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Themultiobjective control and filtering problems for nonlinear stochastic systems with variance constraints are surveyed. First, the
concepts of nonlinear stochastic systems are recalled along with the introduction of some recent advances. Then, the covariance
control theory, which serves as a practicalmethod formulti-objective control design as well as a foundation for linear system theory,
is reviewed comprehensively.Themultiple design requirements frequently applied in engineering practice for the use of evaluating
system performances are introduced, including robustness, reliability, and dissipativity. Several design techniques suitable for the
multi-objective variance-constrained control and filtering problems for nonlinear stochastic systems are discussed. In particular,
as a special case for the multi-objective design problems, the mixed 𝐻
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control and filtering problems are reviewed in great
detail. Subsequently, some latest results on the variance-constrainedmulti-objective control and filtering problems for the nonlinear
stochastic systems are summarized. Finally, conclusions are drawn, and several possible future research directions are pointed out.

1. Introduction

It is widely recognized that, in almost all engineering
applications, nonlinearities are inevitable and could not be
eliminated thoroughly. Hence, the nonlinear systems have
gained more and more research attention, and lots of results
have been published. On the other hand, due to the wide
appearance of the stochastic phenomena in almost every
aspect of our daily life, stochastic systems which have found
successful applications in many branches of science and
engineering practice have stirred quite a lot of research inter-
ests during the past few decades. Therefore, the control and
filtering problems for nonlinear stochastic systems have been
studied extensively so as to meet ever-increasing demand
toward systems with both nonlinearities and stochasticity.

In many engineering control/filtering problems, the per-
formance requirements are naturally expressed by the upper
bounds on the steady state covariance which is usually
applied to scale the control/estimation precision, one of the
most important performance indices of stochastic design
problems. As a result, a large number of control and filtering
methodologies have been developed to seek a convenient
way to solve the variance-constrained design problems,
among which the LQG control and Kalman filtering are two
representative minimum variance design algorithms.

On the other hand, in addition to the variance constraints,
real-world engineering practice also desires the simultaneous
satisfaction of many other frequently seen performance
requirements including stability, robustness, reliability, and
energy constraints, to name but a few key ones. It gives the
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Figure 1: Architecture of surveyed contents.

rise to the so-calledmultiobjective design problems, in which
multiple cost functions or performance requirements are
simultaneously considered with constraints being imposed
on the system. An example of multiobjective control design
would be to minimize the system steady-state variance
indicating the performance of control precision, subject to a
prespecified external disturbance attenuation level evaluating
system robustness. Obviously,multiobjective designmethods
have the ability to provide more flexibility in dealing with the
tradeoffs and constraints in a much more explicit manner
on the prespecified performance requirements than those
conventional optimization methodologies like LQG control
scheme or𝐻

∞
design technique, which does not seem to have

the ability of handling multiple performance specifications.
When coping with the multiobjective design problem

with variance constraints for stochastic systems, the well-
known covariance control theory provides us with a use-
ful tool for the system analysis and synthesis. For linear
stochastic systems, it has been shown thatmultiobjective con-
trol/filtering problems can be formulated using linear matrix
inequalities (LMIs), due to their ability to include desir-
able performance objectives such as variance constraints,
𝐻
2
performance, 𝐻

∞
performance, and pole placement as

convex constraints. However, as the nonlinear stochastic
systems are concerned, the relevant progress so far has been

very slow due primarily to the difficulties in dealing with
the variance related problems resulting from the complexity
of the nonlinear dynamics. A key issue for the nonlinear
covariance control study is the existence of the covariance
of nonlinear stochastic systems and its mathematical expres-
sion, which is extremely difficult to investigate because of
the complex coupling of nonlinearities and stochasticity.
Therefore, it is not surprising that the multiobjective control
and filtering problems for nonlinear stochastic systems with
variance constraints have not been adequately investigated
despite their clear engineering insights and good application
prospect.

In this paper, we focus mainly on the multiobjective
control and filtering problems for nonlinear systems with
variance constraints and aim to give a comprehensive survey
on some recent advances in this area. The design objects
(nonlinear stochastic system), design requirements (multiple
performance specifications including variance constraints),
several design techniques, and a special case of the addressed
problem,mixed𝐻

2
/𝐻
∞
design problem, have been discussed

in great detail with some recent advances. The contents that
are reviewed in this paper and the architecture are shown in
Figure 1.

