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Fuzzy filters and their generalized types have been extensively studied in the literature. In this paper, a one-to-one correspondence
between the set of all generalized fuzzy filters and the set of all generalized fuzzy congruences is established, a quotient residuated
lattice with respect to generalized fuzzy filter is induced, and several types of generalized fuzzy n-fold filters such as generalized
fuzzy n-fold positive implicative (fantastic and Boolean) filters are introduced; examples and results are provided to demonstrate
the relations among these filters.

1. Introduction

Residuated lattices, introduced by Ward and Dilworth in [1],
are very basic algebraic structures among algebras associated
with logical systems. In fact, many algebras have been pro-
posed as the semantical systems of logical systems, for
example, Boolean algebras, MV-algebras, BL-algebras, lattice
implication algebras, MTL-algebras, NM-algebras, and 𝑅

0
-

algebras, and so forth, and they are all particular cases of
residuated lattices.

Filters are tools of extreme importance in studying these
logical algebras and the completeness of nonclassical logics. A
filter is also called a deductive system [2]. From logical point
of view, various filters correspond to various sets of provable
formulae. Filters are also particularly interesting because they
are closely related to congruence relations. Hájek [3] intro-
duced the notions of filters and prime filters in BL-algebras
and proved the completeness of Basic Logic, BL. Turunen
[2] proposed the notions of implicative filters and Boolean
filters of BL-algebras and proved that implicative filters are
equivalent to Boolean filters in BL-algebras. In [4, 5], some
types of filters such as implicative filters, fantastic filters, and
Boolean filters in BL-algebras were proposed and some char-
acterizations of them with identity forms were given, and
in [6], these filters were generalized to residuated lattices.
In [7] some new types of filters such as IMTL-filters, strong

MTL-filters, and associative filters were introduced in MTL-
algebras, and it was shown in [8] that in any MTL-algebra
there exists only one proper associative filter.

At present, there are two branches to generalize the exist-
ing types of filters. One is the folding theory and the other
is fuzzy sets theory. In the folding approach, in [9–11], 𝑛-fold
(positive) implicative filters are proposed in BL-algebras. In
[12], 𝑛-fold EIMTL and 𝑛-fold IMTL-filters of MTL-algebras
were defined and some relations between these filters and 𝑛-
fold (positive) implicative filters, 𝑛-fold fantastic filters, and
𝑛-fold obstinate filters of MTL-algebras were investigated. In
the fuzzy approach, fuzzification ideas have been applied to
some fuzzy logical algebras. In [6, 13, 14], fuzzy filters inMTL-
algebras, BL-algebras, and residuated lattices were studied,
respectively. In particular, several types of fuzzy filters such as
fuzzy Boolean filters, fuzzy fantastic filters, fuzzy implicative
filters and fuzzy regular filters were introduced in [6, 15].
As a further generalization of some fuzzy notions, in BL-
algebras, generalized fuzzy filters [16] which are common
generalizations of (∈, ∈ ∨𝑞)-fuzzy filters [17–19] and (∈, ∈ ∨
𝑞)-fuzzy filters [16] were investigated, and hemirings were
characterized by their (∈, ∈∨𝑞

𝑘
)-fuzzy ideals [20], (∈, ∈ ∨𝑞

𝑘
)-

fuzzy ideals [21], and fuzzy ideals with thresholds [22].
This paper continues the study of generalized fuzzy 𝑛-

fold filters in residuated lattices. In Section 2, some basic
concepts and properties are recalled, and some new notions



2 Abstract and Applied Analysis

about the thresholds are introduced to represent generalized
fuzzy filters like fuzzy filters which are convenient to study
the properties of generalized fuzzy filters. In Section 3, a one-
to-one correspondence between the set of all generalized
fuzzy filters and the set of all generalized fuzzy congruences
is established, and a quotient residuated lattice with respect
to generalized fuzzy filter is induced. In Section 4, some
types of generalized fuzzy 𝑛-fold filters such as generalized
fuzzy 𝑛-fold positive implicative filters, generalized fuzzy 𝑛-
fold fantastic filters, and generalized fuzzy Boolean filters are
introduced, some properties of them are obtained, and exam-
ples and results are provided to show the relations among
these filters. The last section concludes this paper.

2. Preliminaries

Here, we recall some basic concepts and results which will
be used in the sequel. Throughout this paper, 𝐿 will denote a
residuated lattice, unless otherwise mentioned.

2.1. Residuated Lattices

Definition 1 (see [1]). An algebra 𝐿 = (𝐿, ∧, ∨, ⊗, → , 0, 1) is
called a residuated lattice if

(1) (𝐿, ∧, ∨, 0, 1) is a bounded lattice;
(2) (𝐿, ⊗, 1) is a commutative monoid;
(3) (⊗, → ) forms an adjoint pair; that is, 𝑧 ≤ 𝑥 → 𝑦 if

and only if 𝑥 ⊗ 𝑧 ≤ 𝑦.

In the rest of the paper by ¬𝑥 we denote 𝑥 → 0.

Lemma 2 (see [3]). Let 𝐿 be a residuated lattice. Then the fol-
lowing properties hold for all 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝐿:

(1) 𝑥 ⊗ 𝑦 ≤ 𝑥 ⊗ (𝑥 → 𝑦) ≤ 𝑥 ∧ 𝑦;
(2) 𝑥 → (𝑦 → 𝑧) = 𝑦 → (𝑥 → 𝑧) = (𝑥 ⊗ 𝑦) → 𝑧;
(3) 𝑥 ∨ 𝑦 ≤ (𝑥 → 𝑦) → 𝑦 ≤ ¬𝑥 → 𝑦;
(4) 𝑥 ≤ 𝑦 implies 𝑧 → 𝑥 ≤ 𝑧 → 𝑦 and 𝑦 → 𝑧 ≤ 𝑥 → 𝑧;
(5) (𝑦 → 𝑥) ⊗ (𝑧 → 𝑤) ≤ (𝑥 → 𝑧) → (𝑦 → 𝑤);
(6) (𝑥 → 𝑦) ⊗ (𝑦 → 𝑧) ≤ 𝑥 → 𝑧;
(7) ¬𝑥 ∨ 𝑦 ≤ 𝑥 → 𝑦;
(8) 𝑥 → 𝑦 ≤ (𝑥 ⊗ 𝑧) → (𝑦 ⊗ 𝑧);
(9) 𝑦 ≤ 𝑥 → (𝑥 ⊗ 𝑦);
(10) (𝑦 ∨ 𝑧) → 𝑥 = (𝑦 → 𝑥) ∧ (𝑧 → 𝑥); in particular,
(𝑦 ∨ 𝑧) → 𝑦 = 𝑧 → 𝑦;

(11) (𝑥 ↔ 𝑦) ⊗ (𝑧 ↔ 𝑤) ≤ (𝑥 ⬦ 𝑧) ↔ (𝑦 ⬦ 𝑤), where
⬦ ∈ {⊗, ∨, ∧, → };

(12) (𝑥 ↔ 𝑦) ⊗ (𝑦 ↔ 𝑧) ≤ 𝑥 ↔ 𝑧.

Definition 3 (see [3]). Let 𝐹 be a nonempty subset of a
residuated lattice 𝐿. Then 𝐹 is called a filter if

(1) 𝑥, 𝑦 ∈ 𝐹 implies 𝑥 ⊗ 𝑦 ∈ 𝐹;
(2) 𝑥 ∈ 𝐹 and 𝑥 ≤ 𝑦 imply 𝑦 ∈ 𝐹.

However, a filter can also be alternatively described as for
all 𝑥, 𝑦 ∈ 𝐿 it holds that 1 ∈ 𝐹 and 𝑥, 𝑥 → 𝑦 ∈ 𝐹 implies
𝑦 ∈ 𝐹 [2].

