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This paper proposes a new optimal waveform selection algorithm for intelligent target tracking. In radar systems, optimal waveform
is inspired by the improvements in performance. When the target is intelligent and tries to escape from detection, it will maximize
the estimation error to degrade the target tracking performance. So the conventional tracking algorithms are not suitable for this
situation. In this paper, we assume a one-dimension target model which will try to escape the radar detection to degrade the
tracking performance. A new optimal waveform selection algorithm is proposed based on game theory for robust tracking. The
robust received filter is first reviewed according to zero-sum game with the derivation of estimated state error covariance. The
parameters for transmitted waveform that need to be optimized are found to be related to the robust filter. The optimal parameters
for transmitted waveform are finally found by the minimization of the trace of the estimated state error covariance. Simulation
results show the effectiveness of this new proposed algorithm for optimal waveform selection for intelligent target tracking.

1. Introduction

Since traditional radar/sonar systems lack adaptivity to the
different targets, interference, and clutter without utilizing
prior measurements or knowledge, they could not adaptively
adjust transmitted waveforms to the variant environment. So,
the modern radar/sonar systems needmore intelligent ability
in order to improve the radar performance. Cognitive radar
is proposed as a new generation radar system by Haykin
[1, 2], which can adaptively and intelligently interrogate a
propagation channel using all available knowledge. The most
important conclusion of cognitive radar system is that it
must be able to adaptively generate and transmit the optimal
waveforms to improve the accuracy of the radar system.

There are two strategies of generating optimal waveforms,
that is, selection anddesign.However, it is not clearwhich one
is better. Many researchers focused on the optimal waveform
technology for different tasks, for example, target detection,
estimation, and target tracking [3–17]. The general method
is to find signal/filter pairs to maximize the signal-to-clutter
plus interference ratio (SCIR) for detecting the target. Pillai
et al. developed an eigensolution for optimal signal/filter
pairs for target detection when the target and clutter can
be seen as linear time invariant random processes [3, 4].

Then they extended this approach to optimize the waveform
for target identification. The waveform optimization for
target identification is addressed by relating SCIR to the
Mahalanobis distance [5, 6]. Information theoretic approach
is also an important tool for the waveform optimization.
Bell proposed to maximize the mutual information (MI)
between the received signal and target impulse response to
optimize the waveform [7]. In [8], the authors introduced the
relative entropy to optimal waveform for target identification
based upon the synthesis of a sequence of probing signals
to maximize classification performance, which can extract
as much information as possible from the observations. Kay
derived the optimal NP detector firstly, which shows that
the NP detection performance does not immediately lead
to an obvious signal design criterion so that a divergence
criterion is proposed for signal design, also based on the
relative entropy in signal inputmultiple output radar scenario
[9]. Goodman et al. adopted sequential hypothesis testing
combination with mutual information and maximizing the
signal-to-noise ratio (SNR) that decides when hard decision
may be made with adequate confidence to design the wave-
form [10]. By comparing the performance of two different
waveform design techniques based on information theory
[7] and eigensolution [5], Romero et al. also found the
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relationship between the MI and maximizing the SNR in the
context of waveform design for stochastic target [11]. In [12],
the authors extended Goodman’s method, which considered
the target detection before the recognition procedure.

There are two main approaches of designing the optimal
waveform for target tracking, that is, the control theoretic and
information theoretic approaches. The first one is treated as
a control problem, since the parameters of the transmitted
waveform as an input vector, which is selected or designed
to affect the next observation and the tracker, update in a
feedback loop. In [13], the authors created the cost function
that includes the parameters of transmitted waveform for
the next step. The second one also made use of the mutual
information (MI) between the target and the observations
[14, 15]. In [14], the authors designed the libraries where
the waveform was selected through maximizing the mutual
information (MI) between the targetmodel and observations.
Then they extended this method to interacting multiple
model trackers for different dynamic models [15]. In [13],
Kershaw and Evans used the control theoretic approach to
optimize the waveform for one-dimensional target tracking
in a feedback loop system. They derived the Cramer-Rao
lower bound (CRLB) for estimating error variance from the
curvature of the peak of the ambiguity function (AF). then
the measurement noise covariance matrix that is related to
the parameters of the transmitted waveform can be evaluated
from the CRLB in high SNR condition. The minimization
of the tracking mean square error and the validation gate
volume are performed to select the next transmitted wave-
form. Kershaw and Evans extended their work in clutter
and imperfect detection situation [16]. This method was also
introduced to the wideband environment for multiple targets
tracking in clutter condition [17].