The rest of the paper is organized as follows. In Section 2,
the nonlinear stochastic systems are reviewed with some
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recent advances. Section 3 reviews the covariance control
theory. Several widely applied performance requirements in
engineering practice and commonly seen design techniques
in the addressed multiobjective problems are then discussed.
Moreover, a special case of multiobjective control and fil-
tering problems, namely, mixed 𝐻
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design problem,
is surveyed in great detail. Section 4 gives latest results on
multiobjective control and filtering problems of nonlinear
stochastic systems with variance constraints.The conclusions
and future work are given in Section 5.

2. Analysis and Synthesis of Nonlinear
Stochastic Systems

For several decades, nonlinear stochastic systems have been
attracting increasing attention in the system and control
community due to their extensive applications in a variety
of areas ranging from communication and transportation to
manufacturing, building automation, computing, automo-
tive, and chemical industry, tomention just a few key areas. In
this section, the analysis and synthesis problems for nonlinear
systems and stochastic systems are recalled, respectively, and
some recent advances in these areas are also given.

2.1. Nonlinear Systems. It is well recognized that in almost
all engineering applications, nonlinearities are inevitable and
could not be eliminated thoroughly.Hence, the nonlinear sys-
tems have gained more and more research attention, and lots
of results have been reported; see, for example, [1–4]. When
analyzing and designing nonlinear dynamical systems, there
are a wide range of nonlinear analysis tools, among which
the most common and wildly used is linearization because
of the powerful tools we know for linear systems. It should
be pointed out that, however, there are two basic limitations
of linearization [5]. (i) As is well known, linearization is
an approximation in the neighborhood of certain operating
points. Thus, the resulting linearized system can only show
the local behavior of the nonlinear system in the vicinity
of those points. Neither nonlocal behavior of the original
nonlinear system far away from those operating points nor
global behavior throughout the entire state space can be
correctly revealed after linearization. (ii) The dynamics of
a nonlinear system are much richer than those of a linear
system. There are essentially nonlinear phenomena, like
finite escape time, multiple isolated equilibria, subharmonic,
harmonic, or almost periodic oscillations, to name just a few
key ones which can take place only in the presence of nonlin-
earity; hence, they cannot be described by linear models [6–
9]. Therefore, as a compromise, during the past few decades,
there has been tremendous interest in studying nonlinear
systems with nonlinearities being taken as the exogenous
disturbance input to a linear system, since it could better
illustrate the dynamics of the original nonlinear system than
the linearized onewith less sacrifice of the convenience on the
application of existingmathematical tools.The nonlinearities
emerging in such systems may arise from the linearization
process of an originally highly nonlinear plant or may be an
external nonlinear input, which would drastically degrade

the system performance or even cause instability; see, for
example, [10–13].

On the other hand, in real-world applications, one of
the most inevitable and physically important features of
some sensors and actuators is that they are always corrupted
by different kinds of nonlinearities, either from within the
devices themselves or from the external disturbances. Such
nonlinearities are generally resulting from equipment limita-
tions aswell as the harsh environments such as uncontrollable
elements (e.g., variations in flow rates, temperature) and
aggressive conditions (e.g., corrosion, erosion, and fouling)
[14]. Since the sensor/actuator nonlinearity cannot be simply
ignored and often leads to poor performance of the controlled
system, a great deal of effort in investigating the analysis and
synthesis problems has been devoted by many researchers to
the study of various systems with sensor/actuator nonlinear-
ities; see [15–20].

Recently, the system with randomly occurring nonlinear-
ities (RONs) has started to stir quite a lot of research interests
as it reveals an appealing fact that, instead of occurring in a
deterministic way, a large quantity of nonlinearities in real-
world systems would probably take place in a random way.
Some of the representative publications can be discussed as
follows. The problem of randomly occurring nonlinearities
was raised in [21], where an iterative filtering algorithm
has been proposed for the stochastic nonlinear system in
presence of both RONs and output quantization effects. The
filter parameters can be obtained by resorting to solving cer-
tain recursive linear matrix inequalities. The obtained results
have been soon extended to the case of multiple randomly
occurring nonlinearities in [22]. Such a breakthrough on
how to deal with nonlinear systems with RONs has been
well recognized and quickly followed by other researchers
in the area. Using similar techniques, the filtering as well as
control problems have been solved for awide range of systems
containing nonlinearities that are occurring randomly, like
Markovian jump systems in [23, 24], sliding mode control
systems in [25], discrete-time complex networks in [26],
sensor networks in [27], time-delay systems in [28], and
other types of nonlinear systems [29–31], which therefore has
proven that the method developed in [21] is quite general and
is applicable to the analysis and synthesis of many different
kinds of nonlinear systems.