2.2. Generalized Fuzzy Filters

Definition 4 (see [19]). Let 𝐿 be a BL-algebra and 𝛼, 𝛽 ∈ [0, 1]
such that 𝛼 < 𝛽. Then a fuzzy set 𝑓 of 𝐿 is called a fuzzy filter
with thresholds (𝛼, 𝛽) (generalized fuzzy filter for short) if for
all 𝑥, 𝑦 ∈ 𝐿 it holds that

(1) min{𝑓(𝑥), 𝑓(𝑦), 𝛽} ≤ max{𝑓(𝑥 ⊗ 𝑦), 𝛼};
(2) 𝑥 ≤ 𝑦 implies min{𝑓(𝑥), 𝛽} ≤ max{𝑓(𝑦), 𝛼}.

Definition 5 (see [16]). Let 𝑓 be a generalized fuzzy filter of a
BL-algebra 𝐿. Then 𝑓 is called

(1) a generalized fuzzy implicative (or Boolean) filter if
for all 𝑥, 𝑦, 𝑧 ∈ 𝐿 it holds that

min {𝑓 (𝑥 → (¬𝑧 → 𝑦)) , 𝑓 (𝑦 → 𝑧) , 𝛽}

≤ max {𝑓 (𝑥 → 𝑧) , 𝛼} ,
(1)

(2) a generalized fuzzy positive implicative filter if for all
𝑥, 𝑦, 𝑧 ∈ 𝐿 it holds that

min {𝑓 (𝑥 → (𝑦 → 𝑧)) , 𝑓 (𝑥 → 𝑦) , 𝛽}

≤ max {𝑓 (𝑥 → 𝑧) , 𝛼} ,
(2)

(3) a generalized fuzzy fantastic filter if for all 𝑥, 𝑦, 𝑧 ∈ 𝐿
it holds that
min {𝑓 (𝑧 → (𝑦 → 𝑥)) , 𝑓 (𝑧) , 𝛽}

≤ max {𝑓 ([(𝑥 → 𝑦) → 𝑦] → 𝑥) , 𝛼} .
(3)

2.3. Properties of the Thresholds 𝛼,𝛽 and Generalized Fuzzy
Filters. In this section, we develop new notions about the
thresholds and investigate their properties. Particularly, by
these notions, we will verify some properties of generalized
fuzzy filters similar to the classical or fuzzy cases.

Here, for all 𝑎, 𝑏, 𝛼, 𝛽 ∈ [0, 1], we denote that min{𝑎, 𝑏} =
𝑎∧𝑏, max{𝑎, 𝑏} = 𝑎∨𝑏, and 𝑏 ≤(𝛼,𝛽) 𝑎 if and only if 𝑏∧𝛽 ≤ 𝑎∨𝛼
and 𝑎 =(𝛼,𝛽)𝑏 if and only if 𝑏 ≤(𝛼,𝛽) 𝑎 and 𝑎 ≤(𝛼,𝛽)𝑏.

However, the following lemmas will be useful in the
sequel.

Lemma 6. Let 𝛼, 𝛽 ∈ [0, 1] such that 𝛼 < 𝛽. Then, for all
𝑎, 𝑏 ∈ [0, 1], 𝑎 ≤(𝛼,𝛽)𝑏 implies that

(1) 𝑎 ≤(𝛼,𝛽)𝑏 ∧ 𝛽;
(2) 𝑎 ∨ 𝛼 ≤(𝛼,𝛽)𝑏.

Proof. We only prove (1), (2) can be proven in a similar way.
Consider the following:

(𝑏 ∧ 𝛽) ∨ 𝛼 = (𝑏 ∧ 𝛽) ∨ (𝛼 ∧ 𝛽)

= (𝑏 ∨ 𝛼) ∧ 𝛽 ≥ 𝑎 ∧ 𝛽.

(4)

Thus 𝑎 ≤(𝛼,𝛽)𝑏 ∧ 𝛽.
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Lemma 7. Let 𝛼, 𝛽 ∈ [0, 1] such that 𝛼 < 𝛽. Then for all 𝑎, 𝑏 ∈
[0, 1] the following assertions are equivalent:

(1) 𝑎 ≤(𝛼,𝛽)𝑏;
(2) 𝑎 ≤(𝛼,𝛽) 𝑎 ∧ 𝑏;
(3) 𝑎 ∨ 𝑏 ≤(𝛼,𝛽)𝑏.

Proof. We only prove (1)⇔(2), (1)⇔(3) can be similarly
proved. Assume that 𝑎 ≤(𝛼,𝛽)𝑏. Then it holds that 𝑎 ∧ 𝛽 ≤
(𝑏∨𝛼)∧𝑎 = (𝑎∧𝑏)∨(𝑎∧𝛼) ≤ (𝑎∧𝑏)∨𝛼.That is, 𝑎 ≤(𝛼,𝛽) 𝑎∧𝑏.

Conversely, assume that 𝑎 ≤(𝛼,𝛽) 𝑎 ∧ 𝑏. That is, 𝑎 ∧ 𝛽 ≤
(𝑎 ∧ 𝑏) ∨ 𝛼. Obviously, (𝑎 ∧ 𝑏) ∨ 𝛼 ≤ 𝑏 ∨ 𝛼. Thus 𝑎 ∧ 𝛽 ≤ 𝑏 ∨ 𝛼;
that is, 𝑎 ≤(𝛼,𝛽)𝑏.

Lemma 8. Let 𝛼, 𝛽 ∈ [0, 1] such that 𝛼 < 𝛽. Then for all 𝑎, 𝑏 ∈
[0, 1]

(1) 𝑏 ≤(𝛼,𝛽) 𝑎 ∨ 𝑏;
(2) 𝑎 ∧ 𝑏 ≤(𝛼,𝛽) 𝑎.

Proof. Since 𝑏 ≤ 𝑎 ∨ 𝑏 and 𝑎 ∧ 𝑏 ≤ 𝑎, it holds that 𝑏 ∧ 𝛽 ≤ 𝑏 ≤
𝑎 ∨ 𝑏 ≤ (𝑎 ∨ 𝑏) ∨ 𝛼 and (𝑎 ∧ 𝑏) ∧ 𝛽 ≤ 𝑎 ∧ 𝑏 ≤ 𝑎 ≤ 𝑎 ∨ 𝛼. Thus
𝑏 ≤
(𝛼,𝛽)
𝑎 ∨ 𝑏 and 𝑎 ∧ 𝑏 ≤(𝛼,𝛽) 𝑎.

Corollary 9. Let 𝛼, 𝛽 ∈ [0, 1] such that 𝛼 < 𝛽. Then for all
𝑎, 𝑏 ∈ [0, 1] the following assertions are equivalent:

(1) 𝑎 ≤(𝛼,𝛽)𝑏;
(2) 𝑎 ∨ 𝑏 =(𝛼,𝛽)𝑏;
(3) 𝑎 ∧ 𝑏 =(𝛼,𝛽) 𝑎.

Proof. It follows immediately from Lemmas 7 and 8.

For ≤(𝛼,𝛽) and =(𝛼,𝛽), we have the following transitivity,
respectively.

Lemma 10. Let 𝛼, 𝛽 ∈ [0, 1] such that 𝛼 < 𝛽. Then for all
𝑎, 𝑏, 𝑐 ∈ [0, 1]

(1) 𝑎 ≤(𝛼,𝛽)𝑏 and 𝑏 ≤(𝛼,𝛽)𝑐 imply 𝑎 ≤(𝛼,𝛽)𝑐;

(2) 𝑎 =(𝛼,𝛽)𝑏 and 𝑏 =(𝛼,𝛽)𝑐 imply 𝑎 =(𝛼,𝛽)𝑐.

Proof. We only prove (1). Assume that 𝑎 ≤(𝛼,𝛽)𝑏 and 𝑏 ≤(𝛼,𝛽)𝑐.
Using Lemma 6, we have 𝑎∧𝛽 ≤ (𝑏∧𝛽)∨𝛼 = (𝑏∨𝛼)∧𝛽 and
(𝑏 ∨ 𝛼) ∧ 𝛽 ≤ 𝑐 ∨ 𝛼. Thus 𝑎 ∧ 𝛽 ≤ 𝑐 ∨ 𝛼. That is, 𝑎 ≤(𝛼,𝛽)𝑐.