In this paper, we adopt the control theoretic approach to
find the optimal waveform for one dimension target tracking
[13]. In this paper, we assume a one-dimension target model
which will try to escape the radar detection to degrade the
tracking performance. A new optimal waveform selection
algorithm is proposed based on game theory for robust
tracking [18]. The robust received filter is first reviewed
according to zero-sum game with the derivation of esti-
mated state error covariance. The parameters for transmitted
waveform that need to be optimized are found to be related
to the robust filter. The optimal parameters for transmitted
waveformare finally found by theminimization of the trace of
the estimated state error covariance. Simulation results show
the effectiveness of this new proposed algorithm for optimal
waveform selection for intelligent target tracking.

This paper is organized in the followingmanner. Section 2
reviews the control approach in [13] and presents the problem
for target tracking. Section 3 describes the optimal waveform
selection for robust target tracking. Section 4 shows the sim-
ulation results. The conclusion is summarized in Section 5.

2. Problem Formulation

We begin with a brief overview of the control approach for
one-dimension target tracking in [13]. In radar/sonar system,

the transmitted signal can be written as

𝑠
𝑇 (

𝑡) = √2Re {√𝐸
𝑇
𝑠 (𝑡) 𝑒
𝑗𝜔
𝑐
𝑡
} , (1)

where 𝑠(𝑡) is the complex envelope,𝜔
𝑐
is the carrier frequency,

and 𝐸
𝑇
is the energy of the transmitted signal. When the

target exists, the received waveform envelope is
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where 𝐸
𝑅
is the energy of the received signal. 𝑛(𝑡) is zero-

mean complexwhiteGaussian noisewith real spectral density
𝑁
0
/2. 𝜏
0
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0
denote the target timedelay andDoppler shift,

respectively.
The ambiguity function corresponding to the received

waveform in frequency domain is written as
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The receiver parameter vector is 𝛼 = [𝜏, ]]𝑇.
The target state model as discrete time is defined by

x
𝑘+1

= Fx
𝑘
+ Gw
𝑘
. (4)

The measurement vector equation is given as

y
𝑘
= Hx
𝑘
+ n
𝑘
, (5)

where y
𝑘

= [r, ̇r] denotes the measurement vector. 𝑟 is
the range and ̇𝑟 is the target velocity. x

𝑘
is the target state

vector at time 𝑘. F, G, and H are given matrices for one-
dimensional target tracking. w

𝑘
and n

𝑘
are the zero-mean

white Gaussian noise vectors with covariance matrices Q
𝑘

and N(𝜃
𝑘
), respectively. The vector 𝜃

𝑘
characterizes the

waveform parameters at time k.
According to Lemma 3.1 in [13], build the relationship

between the receiver estimation parameter vector 𝛼 and
measurement vector y through a linear transformationT, that
is, y = T𝛼. And the measurement noise covariance matrix is
dependent on waveform parameter 𝜃 as follows:

N (𝜃) =

1

𝜂

TJ−1 (𝜃)T, (6)

where T = diag(𝑐/2, 𝑐/2𝜔
𝑐
), J is the Fisher information and

Cov(𝛼) = J−1(𝜃).
After finding the relationship between the measurement

noise covariance matrix and the waveform parameter, the
Kalman filter equations are dependent on 𝜃 as follows:
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In order to improve the tracking performance, mini-
mizing the trace of the mean square tracking error as cost
function is used to select the next transmittedwaveform.That
is,

𝜃
∗

𝑘+1
= arg min

𝜃
𝑘+1
∈Θ

Tr {P
𝑘+1/𝑘+1

(𝜃
𝑘+1

)} . (8)

In addition,minimization of the validation gate volume as
another cost function is to select next transmitted waveform,
which will reduce the number of false alarms in high SNR
or clutter environment. So the next transmitted waveform is
determined by