It should be emphasized that, for nonlinearities, there
are many different constraints conditions for certain aim,
such as Lipschitz conditions, among which the kind of
stochastic nonlinearities described by statistical means has
drawn particular research focus since it covers several well-
studied nonlinearities in stochastic systems; see [29, 32–35]
and the references therein. Several techniques for analysis
and synthesis of this type of nonlinear systems have been
exploited, including linear matrix inequality approach [32],
Riccati equation method [33], recursive matrix inequality
approach [34], gradient method [35], sliding mode control
scheme [36], and the game theory approach [29].

2.2. Stochastic Systems. As is well known, in the past few
decades, there have been extensive study and application
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of stochastic systems because the stochastic phenomenon is
inevitable and cannot be avoided in the real-world systems.
Whenmodeling such kinds of systems, theway neglecting the
stochastic disturbances, which is a conventional technique in
traditional control theory for deterministic systems, is not
suitable anymore. Having realized the necessity of introduc-
ing more realistic models, nowadays, a great number of real-
world systems such as physical systems, financial systems,
and ecological systems, as well as social systems, are more
suitable to be modeled by stochastic systems, and therefore
the stochastic control problem which deals with dynamical
systems, described by difference or differential equations,
and subject to disturbances characterized as stochastic pro-
cesses has drawn much research attention; see [37] and
the references therein. It is worth mentioning that a kind
of stochastic systems represented as deterministic system
adding a stochastic disturbance characterized as white noise
has gained special research interests and found extensively
applications in engineering based on the fact that it is possible
to generate stochastic processes with covariance functions
belonging to a large class simply by sending white noise
through a linear system; hence, a large class of problems can
be reduced to the analysis of linear systems with white noise
inputs; see [38–42] for examples.

Parallel to the control problems, the filtering and pre-
diction theory for stochastic systems which aims to extract
a signal from observations of signals and disturbances
has been well studied and found widely applied in many
engineering fields. It also plays a very important role in
the solution of the stochastic optimal control problem.
The research on filtering problem was originated in [43],
where the well-known Wiener-Kolmogorov filter has been
proposed. However, theWiener-Kolmogorov filtering theory
has not been widely applied mainly because it requires the
solution of an integral equation (the Wiener-Hopf equation)
which is not easy to solve either analytically or numer-
ically. In [44, 45], Kalman and Bucy gave a significant
contribution to the filtering problem, by giving the cele-
brated Kalman-Bucy filter which could solve the filtering
problem recursively. Kalman-Bucy filter (also known as 𝐻

2

filter) has been extensively adopted and widely used in
many branches of stochastic control theory, since the fast
development of digital computers recently; see [46–49] and
the references therein.

3. Multiobjective Control and Filtering with
Variance Constraints

In this section, we first review the covariance control the-
ory which provides us with a powerful tool in variance-
constrained design problems with multiple requirements
specified by the engineering practice.Then,we discuss several
important performance specifications including robustness,
reliability, and dissipativity. Two common techniques for
solving the addressed problems for nonlinear stochastic
systems are introduced. The mixed 𝐻
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design problem
is reviewed in great detail as a special case of multiobjective
control/filtering problem with variance constraints.

3.1. Covariance Control Theory. As we have stated in the pre-
vious section, engineering control problems always require
upper bounds on the steady state covariances [41, 50, 51].
However, many control design techniques used in both
theoretical analysis and engineering practice, such as LQG
and 𝐻

∞
design, do not seem to give a direct solution to

this kind of design problem since they lack a convenient
avenue for imposing design objectives stated in terms of
upper bounds on the variance values. For example, the LQG
controllers minimize a linear quadratic performance index
without guaranteeing the variance constraints with respect to
individual system states. The covariance control theory [52]
developed in the late 80s has provided a more direct method-
ology for achieving the individual variance constraints than
the LQG control theory. The covariance control theory aims
to solve the variance-constrained control problems while
satisfying other performance indices [40, 47, 52, 53]. It has
been shown that the covariance control approach is capable
of solving multiobjective design problems, which has found
applications in dealing with transient responses, round off
errors in digital control, residence time/probability in aiming
control problems, and stability, robustness in the presence
of parameter perturbations [53]. Such an advantage is based
on the fact that several control design objectives, such as
stability, time-domain and frequency-domain performance
specifications, robustness, and pole location, can be directly
related to steady-state covariances of the closed-loop systems.
Therefore, covariance control theory serves as a practical
method for multiobjective control design as well as a foun-
dation for linear system theory.