Here, the notions of generalized fuzzy filters can be
rewritten in residuated lattices as follows.

Definition 11. Let 𝐿 be a residuated lattice and 𝛼, 𝛽 ∈ [0, 1]
such that 𝛼 < 𝛽. Then a fuzzy set 𝑓 of 𝐿 is called a fuzzy filter
with thresholds (𝛼, 𝛽) (generalized fuzzy filter for short) if for
all 𝑥, 𝑦 ∈ 𝐿 it holds that

(1) 𝑓(𝑥) ∧ 𝑓(𝑦) ≤(𝛼,𝛽)𝑓(𝑥 ⊗ 𝑦);

(2) 𝑥 ≤ 𝑦 implies 𝑓(𝑥) ≤(𝛼,𝛽)𝑓(𝑦).

Theorem 12. Let 𝑓 be a fuzzy set of 𝐿. Then 𝑓 is a generalized
fuzzy filter if and only if for all 𝑥, 𝑦 ∈ 𝐿 it holds that

(1) 𝑓(𝑥) ≤(𝛼,𝛽)𝑓(1);

(2) 𝑓(𝑥) ∧ 𝑓(𝑥 → 𝑦) ≤(𝛼,𝛽)𝑓(𝑦).

The items in Definition 11 and Theorem 12 will be fre-
quently used, so we do not cite them every time.

Moreover, the following properties of generalized fuzzy
filters will be used in the sequel.

Proposition 13. Let 𝑓 be a generalized fuzzy filter of 𝐿. Then
for all 𝑥, 𝑦 ∈ 𝐿 it holds that

(1) 𝑓(𝑥 → 𝑦) =(𝛼,𝛽)𝑓(1) implies 𝑓(𝑥) ≤(𝛼,𝛽)𝑓(𝑦);

(2) 𝑓(𝑥 ⊗ 𝑦) =(𝛼,𝛽)𝑓(𝑥 ∧ 𝑦) =(𝛼,𝛽)𝑓(𝑥) ∧ 𝑓(𝑦).

3. Correspondence between Generalized Fuzzy
Congruences and Generalized Fuzzy Filters

Here, we define the concept of generalized fuzzy congruence
to determine the relationships between generalized fuzzy
filters and generalized fuzzy congruences.

Definition 14. Let 𝐿 be a residuated lattice. A fuzzy set 𝐶 of
𝐿 × 𝐿 is called a generalized fuzzy congruence of 𝐿 if for all
𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝐿 it holds that

(1) 𝐶(𝑥, 𝑥) =(𝛼,𝛽) 𝐶(1, 1);

(2) 𝐶(𝑥, 𝑦) =(𝛼,𝛽) 𝐶(𝑦, 𝑥);

(3) 𝐶(𝑥, 𝑦) ∧ 𝐶(𝑦, 𝑧) ≤(𝛼,𝛽) 𝐶(𝑥, 𝑧);

(4) 𝐶(𝑥, 𝑦) ∧ 𝐶(𝑧, 𝑤) ≤(𝛼,𝛽)𝐶(𝑥 ⬦ 𝑧, 𝑦 ⬦ 𝑤), where ⬦ ∈
{∨, ∧, ⊗, → }.

For a given generalized fuzzy filter 𝑓, we define 𝐶
𝑓
: 𝐿 ×

𝐿 → [0, 1] as 𝐶
𝑓
(𝑥, 𝑦) = 𝑓(𝑥 → 𝑦) ∧ 𝑓(𝑦 → 𝑥) for all

𝑥, 𝑦 ∈ 𝐿.
Obviously, it follows from Proposition 13(2) that 𝐶

𝑓
(𝑥,

𝑦) =
(𝛼,𝛽)
𝑓(𝑥 ↔ 𝑦).

Proposition 15. Let 𝑓 be a generalized fuzzy filter of 𝐿. Then
𝐶
𝑓
is a generalized fuzzy congruence.

Proof. It is trivial.

Let 𝐶 be a generalized fuzzy congruence of 𝐿 and 𝑥 ∈ 𝐿.
Define a fuzzy set 𝐶𝑥 of 𝐿 as 𝐶𝑥(𝑦) = 𝐶(𝑥, 𝑦) for all 𝑦 ∈ 𝐿
which is called a generalized fuzzy congruence class of 𝑥 by
𝐶. The set 𝐿/𝐶 = {𝐶𝑥 | 𝑥 ∈ 𝐿} is called a generalized fuzzy
quotient set by 𝐶.

Proposition 16. Let 𝐶 be a generalized fuzzy congruence of 𝐿.
Then 𝐶1 is a generalized fuzzy filter.

Proof. Consider the following special case ofDefinition 14(3):
𝐶
1
(𝑥) = 𝐶

1
(𝑥) ∧ 𝐶

1
(𝑥) = 𝐶(1, 𝑥) ∧ 𝐶(𝑥, 1) ≤

(𝛼,𝛽)
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𝐶(1, 1) = 𝐶
1
(1). Thus 𝐶1(𝑥) ≤(𝛼,𝛽)𝐶1(1). It follows from

Definition 14(3) and (4) that

𝐶
1
(𝑥) ∧ 𝐶

1
(𝑥 → 𝑦) = 𝐶 (1, 𝑥) ∧ 𝐶 (1, 𝑥 → 𝑦)

≤
(𝛼,𝛽)
𝐶 (1→𝑦, 𝑥→𝑦)∧𝐶 (1, 𝑥→𝑦)

≤
(𝛼,𝛽)
𝐶 (1, 𝑦) = 𝐶

1
(𝑦) ,

(5)

and hence 𝐶1(𝑥) ∧ 𝐶1(𝑥 → 𝑦) ≤(𝛼,𝛽)𝐶1(𝑦).
Thus 𝐶1 is a generalized fuzzy filter.

The following lemma is useful.

Lemma 17. Let𝐶 be a generalized fuzzy congruence of 𝐿.Then
for all 𝑥, 𝑦 ∈ 𝐿

𝐶 (𝑥 ←→ 𝑦, 1) =
(𝛼,𝛽)
𝐶 (𝑥, 𝑦) . (6)

Proof. It is obvious that 𝐶(𝑥, 𝑦) ≤(𝛼,𝛽)𝐶(𝑥 ↔ 𝑦, 𝑦 ↔ 𝑦) =
𝐶(𝑥 ↔ 𝑦, 1).

On the other hand, using Lemma 2(3) and (11),

𝐶 (𝑥 ←→ 𝑦, 1) = 𝐶 (𝑥 ←→ 𝑦, 1) ∧ 𝐶 (𝑥, 𝑥)

≤
(𝛼,𝛽)
𝐶 ((𝑥 ←→ 𝑦) ⊗ 𝑥, 1 ⊗ 𝑥)

= 𝐶 ((𝑥 ←→ 𝑦) ⊗ 𝑥, 𝑥) ∧ 𝐶 (𝑦, 𝑦)

≤
(𝛼,𝛽)
𝐶 (((𝑥 ←→ 𝑦) ⊗ 𝑥) ∨ 𝑦, 𝑥 ∨ 𝑦)

= 𝐶 (𝑦, 𝑥 ∨ 𝑦) ,

(7)

and hence 𝐶(𝑥 ↔ 𝑦, 1) ≤(𝛼,𝛽)𝐶(𝑦, 𝑥 ∨ 𝑦). Similarly, we have
𝐶(𝑥 ↔ 𝑦, 1) ≤

(𝛼,𝛽)
𝐶(𝑥, 𝑥 ∨ 𝑦). Thus 𝐶(𝑥 ↔ 𝑦, 1) ≤(𝛼,𝛽)𝐶(𝑦,

𝑥∨𝑦)∧𝐶(𝑥, 𝑥∨𝑦) ≤
(𝛼,𝛽)
𝐶(𝑥, 𝑦).Then the identity holds.