𝜃
∗

𝑘+1
= arg min

𝜃
𝑘+1
∈Θ

det {S
𝑘+1

(𝜃
𝑘+1

)} . (9)

When the target is intelligent enough to maximize the
estimation error, it could deliberately degrade the tracking
performance and even break the tracking task down. In
this case, the target state model has a fictitious adversary
disturbance that includes some unknown noise, which could
be “smart” enough to maximize the estimation state error
and decrease the target tracking performance [18]. Thus
the Kalman filter and its relative optimal waveform method
mentioned before are not suitable for this case. Thus, we
should consider the robust tracking problem, aminimax filter
based on zero-sum game is needed for target tracking, and
a new method for optimal waveform will be presented in
Section 3.

3. Minimax Filter and Waveform Selection

3.1. Minimax Filter. In order to guarantee the target tracking
performance for “smart” target, the minimax filter is needed.
Like [18, 19], the discrete linear time-invariant system in
adversary disturbance which existed is expressed by

x
𝑘+1

= Fx
𝑘
+ Gw
𝑘
+ d
𝑘
, (10)

y
𝑘
= Hx
𝑘
+ n
𝑘
, (11)

where

d
𝑘
= L
𝑘
(H (x
𝑘
− x̂
𝑘/𝑘−1

) + k
𝑘
) . (12)

Equation (12) is adversary disturbance signal which could
increase the estimated error. L is a gain to be determined; k

𝑘
is

Gaussian noise vector with zero mean and covariance matrix
R. The other parameters, x, y,H,G,w, and n, in (10) and (11),
are the same as in (4) and (5).

Based on zero-sum game, the predicted state is

x̂
𝑘+1/𝑘

= Fx̂
𝑘/𝑘−1

+ K
𝑘
(y
𝑘
− Hx̂
𝑘/𝑘−1

) , (13)

where x̂
𝑘+1/𝑘

is the predicted state, K is the minimax filter
gain, and the prediction state error is defined by

e
𝑘/𝑘−1

= x
𝑘
− x̂
𝑘/𝑘−1

. (14)

Substituting (10) and (13) into (14), we have

e
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(y
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𝑘
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𝑘
.

(15)

Substituting (11) and (12) into (15), the final prediction
error at time 𝑘 + 1 is

e
𝑘+1/𝑘

= (F − KH + LH) e𝑘/𝑘−1 + Gw
𝑘
+ Lk
𝑘
− Kn
𝑘
. (16)

From (15), it can been seen that the adversary part, d
𝑘
, can

increase the estimation error. To prevent this, the estimation
error in (16) can be decomposed as follows:

e
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Motivated by [18, 19] the cost function is defined by

𝐽 (K, L) = trace(
𝑇
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The minimax filter designed based on zero-sum game is
to find the optimized filter gain K and the robust filter gain
L. The gain K should be optimized to minimize the 𝐽 so that
the tracking performance is better, since the prediction error
e𝐾
𝑘+1/𝑘

is relative to noises of w
𝑘
and n

𝑘
. The gain L should

be optimized to maximize the 𝐽, since the e𝐿
𝑘+1/𝑘

is relative to
the noise of k

𝑘
, which makes the worst possible disturbance.

Let K∗ and L∗ denote the optimized gains, which satisfies a
saddle-point equilibrium, that is,

𝐽 (K∗, L) ≤ 𝐽 (K∗, L∗) ≤ 𝐽 (K, L∗) . (20)

To solve (20), the cost function (19) needs to be written in
a more convenient form. Define Z

𝑘
as follows:

Z
𝑘
= F − K

𝑘
H + L

𝑘
H. (21)

Let P𝐾
𝑘+1/𝑘
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)

𝑇

]; we have

P𝐾
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𝑘
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Z𝑇
𝑘
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𝑘
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𝑘
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𝑘
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𝑘
P𝐿
𝑘/𝑘−1

Z𝑇
𝑘
+ L
𝑘
RL𝑇
𝑘
.

