 𝑡

0
.

Therefore,

− 𝑃 (𝑡) (𝑑 + ℎ𝑃 (𝑡)) 𝑑𝑡 + 𝜎
2
𝑃 (𝑡) 𝑑𝐵

2
(𝑡)

≤ 𝑑𝑃 (𝑡) ≤ 𝑃 (𝑡) (−𝑑 + 𝜀) 𝑑𝑡 + 𝜎
2
𝑃 (𝑡) 𝑑𝐵

2
(𝑡) ,

− (𝑑 + ℎ𝑃 (𝑡) +
𝜎
2

2

2
)𝑑𝑡 + 𝜎

2
𝑑𝐵
2
(𝑡)

≤ 𝑑V (𝑡) ≤ (−𝑑 + 𝜀 −
𝜎
2

2

2
)𝑑𝑡 + 𝜎

2
𝑑𝐵
2
(𝑡) .

(68)

By the same reasoning as previously stated, we can get
lim
𝑡→∞

V(𝑡) = −∞ a.s.; that is,

lim
𝑡→∞

𝑃 (𝑡) = 0 a.s. (69)

There is a contradiction; hence (66) is true.
Based on the above, we obtain the following theorem

which means that if the noise satisfies some conditions, then
both species𝑁 and 𝑃 of model (6) will die out.

Theorem 10. Let (𝑁(𝑡), 𝑃(𝑡)) be the solution of model (6)with
any initial value (𝑁

0
, 𝑃
0
) ∈ 𝑅
2

+
. If 𝑟 − 𝑏/𝑚 − 𝜎2

1
/2 < 0, then

lim
𝑡→∞

𝑁(𝑡) = 0, lim
𝑡→∞

𝑃 (𝑡) = 0. (70)

3. Numerical Simulations

In this section, we perform some numerical simulations for
model (6) with environmental noise to illustrate the pre-
viously mentioned analytical findings by referring to the
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Figure 1: Phase portrait of model (4). Other parameters are taken
as 𝑟 = 2, 𝐾 = 0.15, 𝑏 = 0.8, 𝑐 = 0.5, 𝑑 = 0.1, 𝑚 = 0.1, 𝛼 = 0.2, and
ℎ = 0.1. The horizontal axis is prey population 𝑁 and the vertical
axis is predator population 𝑃. 𝐸

0
= (0, 0) and 𝐸

1
= (0.15, 0) are two

saddle points; 𝐸∗ = (0.023, 0.2025) is stable.

method mentioned in Higham [34]. Next, we consider the
discretization equations

𝑁
𝑖+1
= 𝑁
𝑖
+ 𝑁
𝑖
(𝑟 −

𝑟

𝐾
𝑁
𝑖
−

𝑏𝑃
𝑖

𝑁
𝑖
+ 𝑚𝑃
𝑖

𝛼
)Δ𝑡

+ 𝛼𝑁
𝑖

√Δ𝑡𝜉
1𝑖
+
𝛼
2

2
𝑁
2

𝑖
(𝜉
2

1𝑖
− 1)Δ𝑡,

𝑃
𝑖+1
= 𝑃
𝑖
+ 𝑃
𝑖
(

𝑐𝑁
𝑖

𝑁
𝑖
+ 𝑚𝑃
𝑖

𝛼
− 𝑑 − ℎ𝑃

𝑖
)Δ𝑡

+ 𝛽𝑃
𝑖

√Δ𝑡𝜉
2𝑖
+
𝛽
2

2
𝑃
2

𝑖
(𝜉
2

2𝑖
− 1)Δ𝑡,

(71)

where 𝜉
1𝑖
and 𝜉
2𝑖
(𝑖 = 1, 2, . . . , 𝑛) are the Gaussian random

variables N(0, 1).
When choosing the values of parameters 𝑟 = 2, 𝐾 =

0.15, 𝑏 = 0.8, 𝑐 = 0.5, 𝑑 = 0.1, 𝑚 = 0.1, 𝛼 = 0.2,
and ℎ = 0.1 for model (4), which has three equilibria in
the positive quadrant, where 𝐸

0
= (0, 0) (total extinct) and

𝐸
1
= (0.15, 0) (extinct of the predator or prey only) are saddle

points, 𝐸∗ = (0.023, 0.2025) (coexistence of the prey and
predator) is globally asymptotically stable. The trajectory of
the prey and predator population of model (4) is shown in
Figure 1.