Proposition 18. Let 𝐶 be a generalized fuzzy congruence of 𝐿.
Then 𝐶

𝐶
1 =
(𝛼,𝛽)
𝐶.

Proof. Using Lemma 17, it holds that

𝐶
𝐶
1 (𝑥, 𝑦)=

(𝛼,𝛽)
𝐶
1
(𝑥 ←→ 𝑦)

= 𝐶 (1, 𝑥 ←→ 𝑦)=
(𝛼,𝛽)
𝐶 (𝑥, 𝑦) .

(8)

Thus 𝐶
𝐶
1 =
(𝛼,𝛽)
𝐶.

Proposition 19. Let 𝑓 be a generalized fuzzy filter of 𝐿. Then
𝐶
1

𝑓
=
(𝛼,𝛽)
𝑓.

Proof. It is trivial.

Theorem 20. There is a one-to-one correspondence between
the set of all generalized fuzzy filters and the set of all general-
ized fuzzy congruences.

Proof. It follows immediately fromPropositions 18 and 19.

Lemma 21. Let 𝑓 be a generalized fuzzy filter of 𝐿. Then
𝐶
𝑥

𝑓
=
(𝛼,𝛽)
𝐶
𝑦

𝑓
if and only if𝑓(𝑥 ↔ 𝑦) =(𝛼,𝛽)𝑓(1) for all 𝑥, 𝑦 ∈ 𝐿.

Proof. Assume that 𝐶𝑥
𝑓
=
(𝛼,𝛽)
𝐶
𝑦

𝑓
for all 𝑧 ∈ 𝐿. Thus 𝑓(𝑥 ↔

𝑧) =
(𝛼,𝛽)
𝑓(𝑦 ↔ 𝑧). In particular, taking 𝑦 = 𝑧, then 𝑓(𝑥 ↔

𝑦) =
(𝛼,𝛽)
𝑓(1).

Conversely, it follows from Lemma 2(11) that

𝐶
𝑥

𝑓
(𝑧) = 𝐶

𝑥

𝑓
(𝑧) ∧ 𝑓 (1)

=
(𝛼,𝛽)
𝑓 (𝑥 ←→ 𝑧) ∧ 𝑓 (𝑥 ←→ 𝑦)

≤
(𝛼,𝛽)
𝑓 ((𝑥 ←→ 𝑧) ⊗ (𝑥 ←→ 𝑦))

≤
(𝛼,𝛽)
𝑓 (𝑧 ←→ 𝑦) = 𝐶

𝑦

𝑓
(𝑧) ,

(9)

and hence 𝐶𝑥
𝑓
(𝑧) ≤
(𝛼,𝛽)
𝐶
𝑦

𝑓
(𝑧). Similarly, we have 𝐶𝑦

𝑓
(𝑧) ≤
(𝛼,𝛽)

𝐶
𝑥

𝑓
(𝑧). Thus 𝐶𝑥

𝑓
(𝑧) =
(𝛼,𝛽)
𝐶
𝑦

𝑓
(𝑧); that is, 𝐶𝑥

𝑓
=
(𝛼,𝛽)
𝐶
𝑦

𝑓
.

Let 𝑓 be a generalized fuzzy filter of 𝐿. For any 𝐶𝑥
𝑓
, 𝐶
𝑦

𝑓
∈

𝐿/𝐶
𝑓
, we define

𝐶
𝑥

𝑓
∨ 𝐶
𝑦

𝑓
= 𝐶
𝑥∨𝑦

𝑓
, 𝐶

𝑥

𝑓
∧ 𝐶
𝑦

𝑓
= 𝐶
𝑥∧𝑦

𝑓
,

𝐶
𝑥

𝑓
⊗ 𝐶
𝑦

𝑓
= 𝐶
𝑥⊗𝑦

𝑓
, 𝐶

𝑥

𝑓
→ 𝐶

𝑦

𝑓
= 𝐶
𝑥→𝑦

𝑓
.

(10)

Theorem 22. Let 𝑓 be a generalized fuzzy filter of 𝐿. Then

𝐿

𝐶
𝑓

= {
𝐿

𝐶
𝑓

, ∧, ∨, ⊗, →,𝐶
0

𝑓
, 𝐶
1

𝑓
} (11)

is a residuated lattice.

Proof. Routine proofs show that 𝐿/𝐶
𝑓
is a residuated lattice.

The above residuated lattice 𝐿/𝐶
𝑓
is called a quotient

residuated lattice induced by generalized fuzzy filter 𝑓.

4. Some Types of Generalized
Fuzzy 𝑛-Fold Filters

In this section, we introduce some types of generalized fuzzy
𝑛-fold filters and investigate the relationships among them.

4.1. Generalized Fuzzy 𝑛-Fold Positive Implicative Filters

Definition 23. Let 𝑓 be a generalized fuzzy filter of 𝐿. Then 𝑓
is called a generalized fuzzy 𝑛-fold positive implicative filter
if for all 𝑥, 𝑦, 𝑧 ∈ 𝐿

𝑓 (𝑥
𝑛
→ (𝑦 → 𝑧)) ∧ 𝑓 (𝑥

𝑛
→ 𝑦)≤

(𝛼,𝛽)
𝑓 (𝑥
𝑛
→ 𝑧) .

(12)
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Example 24. Let 𝐿 = {0, 𝑎, 𝑏, 1}. The operations ⊗ and → are
defined as

⊗ 0 𝑎 𝑏 1

0 0 0 0 0

𝑎 0 0 𝑎 𝑎

𝑏 0 𝑎 𝑏 𝑏

1 0 𝑎 𝑏 1

→ 0 𝑎 𝑏 1

0 1 1 1 1

𝑎 𝑎 1 1 1

𝑏 0 𝑎 1 1

1 0 𝑎 𝑏 1

(13)

Let 𝛼 = 0.3, 𝛽 = 0.8. Define 𝑓 : 𝐿 → [0, 1] as 𝑓(0) = 0.4,
𝑓(𝑎) = 0.5, 𝑓(𝑏) = 0.6, and 𝑓(1) = 0.7. It is routine to verify
that 𝑓 is a generalized fuzzy 2-fold positive implicative filter.

Theorem 25. Let 𝑓 be a generalized fuzzy filter of 𝐿. Then the
following assertions are equivalent:

(1) 𝑓 is a generalized fuzzy 𝑛-fold positive implicative filter;
(2) 𝑓(𝑥𝑛 → 𝑥2𝑛) =(𝛼,𝛽)𝑓(1);
(3) 𝑓(𝑥𝑛 → 𝑥𝑛+1) =(𝛼,𝛽)𝑓(1).

Proof. (1)⇒(2) Assume that 𝑓 is a generalized fuzzy 𝑛-fold
positive implicative filter. Taking 𝑧 = 𝑥2𝑛 and 𝑦 = 𝑥𝑛,
it follows from Lemma 2(2) that 𝑓(1) ≤(𝛼,𝛽)𝑓(𝑥𝑛 → 𝑥

2𝑛
).

Theorem 12(1) leads to the fact that 𝑓(𝑥𝑛 → 𝑥2𝑛) ≤(𝛼,𝛽)𝑓(1).
Thus 𝑓(𝑥𝑛 → 𝑥2𝑛) =(𝛼,𝛽)𝑓(1).

(2)⇒(3) It is obvious that 𝑥2𝑛 ≤ 𝑥𝑛+1, and hence 𝑥𝑛 →
𝑥
2𝑛
≤ 𝑥
𝑛
→ 𝑥
𝑛+1. Thus 𝑓(1) =(𝛼,𝛽)𝑓(𝑥𝑛→𝑥2𝑛) ≤(𝛼,𝛽)𝑓(𝑥𝑛→

𝑥
𝑛+1
). Obviously, 𝑓(𝑥𝑛 → 𝑥

𝑛+1
) ≤
(𝛼,𝛽)
𝑓(1). Thus 𝑓(𝑥𝑛 →

𝑥
𝑛+1
) =
(𝛼,𝛽)
𝑓(1).