On the other hand, it is always the case in real-world
applications such as the tracking of amaneuvering target, that
the filtering precision is characterized by the error variance
of estimation [53, 54]. Considering its clear engineering
insights, in the past few years, the filtering problem with
error variance constraints has received much interests and
a large amount of research fruit has been reported in the
literature [44, 45, 55, 56]. The celebrated Kalman filtering
approach is a typical method which aims to obtain the state
information based on the minimization of the variance of the
estimation error [44, 45]. Nevertheless, the strict request of
a highly accurate model seriously impedes the application
of Kalman filtering as in many cases only an approximate
model of the system is available. It therefore has brought
about remarkable research interests to the robust filtering
method which aims to minimize the error variance of esti-
mation against the system uncertainties or external unknown
disturbances [57, 58]. Despite certain merits and successful
applications, as in the case of LQG control problem, the
traditional minimum variance filtering techniques cannot
directly impose the designing objectives stated in terms of
upper bounds on the error variance values, by which we
mean that those techniques try tominimize the filtering error
variance in mean square sense rather than to constrain it
within a prespecified bound, which is obviously better to
meet the requirements of practical engineering. Motivated
by the covariance control theory, in [59], the authors have
proposed amore direct designing procedure for achieving the
individual variance constraint in filtering problems. Due to
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its design flexibility, the covariance control theory is capable
of solving the error variance-constrained filtering problem
while guaranteeing other multiple designing objectives [60].
Therefore, it always serves as one of the most powerful tools
in dealing with the multiobjective filtering as well as control
problems [61].

It should be pointed out that most of the available litera-
ture regarding covariance control theory has been concerned
with linear time invariant stochastic systems with the linear
matrix inequality (LMI) approach. Moreover, when it comes
to the variance-constrained controller/filter design problems
for much more complicated systems such as time-varying
systems, nonlinear systems, and Markovian Jump systems
unfortunately, the relevant results have been very few due
primarily to the difficulties in dealing with the existence
problem of the steady-state covariances and their mathemat-
ical expressions for the abovementioned complex systems.
With the hope to resolve such difficulties, in recent years,
special efforts have been devoted in study of the variance-
constrained multiobjective design problems for systems of
complex dynamics, and several methodologies for analysis
and synthesis have been developed. For example, in [47],
a Riccati equation method has been proposed to solve the
filtering problem for linear time-varying stochastic systems
with prespecified error variance bounds. In [62–64], by
means of the technique of slidingmode control (SMC), robust
controller design problem has been solved for linear param-
eter perturbed systems, since SMC has certain robustness to
matched disturbances or parameter perturbations. We shall
return to this SMC problem later, and more details will be
discussed in the following section.

When it comes to nonlinear stochastic systems, limited
work has been done in the covariance-constrained analysis
and design problems, just as what we have anticipated. A
multiobjective filter has been designed in [65] for systems
with Lipschitz-type nonlinearity, but the variance bounds
cannot be prespecified. Strictly speaking, such an algorithm
cannot be referred to as variance-constrained filtering in
view of lack of capability for directly imposing specified
constraints on variance. An LMI approach has been proposed
in [32] to cope with robust filtering problems for a class
of stochastic systems with nonlinearities characterized by
statistical means, attaining an assignable 𝐻

2
performance

index. In [61], for a special class of nonlinear stochastic sys-
tems, namely, systems with multiplicative noises (also called
bilinear systems or systems with state/control dependent
noises), a state feedback controller has been put forward in
a unified LMI framework in order to ensure that the multiple
objectives including stability,𝐻

∞
specification, and variance

constraints are simultaneously satisfied. This paper is always
regarded as the origination of covariance control theory
for nonlinear systems, as within the established theoretical
framework, quite a lot of performance requirements can be
taken into consideration simultaneously. Furthermore, with
the developed techniques, the obtained elegant results could
be easily extended to a wide range of nonlinear stochastic
systems; see, for example, [29, 35, 66–68]. We shall return to
such a type of nonlinear stochastic systems later to present
more details of recent progresses in Section 4.

3.2. Multiple Performance Requirements. In the following,
several performance indices originated from the engineering
practice and frequently applied in multiobjective design
problems are introduced.

3.2.1. Robustness. In real-world engineering practice, var-
ious reasons such as variations of the operating point,
aging of devices, and identification errors, would lead to
the parameter uncertainties which result in the perturba-
tions of the elements of a system matrix when modeling
the system in a state-space form. Such a perturbation in
system parameters cannot be avoided and would cause
degradation (sometimes even instability) to the system
performance. Therefore, in the past decade, considerable
attention has been devoted to different issues for linear
or nonlinear uncertain systems, and a great number of
papers have been published; see [2, 48, 69–74] for some
recent results.