(22)

The cost function (19) can be rewritten by

𝐽 (K, L) = trace(
𝑇

∑

𝑘=0

P
𝑘+1/𝑘

) , (23)

where P
𝑘+1/𝑘

= P𝐾
𝑘+1/𝑘

− P𝐿
𝑘+1/𝑘

= Z
𝑘
P
𝑘/𝑘−1

Z%
𝑘

+ GQ
𝑘
G𝑇 +

K
𝑘
NK𝑇
𝑘
− L
𝑘
RL𝑇
𝑘
.

Let

U
𝑘
= GQ

𝑘
G𝑇 + K

𝑘
NK𝑇
𝑘
− L
𝑘
RL𝑇
𝑘
. (24)
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Then P
𝑘+1/𝑘

= Z
𝑘
P
𝑘/𝑘−1

Z𝑇
𝑘
+ U
𝑘
. According to Theorem 1 in

[18], the game equilibrium is derived by

K∗
𝑘
= FΣ
𝑘
H𝑇N−1,

L∗
𝑘
= FΣ
𝑘
H𝑇R−1,

Σ
−1

𝑘
= P−1
𝑘/𝑘−1

+ H𝑇 (N−1 − R−1)H.

(25)

After obtaining the game equilibrium (K∗
𝑘
, L∗
𝑘
), substitute

K∗
𝑘
and L∗

𝑘
into (21) and (24), respectively. the covariance

matrix P
𝑘+1/𝑘

can be expressed by

P
𝑘+1/𝑘

= FΣ
𝑘
F𝑇 + GQG𝑇. (26)

Finally, the minimax filter based on zero-sum game
equations is

x̂
𝑘+1/𝑘

= Fx̂
𝑘/𝑘−1

+ K∗
𝑘
(y
𝑘
− Hx̂
𝑘/𝑘−1

) ,

P
𝑘+1/𝑘

= FΣ
𝑘
F𝑇 + GQG𝑇,

Σ
−1

𝑘
= P−1
𝑘/𝑘−1

+ H𝑇 (N−1 − R−1)H,

K∗
𝑘
= FΣ
𝑘
H𝑇N−1,

L∗
𝑘
= FΣ
𝑘
H𝑇R−1.

(27)

The minimax filter based on the game theory is suitable
for the robust target tracking. However, the minimax filter
only considers the tracking performance in the receiver. in
order to improve the robust tracking performance better, the
transmitter waveform could be considered for “smart” target,
and then, we will deliberate the waveform selection for robust
target tracking

3.2. Waveform Selection. According to the review of the
control approach in [13], the minimax filter is related to the
waveform parameter by the measurement noise covariance.
So considering thewaveformparameter, (27) could be rewrit-
ten as

x̂
𝑘+1/𝑘

(𝜃
𝑘
) = Fx̂

𝑘/𝑘−1
+ K∗
𝑘
(𝜃
𝑘
) (y
𝑘
− Hx̂
𝑘/𝑘−1

) ,

P
𝑘+1/𝑘

(𝜃
𝑘
) = FΣ

𝑘
(𝜃
𝑘
) F𝑇 + GQG𝑇,

Σ
−1

𝑘
(𝜃
𝑘
) = P−1
𝑘/𝑘−1

+ H𝑇 (N−1 (𝜃
𝑘
) − R−1)H,

K∗
𝑘
(𝜃
𝑘
) = FΣ

𝑘
(𝜃
𝑘
)H𝑇N−1 (𝜃

𝑘
) ,

L∗
𝑘
(𝜃
𝑘
) = FΣ

𝑘
(𝜃
𝑘
)H𝑇R−1,

(28)

where 𝜃
𝑘
is the waveform parameter vector. The minimax

filter in (28) contains the transmitted waveform parameters,
which is similar to the results of (27) when the transmitted
waveform parameter 𝜃

𝑘
is fixed. However, it does not indicate

what is the relationship between the next step transmitted
waveform and corresponding tracking performance. Equa-
tion (27) just found that the current waveform parameter
impects the next step prediction error.

Our aim is to find the relationship between the transmit-
ted waveforms and its corresponding tracking performance,
build the optimization criterion, and select the optimal
waveform to improve the robust tracking performance better
compared to the minimax filter.