(3)⇒(1) It follows from Lemma 2(8) that 𝑥𝑛 → 𝑥
𝑛+1
≤

𝑥
𝑛+1
→ 𝑥
𝑛+2. By the same way, we get 𝑥𝑛+𝑖 → 𝑥

𝑛+𝑖+1
≤

𝑥
𝑛+𝑖+1

→ 𝑥
𝑛+𝑖+2 for all 𝑖 = 0, . . . , 𝑛 − 2. Using Lemma 2(6),

it holds that 𝑓(𝑥𝑛 → 𝑥
𝑛+1
) ∧ 𝑓(𝑥

𝑛+1
→ 𝑥

𝑛+2
) ∧ ⋅ ⋅ ⋅ ∧

𝑓(𝑥
2𝑛−1

→ 𝑥
2𝑛
) ≤
(𝛼,𝛽)
𝑓((𝑥
𝑛
→ 𝑥

𝑛+1
) ⊗ ⋅ ⋅ ⋅ ⊗ (𝑥

2𝑛−1
→

𝑥
2𝑛
)) ≤
(𝛼,𝛽)
𝑓(𝑥
𝑛
→ 𝑥
2𝑛
). Thus 𝑓(1) ≤(𝛼,𝛽)𝑓(𝑥𝑛 → 𝑥

2𝑛
). It

follows from Lemma 2(5) that 𝑓(𝑥𝑛 → 𝑥2𝑛) ≤(𝛼,𝛽)𝑓((𝑥2𝑛 →
𝑧) → (𝑥

𝑛
→ 𝑧)), and hence 𝑓(1) ≤(𝛼,𝛽)𝑓((𝑥2𝑛 → 𝑧) →

(𝑥
𝑛
→ 𝑧)). Thus 𝑓(1) =(𝛼,𝛽)𝑓((𝑥2𝑛 → 𝑧) → (𝑥𝑛 → 𝑧)). It

follows from Proposition 13 that 𝑓(𝑥2𝑛 → 𝑧) ≤
(𝛼,𝛽)
𝑓(𝑥
𝑛
→

𝑧). Thus 𝑓(𝑥𝑛 → (𝑦 → 𝑧)) ∧ 𝑓(𝑥
𝑛
→ 𝑦) ≤

(𝛼,𝛽)
𝑓(𝑥
2𝑛
→

𝑧) ≤
(𝛼,𝛽)
𝑓(𝑥
𝑛
→ 𝑧). Thus 𝑓 is a generalized fuzzy 𝑛-fold

positive implicative filter.

Associated with the alternative definitions of generalized
fuzzy 𝑛-fold positive implicative filters, the following proper-
ties can be verified.

Example 26. Let 𝐿 = {0, 𝑎, 𝑏, 1}. The operations ⊗ and → are
defined as

⊗ 0 𝑎 𝑏 1

0 0 0 0 0

𝑎 0 0 0 𝑎

𝑏 0 0 𝑎 𝑏

1 0 𝑎 𝑏 1

→ 0 𝑎 𝑏 1

0 1 1 1 1

𝑎 𝑏 1 1 1

𝑏 𝑎 𝑏 1 1

1 0 𝑎 𝑏 1

(14)

Let 𝛼 = 0.3, 𝛽 = 0.8. Define 𝑓 : 𝐿 → [0, 1] as 𝑓(0) = 0.4,
𝑓(𝑎) = 0.5, 𝑓(𝑏) = 0.6, and 𝑓(1) = 0.7. Then 𝑓 is not

a generalized fuzzy 2-fold positive implicative filter, because
𝑓(𝑏
2
→ 𝑏
3
) = 𝑓(𝑏) ̸=

(𝛼,𝛽)
𝑓(1).

Proposition 27. Each generalized fuzzy 𝑛-fold positive impli-
cative filter is a generalized fuzzy 𝑛+1-fold positive implicative
filer.

Proof. Assume that 𝑓 is a generalized fuzzy 𝑛-fold positive
implicative filter. By Theorem 25(3), it yields that 𝑓(𝑥𝑛 →
𝑥
𝑛+1
) =
(𝛼,𝛽)
𝑓(1). Using Lemma 2(8), we have 𝑥𝑛 → 𝑥

𝑛+1
≤

𝑥
𝑛+1
→ 𝑥
𝑛+2, and hence 𝑓(𝑥𝑛 → 𝑥

𝑛+1
) ≤
(𝛼,𝛽)
𝑓(𝑥
𝑛+1
→

𝑥
𝑛+2
). Thus 𝑓(1) ≤(𝛼,𝛽)𝑓(𝑥𝑛+1 → 𝑥

𝑛+2
). It is obvi-

ous that 𝑓(𝑥𝑛+1 → 𝑥
𝑛+2
) ≤
(𝛼,𝛽)
𝑓(1). Thus 𝑓(𝑥𝑛+1 →

𝑥
𝑛+2
) =
(𝛼,𝛽)
𝑓(1). That is, 𝑓 is a generalized fuzzy 𝑛 + 1-fold

positive implicative filter.

It is easy to prove by induction that every fuzzy gener-
alized fuzzy 𝑛-fold positive implicative filter is a generalized
fuzzy 𝑛+𝑘-fold positive implicative filter for all integer 𝑘 ≥ 1.

The converse of the above proposition does not always
hold.

Example 28. In Example 24, 𝑓 is a generalized fuzzy 2-fold
positive implicative filter but not a generalized fuzzy 1-fold
positive filter, because 𝑓(𝑎 → 𝑎2) = 𝑓(𝑎) ̸= (𝛼,𝛽)𝑓(1).

Proposition 29 (Extension theorem for generalized fuzzy
𝑛-fold positive implicative filters). Let 𝑓 and 𝑔 be two gener-
alized fuzzy filters of 𝐿 such that𝑓 ≤(𝛼,𝛽)𝑔 and𝑓(1) =(𝛼,𝛽)𝑔(1).
If 𝑓 is a generalized fuzzy 𝑛-fold positive implicative filter, then
so is 𝑔.

Proof. UsingTheorem 25, we have𝑓(1) =(𝛼,𝛽)𝑓(𝑥𝑛 → 𝑥𝑛+1).
By assumption, it holds that 𝑔(1) ≤(𝛼,𝛽)𝑔(𝑥𝑛 → 𝑥

𝑛+1
). It is

obvious that 𝑔(𝑥𝑛 → 𝑥
𝑛+1
) ≤
(𝛼,𝛽)
𝑔(1). Thus 𝑔(𝑥𝑛 →

𝑥
𝑛+1
) =
(𝛼,𝛽)
𝑔(1). Applying Theorem 25 again, 𝑔 is a general-

ized fuzzy 𝑛-fold positive implicative filter.

4.2. Generalized Fuzzy 𝑛-Fold Fantastic Filters

Definition 30. Let 𝑓 be a generalized fuzzy filter of a resid-
uated lattice 𝐿. Then 𝑓 is called a generalized fuzzy 𝑛-fold
fantastic filter if for all 𝑥, 𝑦, 𝑧 ∈ 𝐿

𝑓 (𝑧→(𝑦→𝑥)) ∧ 𝑓 (𝑧) ≤
(𝛼,𝛽)
𝑓 ([(𝑥

𝑛
→𝑦)→𝑦]→𝑥) .

(15)

Example 31. In Example 26, it is routine to verify that 𝑓 is a
generalized fuzzy 2-fold fantastic filter.

The following lemma will be useful.

Lemma 32. Let 𝐿 be a residuated lattice. Then for all 𝑥, 𝑦 ∈ 𝐿

(𝑥 ∨ 𝑦)
𝑛
→ 𝑦 = 𝑥

𝑛
→ 𝑦. (16)
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Proof. Applying Lemma 2(2) and (10) for 𝑛 − 1 times, we get

(𝑥 ∨ 𝑦)
𝑛
→ 𝑦 = (𝑥 ∨ 𝑦)

𝑛−1
→ [(𝑥 ∨ 𝑦) → 𝑦]

= (𝑥 ∨ 𝑦)
𝑛−1
→ (𝑥 → 𝑦)

= 𝑥 → [(𝑥 ∨ 𝑦)
𝑛−1
→ 𝑦] ,

...