On another research frontier of robust control, the 𝐻
∞

design method which is used to design controller/filter
with guaranteed performances with respect to the external
disturbances as well as internal perturbations has received
an appealing research interest during the past decades;
see [75–78], for instance. Since Zames’ original work [75],
significant advances have been made in the research area
of 𝐻
∞

control and filtering. The standard 𝐻
∞

control
problem has been completely solved by Doyle et al. for
linear systems by deriving simple state-space formulas for all
controllers [76]. For nonlinear systems, the𝐻

∞
performance

evaluation can be conducted through analyzing the 𝐿
2
gain

of the relationship between the external disturbance and the
system output, which is a necessary step to decide whether
further controller design is needed. In the past years, the
nonlinear𝐻

∞
control problemhas also received considerable

research attention, and many results have been available in
the literature [77–81]. On the other hand, the 𝐻

∞
filtering

problem has also gained considerable research interests along
with the development of 𝐻

∞
control theory; see [26, 79,

82–85]. It is well known that the existence of a solution
to the 𝐻

∞
filtering problem is in fact associated with the

solvability of an appropriate algebraic Riccati equality (for
the linear cases) or a so-called Hamilton-Jacobi equation
(for the nonlinear ones). So far, there have been several
approaches for providing solutions to nonlinear𝐻

∞
filtering

problems, few of which, however, are capable of handling
multiple performance requirements in an 𝐻

∞
optimization

framework.
It is worth mentioning that, in contrast to the𝐻

∞
design

framework within which multiple requirements can hardly
be under simultaneous consideration, the covariance control
theory has provided a convenient avenue for the robustness
specifications to be perfectly integrated into the multiobjec-
tive design procedure; see [61, 80], for example. For nonlinear
stochastic systems, control and filtering problems have been
solved with the occurrence of parameter uncertainties and
stochastic nonlinearities while guaranteeing the 𝐻

∞
and

variance specifications; see [35, 66, 67, 80] for some recent
publications.
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3.2.2. Reliability. In practical control systems especially net-
worked control systems (NCSs), due to a variety of reasons
including the erosion caused by severe circumstance, abrupt
changes of working conditions, the intense external distur-
bance, and the internal physical equipment constraints and
aging, the process of signal sampling and transmission has
always confronted with different kinds of failures such as
measurements missing, signal quantization, and sensor and
actuator saturations. Such a phenomenon is always referred to
as incomplete information, which would drastically degrade
the system performance. In recent years, as requirements
increase toward the reliability of engineering systems, the
reliable control problem which aims to stabilize the systems
accurately and precisely in spite of incomplete information
caused by possible failures has therefore attracted consid-
erable attention. In [86, 87], binary switching sequences
and Markovian jumping parameters have been introduced
to model the measurements missing phenomena. A more
general model called the multiple measurements missing
model has been proposed in [88] by employing a diagonal
matrix to characterize the different missing probabilities for
individual sensors. The incomplete information caused by
sensor and actuator saturations is also receiving considerable
research attention, and some results have been reported in the
literature [20, 89, 90], where the saturation has beenmodeled
as so-called sector bound nonlinearities. As far as signal
quantization ismentioned, in [19], a sector bound scheme has
been proposed to handle the logarithmic quantization effects
in feedback control systems, and such an elegant scheme has
then been extensively employed later on; see, for example,
[91, 92] and the references therein.

It should be pointed out that, for nonlinear stochastic
systems, the relevant results of reliable control/filtering with
variance constraints are relatively fewer, and some represen-
tative results can be summarized as follows. By means of
linear matrix inequality approach, a reliable controller has
been designed for nonlinear stochastic system in [66] against
actuator faults with variance constraints. In the case of sensor
failures, the gradient method and LMI method have been
applied, respectively, in [35] and [67] to designmultiobjective
filters, respectively, satisfying multiple requirements includ-
ing variance specifications simultaneously. However, despite
its clear physical insight and importance in engineering
application, the control problem for nonlinear stochastic
systemswith incomplete informationhas not yet been studied
sufficiently.

3.2.3. Dissipativity. In recent years, the theory of dissipa-
tive systems, which plays an important role in system and
control areas, has been attracting a great deal of research
interests, and many results have been reported so far; see
[93–99]. Originated in [97], the dissipative theory serves as
a powerful tool in characterizing important system behaviors
such as stability and passivity and has close connections with
bounded real lemma, passivity lemma, and circle criterion. It
is worth mentioning that, due to its simplicity in analysis and
convenience in simulation, the LMI method has gained par-
ticular attention in dissipative control problems. For example,

in [96, 98], an LMI method was used to design the state
feedback controller ensuring both the asymptotic stability
and strictly quadratic dissipativity. For singular systems,
[93] has established a unified LMI framework to satisfy
admissibility and dissipativity of the system simultaneously.
In [95], the dissipative control problem has been solved for
time-delay systems.