Like standard Kalman filter

x̂
𝑘/𝑘

= x̂
𝑘/𝑘−1

+ G
𝑘/𝑘−1

(y
𝑘
− Hx̂
𝑘/𝑘−1

) , (29)

x̂
𝑘+1/𝑘

= Fx̂
𝑘/𝑘

, (30)

where x̂
𝑘/𝑘

is the estimated state and G
𝑘/𝑘−1

is the filter gain.
Substituting (29) into (30), we have

x̂
𝑘+1/𝑘

= Fx̂
𝑘/𝑘−1

+ FG
𝑘/𝑘−1

(yHx̂
𝑘/𝑘−1

) . (31)

Compared to (13), the relationship between the two gains,
G and K, is

G
𝑘/𝑘−1

= F−1K
𝑘
. (32)

The estimated state error is defined by

e
𝑘+1/𝑘+1

= x̂
𝑘+1

− x̂
𝑘+1/𝑘+1

. (33)

According to (11), (29) and (33), the estimated state error
could be derived by

e
𝑘+1/𝑘+1

= (I − G
𝑘+1/𝑘

H) e
𝑘+1/𝑘

− G
𝑘+1/𝑘

n
𝑘+1

, (34)

where I is the identity matrix.
The covariance of the estimated state error is defined by

P
𝑘+1/𝑘+1

= 𝐸 (e
𝑘+1/𝑘+1

e𝑇
𝑘+1/𝑘+1

) . (35)

Substituting (34) into (35) and considering the transmit-
ted waveform parameter, we have

P
𝑘+1/𝑘+1

(𝜃
𝑘+1

) = M
𝑘+1/𝑘

P𝐾
𝑘+1/𝑘

M𝑇
𝑘+1/𝑘

+ M
𝑘+1/𝑘

P𝐿
𝑘+1/𝑘

M𝑇
𝑘+1/𝑘

+ G
𝑘+1/𝑘

N (𝜃
𝑘+1

)G𝑇
𝑘+1/𝑘

,

(36)

whereM
𝑘+1/𝑘

= (I − G
𝑘+1/𝑘

H).
Now, the relationship between the next transmitted

waveform parameter and its corresponding target tracking
performance is built. Thus, the optimization criterion is
to select one transmitted waveform parameter from the
parameter database to minimize the trace of the estimated
state covariance, that is

𝜃
∗

𝑘+1
= min
𝜃
𝑘+1
∈Θ

tr {P
𝑘+1/𝑘+1

(𝜃
𝑘+1

)} . (37)

When the next optimal transmitted waveform parameter
is selected, the measurement noise covariance matrix is
known, which improves the robust tracking performance.

Theproposed optimalwaveform selection can be summa-
rized as follows.

(1) When theminimax filter gets the target state informa-
tion at time 𝑘 through (28), compute the gain G

𝑘+1/𝑘

through (32).
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(2) Compute the measurement covariance matrix
N(𝜃
𝑘+1

) through (6) for every waveform parameter
stored in the database.

(3) According to (36) , compute the trace of every esti-
mation error covariance for every waveform param-
eter and find the minimization of the values. The
waveform parameter, which is corresponding to the
minimization value, is the optimal selection for next
transmitted waveform.

4. Simulation Results

The proposed method is examined in this section. The
discrete linear time-invariant systemmatrices are followed by

F =
[

[

1 1 0.5

0 1 1

0 0 1

]

]

,

G =
[

[

1 0 0

0 1 0

0 0 1

]

]

,

H = [

1 0 0

0 1 0
] ,

Q =
[

[

0.001 0 0

0 0.01 0

0 0 0.01

]

]

,

S = [

0.9 0

0 0.9
] .