= 𝑥
𝑛
→ 𝑦

(17)

and hence (𝑥 ∨ 𝑦)𝑛 → 𝑦 = 𝑥𝑛 → 𝑦.

Theorem 33. Let𝑓 be a generalized fuzzy filter of a residuated
lattice 𝐿. Then the following assertions are equivalent:

(1) 𝑓 is a generalized fuzzy 𝑛-fold fantastic filter;
(2) 𝑓(𝑦 → 𝑥) =

(𝛼,𝛽)
𝑓(((𝑥
𝑛
→ 𝑦) → 𝑦) → 𝑥) for all

𝑥, 𝑦 ∈ 𝐿;
(3) 𝑓(((𝑥𝑛 → 𝑦) → 𝑦) → (𝑥 ∨ 𝑦)) =

(𝛼,𝛽)
𝑓(1) for all

𝑥, 𝑦 ∈ 𝐿.

Proof. (1)⇒(2) Taking 𝑧 = 1, it holds that 𝑓(𝑦 →

𝑥) ≤
(𝛼,𝛽)
𝑓([(𝑥
𝑛
→ 𝑦) → 𝑦] → 𝑥). Since 𝑦 ≤ (𝑥𝑛 →

𝑦) → 𝑦, we get 𝑓([(𝑥𝑛 → 𝑦) → 𝑦] → 𝑥) ≤
(𝛼,𝛽)
𝑓(𝑦 →

𝑥). Thus 𝑓([(𝑥𝑛 → 𝑦) → 𝑦] → 𝑥) =(𝛼,𝛽)𝑓(𝑦 → 𝑥).
(2)⇒(3) Replacing 𝑥 with 𝑥 ∨ 𝑦, it follows from

Lemma 32 that 𝑓(1) =(𝛼,𝛽)𝑓([(𝑥𝑛 → 𝑦) → 𝑦] → (𝑥 ∨ 𝑦)).
(3)⇒(1) Using Lemma 2(4) and (10), we have [(𝑥𝑛 →

𝑦) → 𝑦] → (𝑥 ∨ 𝑦) ≤ (𝑦 → 𝑥) → {[(𝑥
𝑛
→ 𝑦) → 𝑦] →

𝑥}, and hence 𝑓(1) ≤(𝛼,𝛽)𝑓((𝑦 → 𝑥) → {[(𝑥
𝑛
→ 𝑦) →

𝑦] → 𝑥}). It is obvious that 𝑓((𝑦 → 𝑥) → {[(𝑥𝑛 → 𝑦) →
𝑦] → 𝑥}) ≤

(𝛼,𝛽)
𝑓(1). Thus 𝑓((𝑦 → 𝑥) → {[(𝑥

𝑛
→ 𝑦) →

𝑦] → 𝑥}) =
(𝛼,𝛽)
𝑓(1). By Proposition 13(1), it yields that

𝑓(𝑦 → 𝑥) ≤
(𝛼,𝛽)
𝑓([(𝑥
𝑛
→ 𝑦) → 𝑦] → 𝑥). Thus 𝑓(𝑧 →

(𝑦 → 𝑥)) ∧𝑓(𝑧) ≤
(𝛼,𝛽)
𝑓(𝑧 ⊗ [𝑧 → (𝑦 → 𝑥)]) ≤

(𝛼,𝛽)
𝑓(𝑦 →

𝑥) ≤
(𝛼,𝛽)
𝑓([(𝑥
𝑛
→ 𝑦) → 𝑦] → 𝑥).

Associated with the alternative definitions of generalized
fuzzy 𝑛-fold fantastic filters, the following properties can be
verified.

Example 34. In Example 24, 𝑓 is not a generalized fuzzy 2-
fold fantastic filter, because 𝑓([(𝑏2 → 𝑎) → 𝑎] → (𝑎 ∨

𝑏)) = 𝑓(𝑏) ̸=
(𝛼,𝛽)
𝑓(1).

Proposition 35. Each generalized fuzzy 𝑛-fold fantastic filter
is an 𝑛 + 1-fold generalized fuzzy fantastic filer.

Proof. Assume that 𝑓 is a generalized fuzzy 𝑛-fold fantastic
filter. Using Theorem 33(3), we get 𝑓(((𝑥𝑛 → 𝑦) →

𝑦) → (𝑥 ∨ 𝑦)) =
(𝛼,𝛽)
𝑓(1). Since 𝑥𝑛+1 ≤ 𝑥𝑛, it follows from

Lemma 2(4) that ((𝑥𝑛 → 𝑦) → 𝑦) → (𝑥 ∨ 𝑦) ≤ ((𝑥𝑛+1 →
𝑦) → 𝑦) → (𝑥 ∨ 𝑦), and hence 𝑓(((𝑥𝑛 → 𝑦) → 𝑦) →

(𝑥 ∨ 𝑦)) ≤
(𝛼,𝛽)
𝑓(((𝑥
𝑛+1
→ 𝑦) → 𝑦) → (𝑥 ∨ 𝑦)). Thus

𝑓(1) ≤
(𝛼,𝛽)
𝑓(((𝑥
𝑛+1
→ 𝑦) → 𝑦) → (𝑥 ∨ 𝑦)). It is obvious

that 𝑓(((𝑥𝑛+1 → 𝑦) → 𝑦) → (𝑥 ∨ 𝑦)) ≤
(𝛼,𝛽)
𝑓(1). Thus

𝑓(((𝑥
𝑛+1
→ 𝑦) → 𝑦) → (𝑥 ∨ 𝑦)) =

(𝛼,𝛽)
𝑓(1). That is, 𝑓 is

an 𝑛 + 1-fold generalized fuzzy fantastic filter.

It is easy to prove by induction that every generalized
fuzzy 𝑛-fold fantastic filter is a generalized fuzzy 𝑛 + 𝑘-fold
fantastic filter for all integer 𝑘 ≥ 1.

The converse of the above proposition does not always
hold.

Example 36. Let 𝐿 = {0, 𝑎, 𝑏, 1}. The operations ⊗ and → are
defined as

⊗ 0 𝑎 𝑏 1

0 0 0 0 0

𝑎 0 0 0 𝑎

𝑏 0 0 0 𝑏

1 0 𝑎 𝑏 1

→ 0 𝑎 𝑏 1

0 1 1 1 1

𝑎 𝑏 1 1 1

𝑏 𝑏 𝑏 1 1

1 0 𝑎 𝑏 1

(18)

Let 𝛼 = 0.3, 𝛽 = 0.8. Define 𝑓 : 𝐿 → [0, 1] as 𝑓(0) = 0.4,
𝑓(𝑎) = 0.5, 𝑓(𝑏) = 0.6, and 𝑓(1) = 0.7. It is routine to
verify that 𝑓 is a generalized fuzzy 2-fold fantastic filter, but
not a generalized fuzzy 1-fold fantastic filter, because𝑓([(𝑎 →
0) → 0] → (𝑎 ∨ 0)) = 𝑓(𝑏) ̸=

(𝛼,𝛽)
𝑓(1).

Proposition 37 (Extension theorem for generalized fuzzy
𝑛-fold fantastic filters). Let 𝑓 and 𝑔 be two generalized fuzzy
filters of 𝐿 such that 𝑓 ≤(𝛼,𝛽) 𝑔 and 𝑓(1) =(𝛼,𝛽) 𝑔(1). If 𝑓 is a
generalized fuzzy 𝑛-fold fantastic filter, then so is 𝑔.

Proof. Using Theorem 33, the proof is similar to that of
Proposition 29.