Although the dissipativity theory provides us a use-
ful tool for the analysis of systems with multiple perfor-
mance criteria, unfortunately, when it comes to nonlinear
stochastic systems, few of the literature has been con-
cerned with the multiobjective design problem for non-
linear stochastic systems, except [100], where a multiob-
jective control law has been proposed to simultaneously
meet the stability, variance constraints, and dissipativity of
closed-loop system. So far, the variance-constrained design
problem with dissipativity being taken into consideration
has not yet been studied adequately and is still remaining
challenging.

3.3. Design Techniques for Nonlinear Stochastic Systems with
Variance Constraints. The complexity of nonlinear system
dynamics challenges us to come up with systematic design
procedures to meet control objectives and design specifi-
cations. It is clear that we cannot expect one particular
procedure to apply to all nonlinear systems; therefore, quite
a lot of tools have been developed to deal with control and
filtering problems for nonlinear stochastic systems, including
T-S fuzzy model approximation approach, linearization, gain
scheduling, sliding mode control, and backstepping, to name
but a few key ones. In the sequel, we will investigate two
nonlinear design tools that can be well combined with the
covariance control theory for the purpose of providing a the-
oretical framework within which the variance-constrained
control andfiltering problems can be solved systematically for
nonlinear stochastic systems.

3.3.1. T-S Fuzzy Model. The T-S fuzzy model approach
occupies an important place in the study of nonlinear systems
for its excellent capability in nonlinear system descriptions.
Such amodel allows one to perfectly approximate a nonlinear
system by a set of local linear subsystems with certain fuzzy
rules, thereby carrying out the analysis and synthesis work
within the linear system framework. Therefore, T-S fuzzy
model is extensively applied in both theoretical research and
engineering practice of nonlinear systems; see [101–104] for
some latest publications. However, despite its engineering
significance, few of the literature has taken the system state
variance into consideration mainly due to the technical
difficulties in dealing with the variance related problems.
Some tentative work can be summarized as follows. In [105],
a minimum variance control algorithm as well as direct
adaptive control scheme has been applied in a stochastic T-
S fuzzy ARMAX model to track the desired reference signal.
However, as we mentioned above, such a minimum variance
control algorithm lacks the ability of directly imposing design
requirements on the variances of individual state component.
Therefore, in order to cope with this problem, in [106],
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a fuzzy controller has been designed to stabilize a non-
linear continuous-time system, while simultaneously min-
imizing the control input energy and satisfying variance
constraints placed on the system state. The result has then
been extended in [107] to the output variance constraints
case. Recently, such a T-S fuzzy model based variance-
constrained algorithm has found successful application in
nonlinear synchronous generator systems; see [108] for more
details.

3.3.2. Sliding Mode Control. In the past few decades, the
sliding mode control (also known as variable structure
control) problem originated in [109] has been extensively
studied and widely applied, because of its advantage of
strong robustness against model uncertainties, parameter
variations, and external disturbances. In the sliding mode
control, trajectories are forced to reach a sliding manifold
in finite time and to stay on the manifold for all future
time. It is worth mentioning that in the existing literature
about sliding mode control problem for nonlinear systems,
the nonlinearities and uncertainties taken into consideration
are mainly under the matching conditions, that is, when
nonlinear and uncertain terms enter the state equation at the
same point as the control input and motion on the sliding
manifold is independent of thosematched terms; see [110, 111]
for examples. Under such an assumption, the covariance-
constrained control problems have been solved in [62–64]
for a type of continuous stochastic systems with matching
condition nonlinearities.

Along with the development of continuous-time sliding
mode control theory, in recent years, as most control strate-
gies are implemented in a discrete-time setting (e.g., net-
worked control systems), the sliding mode control problem
for discrete-time systems has gained considerable research
interests, and a large amount of literature has appeared
on this topic. For example, in [112, 113], the integral type
SMC schemes have been proposed for sample-data systems
and a class of nonlinear discrete-time systems, respectively.
Adaptive laws were applied in [114, 115] to synthesize sliding
mode controllers for discrete-time systems with stochastic as
well as deterministic disturbances. In [116], a simple method-
ology for designing sliding mode controllers was proposed
for a class of linear multi-input discrete-time systems with
matching perturbations. Using dead-beat control technique,
[117] presented a discrete variable structure control method
with a finite-time step to reach the switching surface. In
cases when the system states were not available, the discrete-
time SMC problems were solved in [118, 119] via output
feedback. It is worth mentioning that in [120], the discrete-
time sliding mode reaching condition was first revised, and
then a reaching law approach was developed which has
proven to be a convenient way to handle robust control
problems; see [121, 122] for some latest publications. Recently,
for discrete-time systems that are not only confronted with
nonlinearities but also corrupted by more complicated sit-
uations like propagation time delays, randomly occurring
parameter uncertainties, and multiple data packet dropouts,
the SMC strategies have been designed in [25, 81, 83] to