(38)

The normal target trajectory is as follows:

𝑥 = 100 + 0.2𝑡 + 0.1𝑡
2
+ cos (5𝜋𝑡) . (39)

Considering the adversary disturbance, the intelligent
target model is

x
𝑘+1

= Fx
𝑘
+ 0.08 (x

𝑘
+ x̂
𝑘/𝑘−1

) . (40)

Some simulation parameters are adopted from [13], the
carrier frequency 𝜔

𝑐
is 25 kHz, and the speed of the transmit-

ted signal 𝑐 is 1500m/s. the return pulse signal-to-noise ratio
𝜂 is modeled by

𝜂 = (

1000

𝑟

)

4

𝜂
1000

, (41)

where 𝜂 is the returned pulse signaltonoise for a target at
1000m. 𝜂

1000
≈ 0 dB. 𝑟 is the target range. The triangular-

shaped pulse belongs to amplitude-only modulation that is
used as transmitted pulse. The waveform parameter is the
wavelength 𝜆. We set the parameter database as follows:

𝜆 = [0.1 :0.05 :0.3] , (42)

Minimax filter with selected waveform
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5 10 15 20 25 30 35 40 45 50 55 60
Time (s)

50
100
150
200
250
300
350
400
450
500

Ra
ng

e (
m

)

Figure 1: Estimation of the intelligent target by the minimax filter
with selected waveform.

5 10 15 20 25 30 35 40 45 50 55 60
50

100
150
200
250
300
350
400
450
500

Time (s)

Ra
ng

e (
m

)

Minimax filter with fixed pulse
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Figure 2: Estimation of the intelligent target by the minimax filter
with fixed waveform.

where 0.05 is the step length. The relationship between the
wavelength 𝜆 and the measurement noise covariance is [13]

𝑅 (𝜆
𝑘+1

) =

[

[

[

[

[

[

𝑐
2
𝜆
2

𝑘+1

(12𝜂)

0

0

5𝑐
2

(2𝜔
2

𝑐
𝜆
2

𝑘+1
𝜂)

]

]

]

]

]

]

. (43)

Firstly, the minimax filters with selected waveform and
fixed waveform are used to estimate the intelligent target,
respectively. The estimation trajectory of the minimax filter
with selected waveform and the target trajectory are shown
in Figure 1. The estimation trajectory of the minimax filter
with fixed waveform and the target trajectory are shown in
Figure 2. It can be seen that two filters can overcome the
adversary noise that deliberately maximizes the estimation
error and estimate the true target trajectory well.

The performance of the twominimax filters with selected
waveform and fixed waveform is shown in Figures 3 and 4.
Figure 3 shows the the pulse length is selected in every time
in the minimax filter with selected waveform. Figure 4 shows



6 Journal of Applied Mathematics

5 10 15 20 25 30 35 40 45 50 55 60
Time (s)

Pu
lse

 le
ng

th
 (s

)

Selected pulse length
Maximum pulse length

0.1

0.15

0.2

0.25

0.3

0.35

Figure 3: Parameter selection.

5 10 15 20 25 30 35 40 45 50 55 60
0

10
20
30
40
50
60
70
80
90

Time (s)

Ra
ng

e (
m

)

Minimax filter with selected waveform
Minimax filter with fixed waveform

Figure 4: Estimation errors.

the position errors in the two different minimax filters. It
can be seen that sometimes, the minimax filter with selected
waveform selects the parameters which are the same as the
one with fixed waveform. the position errors by the two
filters are almost the same.While, in other times, the position
error by the minimax filter with selected waveform is smaller
than the one by the minimax filter with fixed waveform,
since the measurement noise covariance is impacted by the
transmitted waveform parameter. When the target range is
known, the measurement noise covariance is only changed
by the different waveform parameters. The system will select
the “best” waveform in order to minimize the the trace of the
estimated state covariance. however, the minimax filter with
fixedwaveform generates the fixed trace of the estimated state
covariance when the target range is know

5. Conclusion

This paper focuses on the optimal waveform selection for
robust target tracking.When the target is assumed to have the
“smart” ability, which could increase the estimation error and
degrade the target tracking performance, the minimax filter
based on the game theory could address the robust tracking

problemwell from the receiver. On this basis, we improve the
minimax filter combining with the waveform selection from
the transmitter and derive its the estimation error covariance.
Then, according to the relationship between the waveform
parameter andmeasurement noise covariance, the estimation
error covariance is related to waveform parameter. Build
the optimization criterion that minimizes the estimation
error covariance by selecting the waveform parameter at
every transmission.The simulation results show the proposed
method make the performance of the robust target tracking
better than the minimax filter with fixed waveform based
game theory.
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