Figure 2 shows the time-series plots ofmodel (6) with dif-
ferent noise intensities 𝜎2

1
and 𝜎2

2
. When choosing 𝜎

1
= 𝜎
2
=

0.045 (Figure 2(a)) and 𝜎
1
= 0.12, 𝜎

2
= 0.3 (Figure 2(b)),

from Theorem 6, we know that the positive solution of
model (6) is stochastically permanent, which means that
stochastic perturbations do not change the permanence of
the deterministic model (4). Moreover, fromTheorem 7, the
model will be stochastically persistent in mean. In other
words, we can use the deterministic model (4) describing the
dynamics of the stochastic model when the noise intensities
𝜎
2

1
and 𝜎

2

2
are small. From Figure 2(b), we can observe

that the violent fluctuations appear as the noise intensities
further increase. It means that noise has strong destabilizing
effects on the model and the amplitude of the fluctuations
in population density of prey and predator species increases
obviously, implying instability of the coexisting equilibrium
point in the stochastic environment.

In Figure 3, we continue to choose different noise inten-
sities 𝜎2

1
and 𝜎2

2
to consider the effects of noise to model

(6). When choosing 𝜎
1
= 0.15 and 𝜎

2
= 0.9 (Figure 3(a)),

the conditions of Theorem 9 are satisfied; then we can find
that prey population 𝑁(𝑡) of model (6) is permanent and
predator population 𝑃(𝑡) will die out. Choosing 𝜎

1
= 0.918

and 𝜎
2
= 0.6 in Figure 3(b), which satisfies the conditions

of Theorem 10, both species 𝑁 and 𝑃 in model (6) become
extinct. That is to say, big noise can make the two species die
out. From the above numerical results and byTheorems 3, 6,
7, 9, and 10, we conclude that for some noise intensities 𝜎2

1

and 𝜎2
2
the dynamical behaviors of stochastically ultimately

boundedness, permanence, persistence in mean, and extinc-
tion can be observed in model (6).

4. Conclusions and Remarks

In this paper, we consider a stochastic Hassell-Varley type
predator-prey model. The value of this study lies in twofolds.
First, it verifies some relevant properties of the corresponding
stochastic model (6), which shows the global existence,
boundedness and stochastic permanence, persistence in
mean, and extinction of the positive solution. Second, it illus-
trates the dynamics of the model via numerical simulations,
which shows that if the noise is not large and satisfies some
conditions, the stochastic perturbations do not cause drastic
changes of the dynamics in the deterministicmodel (4), while
if the noise is sufficiently large and satisfies some conditions,
it will force two species in the model to die out.

In order to study the stochastic model (6), we perturb the
deterministic model (4) by incorporating white noise terms
in the growth rate of prey population and in the death rate of
predator population. Establishing a Lyapunov function, there
is a unique positive solution to the model for any positive
initial value. Applying Itô’s formula, we derive that, under
some conditions, the solution of model (6) is stochastically
bounded, permanent, and stochastic persistent in mean and
extinct. For the fixed parameters 𝑟, 𝐾, 𝑏, 𝑐, 𝑑, 𝑚, 𝛼, and ℎ,
some conditions depend on the intensities of noise 𝜎2

1
and

noise 𝜎2
2
. When the noise intensities satisfy some conditions

ofTheorem 9, we can find that prey population𝑁(𝑡) ofmodel
(6) is permanent and predator population 𝑃(𝑡) will die out
(see Figure 3(a)), while with the noise intensities increasing
which satisfy the conditions ofTheorem 10, from Figure 3(b),
two species 𝑁 and 𝑃 will die out. In other words, when the
noise satisfies some conditions of Theorems 6 and 7 and
is not sufficiently large, the populations 𝑁 and 𝑃 may be
stochastically permanent and persistent in mean, while large
noise satisfying the conditions ofTheorems 9 and 10will force
the population to become extinct. Our complete analysis of
the stochastic model will give some suggestions to the studies
of the population dynamics.
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Figure 2: Solutions of model (6) with different noise and other parameters are the same as those of Figure 1 and initial condition (𝑁
0
, 𝑃
0
) =

(0.05, 0.23). (a) 𝜎
1
= 𝜎
2
= 0.045 and (b) 𝜎

1
= 0.12, 𝜎

2
= 0.3.
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Figure 3: Solutions of model (6) with different noise and other parameters are the same as those of Figure 1. (a) 𝜎
1
= 0.15, 𝜎

2
= 0.9 and (b)

𝜎
1
= 0.918, 𝜎

2
= 0.6.
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