solve the robust control problems and have shown good
performances against all the mentioned negative factors.
Currently, the sliding mode control problems for discrete-
time systems still remain a hotspot in systems and control
science; however, when it comes to the variance-constrained
problems, the related work is much fewer. As preliminary
work, [36] has proposed an SMC algorithm guaranteeing the
required𝐻

2
specification for discrete-time stochastic systems

in presence of both matched and unmatched nonlinearities.
In this paper, although only the 𝐻

2
performance is handled,

it is worth mentioning that, with the proposed method,
other performance indices can be considered simultaneously
within the established unified framework by employing
similar design techniques.

3.4. A Special Case of Multiobjective Design: Mixed 𝐻
2
/𝐻
∞

Control/Filtering. As a special case of multiobjective control
problem, the mixed 𝐻

2
/𝐻
∞

control/filtering has gained a
great deal of research interests for several decades. So far,
there have been several approaches to tackling the mixed
𝐻
2
/𝐻
∞

control/filtering problem. For linear deterministic
systems, the mixed 𝐻

2
/𝐻
∞

control problems have been
extensively studied. For example, an algebraic approach has
been presented in [123] and a time domain Nash game
approach has been proposed in [39, 124] to solve the
addressed mixed 𝐻

2
/𝐻
∞

control/filtering problems, respec-
tively.Moreover, some efficient numerical methods formixed
𝐻
2
/𝐻
∞

control problems have been developed based on a
convex optimization approach in [42, 125–127], among which
the linear matrix inequality approach has been employed
widely to design both linear state feedback and output
feedback controllers subject to 𝐻

2
/𝐻
∞

criterion due to its
effectiveness in numerical optimization. It is noted that the
mixed 𝐻

2
/𝐻
∞

control theories have already been applied to
various engineering fields [49, 128, 129].

Parallel to the mixed𝐻
2
/𝐻
∞
control problem, the mixed

𝐻
2
/𝐻
∞

filtering problem has also been well studied, and
several approaches have been proposed to tackling the prob-
lem. For example, Bernstein and Haddad [123] transformed
the mixed 𝐻

2
/𝐻
∞

filtering problem into an auxiliary min-
imization problem. Then, by using the Lagrange multiplier
technique, they gave the solutions in terms of an upper
bound on the 𝐻

2
filtering error. In [130, 131], a time domain

game approach was proposed to solve the mixed 𝐻
2
/𝐻
∞

filtering problem through a set of coupled Riccati equations.
Recently, LMI method has been widely employed to solve
the multiobjective mixed 𝐻

2
and 𝐻

∞
filtering problems; see

[60, 132] for examples.
As far as nonlinear systems are concerned, the mixed
𝐻
2
/𝐻
∞

control problem as well as filtering problem has
gained some research interests; see, for examples, [133–
135]. For nonlinear deterministic systems, the mixed𝐻

2
/𝐻
∞

control problem has been solved with the solutions char-
acterized in terms of the cross-coupled Hamilton-Jacobi-
Isaacs (HJI) partial differential equations. Since it is difficult
to solve the cross-coupled HJI partial differential equations
either analytically or numerically, in [134], the authors have
used the Takagi and Sugeno (T-S) fuzzy linear model to



8 Abstract and Applied Analysis

approximate the nonlinear system, and solutions to themixed
𝐻
2
/𝐻
∞

fuzzy output feedback control problem have been
obtained via an LMI approach. For nonlinear stochastic sys-
tems, unfortunately, the mixed 𝐻

2
/𝐻
∞

control and filtering
problem has not received full investigation, and few results
have been reported. In [38], for a special type of nonlinear
stochastic system, which is known as bilinear systems (also
called systems with state-dependent noise or systems with
multiplicative noise), a stochastic mixed 𝐻

2
/𝐻
∞

control
problem has been solved and sufficient conditions have been
provided in terms of the existence of the solutions of cross-
coupled Riccati equations. Very recently, an LMI approach
has been proposed in [135] to solve themixed𝐻

2
/𝐻
∞
control

problem for a class of nonlinear stochastic systems which
includes several well-studied types of nonlinear systems.
For the stochastic systems with much more complicated
nonlinearities, by means of game theory approach, the mixed
𝐻
2
/𝐻
∞

control problem has been solved for systems with
RONs in [29] and Markovian jump parameters in [68],
respectively. Nevertheless, to the best of authors’ knowledge,
the mixed𝐻

2
/𝐻
∞

control and filtering problems for general
nonlinear systems have not yet received enough investigation
and still remain as challenging topics.