4.3. Generalized Fuzzy 𝑛-Fold Boolean Filters

Definition 38. Let 𝑓 be a generalized fuzzy filter of 𝐿. Then
𝑓 is called a generalized fuzzy 𝑛-fold Boolean filter if for all
𝑥, 𝑦, 𝑧 ∈ 𝐿

𝑓 (𝑥 → (¬𝑧
𝑛
→ 𝑦)) ∧ 𝑓 (𝑦 → 𝑧) ≤

(𝛼,𝛽)
𝑓 (𝑥 → 𝑧) .

(19)

Example 39. Let 𝐿 = {0, 𝑎, 𝑏, 𝑐, 𝑑, 1} with 0 < 𝑎, 𝑏 < 𝑐 < 1,
and 0 < 𝑏 < 𝑑 < 1 and let 𝑎 and 𝑏, 𝑐 and 𝑑 be uncomparable.
The operations ⊗ and → are defined as

⊗ 0 𝑎 𝑏 𝑐 𝑑 1

0 0 0 0 0 0 0

𝑎 0 𝑎 0 𝑎 0 𝑎

𝑏 0 0 0 0 𝑏 𝑏

𝑐 0 𝑎 0 𝑎 𝑏 𝑐

𝑑 0 0 𝑏 𝑏 𝑑 𝑑

1 0 𝑎 𝑏 𝑐 𝑑 1

→ 0 𝑎 𝑏 𝑐 𝑑 1

0 1 1 1 1 1 1

𝑎 𝑑 1 𝑑 1 𝑑 1

𝑏 𝑐 𝑐 1 1 1 1

𝑐 𝑏 𝑐 𝑑 1 𝑑 1

𝑑 𝑎 𝑎 𝑐 𝑐 1 1

1 0 𝑎 𝑏 𝑐 𝑑 1

(20)

Let 𝛼 = 0.2, 𝛽 = 0.9. Define 𝑓 : 𝐿 → [0, 1] as 𝑓(0) = 0.3,
𝑓(𝑎) = 0.5, 𝑓(𝑏) = 0.4, 𝑓(𝑐) = 0.7, 𝑓(𝑑) = 0.6, and 𝑓(1) =
0.8. It is routine to verify that 𝑓 is a generalized fuzzy 2-fold
Boolean filter.

The following lemma will be useful.
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Lemma 40. Let 𝐿 be a residuated lattice. Then for all 𝑥, 𝑦 ∈ 𝐿

¬(𝑥 ∨ ¬𝑥
𝑛
)
𝑛
→ (𝑥 ∨ ¬𝑥

𝑛
) = 1. (21)

Proof. By Lemma 2(4), (5), and (8), it holds that

¬(𝑥 ∨ ¬𝑥
𝑛
)
𝑛
→ (𝑥 ∨ ¬𝑥

𝑛
) ≥ ¬(𝑥 ∨ ¬𝑥

𝑛
)
𝑛
→ ¬𝑥

𝑛

≥ 𝑥
𝑛
→ (𝑥 ∨ ¬𝑥

𝑛
)
𝑛
= 1,

(22)

and hence ¬(𝑥 ∨ ¬𝑥𝑛)𝑛 → (𝑥 ∨ ¬𝑥𝑛) = 1.

Theorem 41. Let 𝑓 be a generalized fuzzy filter of 𝐿. Then the
following assertions are equivalent:

(1) 𝑓 is a generalized fuzzy 𝑛-fold Boolean filter;
(2) 𝑓(¬𝑧𝑛 → 𝑧) =(𝛼,𝛽)𝑓(𝑧) for all 𝑧 ∈ 𝐿;
(3) 𝑓(¬𝑧𝑛 ∨ 𝑧) =(𝛼,𝛽)𝑓(1) for all 𝑧 ∈ 𝐿.

Proof. (1)⇒(2) Assume that 𝑓 is a generalized fuzzy 𝑛-fold
Boolean filter. Taking 𝑥 = 1 and 𝑦 = 𝑧, we have 𝑓(¬𝑧𝑛 →
𝑧) ≤
(𝛼,𝛽)
𝑓(𝑧). Since 𝑧 ≤ ¬𝑧

𝑛
→ 𝑧, it holds that

𝑓(𝑧) ≤
(𝛼,𝛽)
𝑓(¬𝑧
𝑛
→ 𝑧). Thus 𝑓(¬𝑧𝑛 → 𝑧) =(𝛼,𝛽)𝑓(𝑧).

(2)⇒(3) Replacing 𝑧 with ¬𝑧𝑛 ∨ 𝑧, it follows from
Lemma 40 that 𝑓(¬𝑧𝑛 ∨ 𝑧) =(𝛼,𝛽)𝑓(1).

(3)⇒(1) Using Lemma 2(5), (3), (6), (4), and (2), we get

𝑓 (𝑧 ∨ ¬𝑧
𝑛
)≤
(𝛼,𝛽)
𝑓 ((¬𝑧

𝑛
→ 𝑧) → 𝑧)

≤
(𝛼,𝛽)
𝑓 ([(¬𝑧

𝑛
→ 𝑦) ⊗ (𝑦 → 𝑧)] → 𝑧)

= 𝑓 ((¬𝑧
𝑛
→ 𝑦) → [(𝑦 → 𝑧) → 𝑧])

≤
(𝛼,𝛽)
𝑓 ([𝑥 → (¬𝑧

𝑛
→ 𝑦)]

→ {𝑥 → [(𝑦 → 𝑧) → 𝑧]})

= 𝑓 ([𝑥 → (¬𝑧
𝑛
→ 𝑦)]

→ [(𝑦 → 𝑧) → (𝑥 → 𝑧)]) ,

(23)

and hence 𝑓(1) ≤(𝛼,𝛽)𝑓([𝑥 → (¬𝑧
𝑛
→ 𝑦)] → [(𝑦 →

𝑧) → (𝑥 → 𝑧)]). It is obvious that𝑓([𝑥 → (¬𝑧𝑛 → 𝑦)] →
[(𝑦 → 𝑧) → (𝑥 → 𝑧)]) ≤

(𝛼,𝛽)
𝑓(1). Thus 𝑓([𝑥 → (¬𝑧𝑛 →

𝑦)] → [(𝑦 → 𝑧) → (𝑥 → 𝑧)]) =
(𝛼,𝛽)
𝑓(1). It follows from

Proposition 13 that 𝑓(𝑥 → (¬𝑧
𝑛
→ 𝑦)) ≤

(𝛼,𝛽)
𝑓((𝑦 →

𝑧) → (𝑥 → 𝑧)). Thus 𝑓(𝑥 → (¬𝑧
𝑛
→ 𝑦)) ∧ 𝑓(𝑦 →

𝑧) ≤
(𝛼,𝛽)
𝑓((𝑦 → 𝑧) → (𝑥 → 𝑧))∧𝑓(𝑦 → 𝑧) ≤

(𝛼,𝛽)
𝑓(𝑥 →

𝑧).

Associated with the alternative definitions of generalized
fuzzy 𝑛-fold Boolean filters, the following properties can be
verified.

Proposition 42. Each generalized fuzzy 𝑛-fold Boolean filter
is an 𝑛 + 1-fold generalized fuzzy Boolean filer.

Proof. Assume that 𝑓 is a generalized fuzzy 𝑛-fold
Boolean filter. It follows from Theorem 41(3) that 𝑓(𝑧 ∨

¬𝑧
𝑛
) =
(𝛼,𝛽)
𝑓(1). Since 𝑧∨¬𝑧𝑛 ≤ 𝑧∨¬𝑧𝑛+1, it yields that 𝑓(𝑧∨

¬𝑧
𝑛
) ≤
(𝛼,𝛽)
𝑓(𝑧 ∨ ¬𝑧

𝑛+1
), and hence 𝑓(1) ≤(𝛼,𝛽)𝑓(𝑧 ∨ ¬𝑧𝑛+1).