4. Latest Progress

Very recently, the variance-constrained multiobjective con-
trol as well as filtering problem for nonlinear stochastic
systems has been intensively studied, and some elegant results
have been reported. In this section, we highlight some of the
newest work with respect to this topic.

(i) In [67], a robust variance-constrained filter has been
designed for a class of nonlinear stochastic systems
with both parameter uncertainties and probabilistic
missing measurements. In this paper, we have simul-
taneously considered the exponentially mean-square
stability, variance constraints, robustness against the
parameter uncertainties, and reliability in case of
possiblemeasurementsmissing.A general framework
for solving this problem has been established using an
LMI approach.

(ii) For the stochastic system with nonlinearities of both
the matched and unmatched forms, in [81], a sliding
mode control algorithm has been proposed to solve
the robust 𝐻

2
control problem. A new discrete-time

switching function has been proposed, and then a
sufficient condition has been derived to ensure both
the exponentially mean-square stability and the 𝐻

2

performance in the sliding surface. It is worth men-
tioning that, using the proposedmethod in this paper,
several typical classes of stochastic nonlinearities can
be dealt with via SMC method.

(iii) In [100], a dissipative control problemhas been solved
for a class of nonlinear stochastic systems while guar-
anteeing tumultuously exponentially mean-square
stability, variance constraints, system dissipativity,
and reliability. An algorithm has been proposed to

convert the original nonconvex feasibility problem
into an optimalminimization problemwhich ismuch
more easy to solve by standard numerical software.

(iv) For the same type of nonlinear stochastic systems
as mentioned above, in [66], a robust variance-
constrained controller has been designed with the
guaranteed reliability against the possible actuator
failures.

(v) When the nonlinear stochastic system is time-
varying, [80] has designed a multiobjective controller
that meets the 𝐻

∞
performance and variance con-

straint over a finite horizon. By using the recursive
linear matrix inequalities method, a sufficient con-
dition for the solvability of the addressed controller
design problem has been given. Such an algorithm is
so elegant that it is soon followed bymany researchers
in related fields.

(vi) When it comes to the finite-horizon multiobjective
filtering for time-varying nonlinear stochastic sys-
tems, [35] has proposed a technique that could handle
𝐻
∞
performance and variance constraint at the same

time. It is worthmentioning that the design algorithm
developed in this paper is forward in time, which is
different from those in most of the existing literature
where the𝐻

∞
problem can be solved only backward

in time and thus can be combined with the variance
design and is suitable for online design.

(vii) In [29], the mixed𝐻
2
/𝐻
∞
controller design problem

has been dealt with for a class of nonlinear stochastic
systems with randomly occurring nonlinearities that
are characterized by two Bernoulli distributed white
sequences with known probabilities. For the mul-
tiobjective controller design problem, the sufficient
condition of the solvability of the mixed 𝐻

2
/𝐻
∞

control problem has been established by means of the
solvability of four coupled matrix-valued equations.
A recursive algorithm has been developed to obtain
the value of feedback controller step by step at
every sampling instant. Such a design algorithm has
been extended to the Markovian Jump systems with
probabilistic sensor failures in [68].

5. Conclusions and Future Work

In this paper, the variance-constrainedmultiobjective control
and filtering problems have been reviewed with some recent
advances for nonlinear stochastic systems. Latest results on
analysis and synthesis problems for nonlinear stochastic
systems with multiple performance constraints have been
surveyed. Based on the literature review, some related topics
for the future research work are listed as follows.

In practical engineering, there are still somemore compli-
cated yet important kinds of nonlinearities that have not been
studied. Therefore, the variance-constrained multiobjective
control and filtering problems for more general nonlinear
systems still remain open and challenging.
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Another future research direction is to further investigate
new performance indices (e.g., system energy constraints)
that can be simultaneously considered with other existing
ones. Also, variance-constrained multiobjective modeling,
estimation, filtering, and control problems could be consid-
ered for more complex systems [4, 13, 73, 74, 99].

It would be interesting to study the problems of variance-
constrained multiobjective analysis and design for large scale
nonlinear interconnected systems that are frequently seen in
modern industries.

A practical engineering application of the existing theo-
ries andmethodologies would be the target tracking problem.
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