It is obvious that 𝑓(𝑧 ∨ ¬𝑧
𝑛+1
) ≤
(𝛼,𝛽)
𝑓(1). Thus

𝑓(𝑧∨¬𝑧
𝑛+1
) =
(𝛼,𝛽)
𝑓(1). That is, 𝑓 is an 𝑛+1-fold generalized

fuzzy Boolean filter.

It is easy to prove by induction that every generalized
fuzzy 𝑛-fold Boolean filter is a generalized fuzzy 𝑛 + 𝑘-fold
Boolean filter for all integer 𝑘 ≥ 1.

The converse of the above proposition does not always
hold.

Example 43. In Example 39, 𝑓 is a generalized fuzzy 2-fold
Boolean filter, but not a generalized fuzzy 1-fold Boolean filter,
because 𝑓(𝑏 ∨ ¬𝑏) = 𝑓(𝑐) ̸= (𝛼,𝛽)𝑓(1).

In order to investigate the relationships among these three
types defined above, the following lemma is useful.

Lemma 44. Let 𝐿 be a residuated lattice. Then for all 𝑥 ∈ 𝐿

𝑥 ∨ ¬𝑥
𝑛
≤ 𝑥
𝑛
→ 𝑥
𝑛+1
. (24)

Proof. Using Lemma 2(1), (2), and (10), we have

(𝑥 ∨ ¬𝑥
𝑛
) → (𝑥

𝑛
→ 𝑥
𝑛+1
)

= [𝑥→(𝑥
𝑛
→𝑥
𝑛+1
)] ∧ [¬𝑥

𝑛
→(𝑥

𝑛
→𝑥
𝑛+1
)]

= 1 ∧ [(¬𝑥
𝑛
⊗ 𝑥
𝑛
) → 𝑥

𝑛+1
] ≥ 1,

(25)

and hence 𝑥 ∨ ¬𝑥𝑛 ≤ 𝑥𝑛 → 𝑥𝑛+1.

Theorem 45. Let 𝑓 be a generalized fuzzy filter of 𝐿. Then 𝑓 is
a generalized fuzzy 𝑛-fold Boolean filter if and only if𝑓 is both a
generalized fuzzy 𝑛-fold fantastic filter and a generalized fuzzy
𝑛-fold positive implicative filter.

Proof. Assume that 𝑓 is a generalized fuzzy 𝑛-fold Boolean
filter. It follows from Lemma 44 that 𝑓(1) ≤(𝛼,𝛽)𝑓(𝑥 ∨
¬𝑥
𝑛
) ≤
(𝛼,𝛽)
𝑓(𝑥
𝑛
→ 𝑥

𝑛+1
). It is obvious that 𝑓((𝑥𝑛 →

𝑥
𝑛+1
) ≤
(𝛼,𝛽)
𝑓(1). Thus 𝑓(𝑥𝑛 → 𝑥

𝑛+1
) =
(𝛼,𝛽)
𝑓(1). That is, 𝑓

is a generalized fuzzy 𝑛-fold positive implicative filter.
Using Lemma 2(2), (3), (4) and (6), we have

𝑓 (𝑥 ∨ ¬𝑥
𝑛
)≤
(𝛼,𝛽)
𝑓 ((¬𝑥

𝑛
→ 𝑥) → 𝑥)

≤
(𝛼,𝛽)
𝑓 ((¬𝑥

𝑛
→ 𝑦) → [(𝑦 → 𝑥) → 𝑥]) ,

(26)

and hence 𝑓(1) ≤(𝛼,𝛽)𝑓((¬𝑥𝑛 → 𝑦) → [(𝑦 → 𝑥) → 𝑥]).
Replacing 𝑥 with 𝑥 ∨ 𝑦, we get 𝑓(1) ≤(𝛼,𝛽)𝑓([¬(𝑥 ∨ 𝑦)𝑛 →
𝑦] → (𝑥 ∨ 𝑦)). By Lemma 2(3), (4), and Lemma 32, it holds
that
𝑓 ([¬(𝑥 ∨ 𝑦)

𝑛
→ 𝑦] → (𝑥 ∨ 𝑦))

≤
(𝛼,𝛽)
𝑓 ({[(𝑥 ∨ 𝑦)

𝑛
→ 𝑦] → 𝑦} → (𝑥 ∨ 𝑦))

= 𝑓 ([(𝑥
𝑛
→ 𝑦) → 𝑦] → (𝑥 ∨ 𝑦)) ,

(27)
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and hence 𝑓(1) ≤(𝛼,𝛽)𝑓([(𝑥𝑛 → 𝑦) → 𝑦] → (𝑥 ∨ 𝑦)). It is
obvious that 𝑓([(𝑥𝑛 → 𝑦) → 𝑦] → (𝑥 ∨ 𝑦)) ≤

(𝛼,𝛽)
𝑓(1).

Thus 𝑓([(𝑥𝑛 → 𝑦) → 𝑦] → (𝑥 ∨ 𝑦)) =
(𝛼,𝛽)
𝑓(1). That is, 𝑓

is a generalized fuzzy 𝑛-fold fantastic filter.
Conversely, it follows from Theorem 25(2) that 𝑓(𝑥𝑛 →

𝑥
2𝑛
) =
(𝛼,𝛽)
𝑓(1). Since 𝑥𝑛 → 𝑥

2𝑛
≤ ¬𝑥
2𝑛
→ ¬𝑥

𝑛
= (𝑥
𝑛
→

¬𝑥
𝑛
) → ¬𝑥

𝑛, it holds that 𝑓(1) ≤(𝛼,𝛽)𝑓((𝑥𝑛 → ¬𝑥
𝑛
) →

¬𝑥
𝑛
). Using Theorem 33, we get 𝑓(((𝑥𝑛 → 𝑦) → 𝑦) →

(𝑥 ∨ 𝑦)) =
(𝛼,𝛽)
𝑓(1). In particular, taking 𝑦 = ¬𝑥𝑛, it yields

that 𝑓(((𝑥𝑛 → ¬𝑥
𝑛
) → ¬𝑥

𝑛
) → (𝑥 ∨ ¬𝑥

𝑛
)) =
(𝛼,𝛽)
𝑓(1).

It follows from Proposition 13 that 𝑓((𝑥𝑛 → ¬𝑥
𝑛
) →

¬𝑥
𝑛
) ≤
(𝛼,𝛽)
𝑓(𝑥 ∨¬𝑥

𝑛
).Thus𝑓(1) ≤(𝛼,𝛽)𝑓(𝑥∨¬𝑥𝑛). It is obvi-

ous that 𝑓(𝑥 ∨ ¬𝑥𝑛) ≤(𝛼,𝛽)𝑓(1). Thus 𝑓 is a generalized fuzzy
𝑛-fold Boolean filter.

Obviously, the generalized fuzzy filters in Examples 24
and 26 are not generalized fuzzy 2-fold Boolean filters,
because they are not generalized fuzzy 2-fold positive impli-
cative filter and generalized fuzzy 2-fold fantastic filter,
respectively.

Proposition 46 (Extension theorem for generalized fuzzy
𝑛-fold Boolean filters). Let 𝑓 and 𝑔 be two generalized fuzzy
filters of 𝐿 such that 𝑓 ≤(𝛼,𝛽) 𝑔 and 𝑓(1) =(𝛼,𝛽)𝑔(1). If 𝑓 is a
generalized fuzzy 𝑛-fold Boolean filter, then so is 𝑔.

Proof. Using Theorem 41, the proof is similar to that of
Proposition 29.

5. Conclusions

Generalized fuzzy filters have been extensively studied in
the literature. In this paper, we researched the properties of
generalized fuzzy filters and introduced some types of gener-
alized fuzzy 𝑛-fold filters in residuated lattices.We established
a correspondence theorem between the set of generalized
fuzzy filters and the set of generalized fuzzy congruences
and induced a quotient residuated lattice with respect to
generalized fuzzy filters. We also defined generalized fuzzy
𝑛-fold positive implicative, fantastic, and Boolean filters and
investigated the correlations among these filters.

In our future work, we will introduce some other types of
generalized fuzzy 𝑛-fold filters in residuated lattices.
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