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We introduced a direct and effective approach to obtain the exact analytical solution for the nanoparticles-water flow over an
isothermal stretching sheet with the effect of the slip model. In particular, we examined and compared the effect of the existence
of five metallic and nonmetallic nanoparticles, namely, Silver, Copper, Alumina, Titania, and Silicon Dioxide, in a base of water.
The most interesting physical parameters were then discussed in the presence of no-slip model, first order slip, and second order
slip parameters. It is found that, with no-slip effect, the present exact solutions are in a very good agreement with the previous
published results. On the other hand, with the effect of the slip model, increase in the nanoparticle volume friction decreases
the velocity for the high density of nanoparticles, increases it for the low density of them, and increases the temperature for all
investigated nanoparticles. Further, increase in the wall mass decreases the velocity and temperature; however, it increases the
local skin friction. Furthermore, increase in the slips slows down the velocity, increases the temperature with an impressive effect
in the injection case, and decreases the local skin friction and the reduced Nusselt number. It was also demonstrated that, as the
nanoparticle becomes heavier, this results in increase and decrease in reduced skin friction coefficient and reducedNusselt number,
respectively, with significant effect in the presence of the second slip. Finally, Silver is the suitable nanoparticle if slowing down the
velocity and increasing the temperature are needed; Silicon Dioxide is the appropriate nanoparticle if different behavior is to be
considered.

1. Introduction

Because of its numerous applications, the problemof flow and
heat transfer in boundary-layer over a stretching surface has
attracted many researchers. Examples of these applications
are metallurgical processes, such as drawing of continuous
filaments through quiescent fluids, annealing and tinning
of copper wires, glass blowing, manufacturing of plastic
and rubber sheets, crystal growing, and continuous cooling
and fiber spinning [1]. Further, there are wide range of
applications in many engineering processes, such as polymer
extrusion, wire drawing, continuous casting, manufacturing

of foods and paper, glass fiber production, stretching of
plastic films, and many others. In particular, during the
manufacture of these sheets, the melt issues from a slit and
is subsequently stretched to achieve the desired thickness.
Hence, the final product with the desired characteristics
strictly depends upon the stretching rate, the rate of cooling
in the process, and the process of stretching [2]. Therefore,
the choice of a proper cooling/heating liquid is essential as it
has a direct impact on the rate of heat transfer.

The pioneer studies of stretching sheets were done by
Sakiadis [3, 4] for a moving, inextensible sheet and later
extended by Crane [5] to a fluid flow over a linearly stretched
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sheet. Following the classical boundary-layer theory, many
properties were later investigated using the no-slip condition
on the wall. However, when the fluid is particulate such
as emulsions, suspensions, foams, and polymer solutions,
the no-slip condition is inadequate [6]. In such cases,
investigations show that the no-slip condition is no longer
valid, specially at the micro- and nanoscale, and instead,
a certain degree of tangential slip must be allowed [7]. In
particular, the fluid flowbehaviour deviates significantly from
the traditional no-slip flow.Therefore, in the recent years, the
interest has been given to the study of this type of flow and
some useful results have been recently introduced by many
authors, as mentioned in the next paragraphs.

Convective heat transfer in nanofluids is a topic of major
contemporary interest both in applied sciences and engineer-
ing, where a very good review was presented by Wang and
Mujumdar [8, 9] and Saidur et al. [10]. Choi [11] may be the
first author to introduce the word “nanofluid” that represents
the fluid in which nanoscale particles (diameter < 50 nm)
are suspended in the base fluid. With the rapid advances
in nanotechnology, many inexpensive combinations of liq-
uid/particles are now available. The base fluids used are usu-
ally water, ethylene glycol, toluene, and oil. Recent research
on nanofluids showed that nanoparticles changed the fluid
characteristics because thermal conductivity of these parti-
cles was higher than convectional fluids. Nanoparticles are of
great scientific interest as they are effectively a bridge between
bulk materials and atomic or molecular structures. The
common nanoparticles that have been used are Aluminum,
Copper, Silver, and Titanium or their oxides. Experimental
studies by Eastman et al. [12] and Xuan and Li [13] showed
that even with the small volumetric fraction of nanoparticles
(usually<5%), the thermal conductivity of the base liquid can
be enhanced by 10–20%.The enhanced thermal conductivity
of nanofluids together with the thermal conductivity of
the base liquid and turbulence induced by their motion
contributes to a remarkable improvement in the convective
heat transfer coefficient. Further,Majumder et al. [14] showed
experimentally that nanofluidic flow usually exhibits partial
slip against the solid surface, which can be characterized
by the so-called slip length (around 3.4–68 micrometers
for different liquids). Therefore, the no-slip condition is no
longer valid for fluid flows at the micro- and nanoscale.

In addition to the above discussion about the slip model,
Noghrehabadi et al. [15] discussed the effect of partial slip
boundary condition on the flow and heat transfer of nanoflu-
ids past stretching sheet at constant wall temperature to
extend the work done by Khan and Pop [16]. Nandeppanavar
et al. [17] have tabulated the literature of the first order
slip; consequently Fang et al. [18] only considered the effect
of the second order slip on the flow on a shrinking sheet.
Hence, the paper by Nandeppanavar et al. [17] may be the
first work to investigate the analysis of second order slip
flow and heat transfer over a stretching sheet. Recently,
Turkyilmazoglu [19] has analytically studied the heat and
mass transfer of magnetohydrodynamic second order slip
flow. He has mentioned that there exists a unique solution
for any combination of the considered parameters if the
stretching sheet is considered. Very recently, Roşca and Pop

[20] investigated the steady flow and heat transfer over a
vertical permeable stretching/shrinking sheet with a second
order slip being investigated using a second order slip flow
model. This very important study showed clearly that the
second order slip flow model is necessary to predict the flow
characteristics accurately.

To show the enhancement of using nanofluids in compar-
ison with pure base fluid, Yacob et al. [21] compared numer-
ically the thermal enhancement of two types of nanoflu-
ids, namely, Ag-water and Cu-water, over an impermeable
stretching sheet. In addition, with the effect of magnetic
field, Hamad [22] studied boundary layer and heat transfer
of nanofluids over impermeable isothermal stretching sheet
for the metallic and metallic oxide nanoparticles. Further,
Noghrehabadi et al. [23] examined theoretically the flow
and heat transfer of two types of nanofluids, namely, Silver
water and Silicon Dioxide water. They solved the governing
equations by applying a combination of a symbolic power
series andPadé approximationmethod.Very recently, Vajrav-
elu et al. [24] studied the effect of variable viscosity on the
flow and heat transfer of viscous Ag-water and Cu-water
nanofluids.They indicated that nanoparticle volume fraction
is to increase the heat transfer and hence enhance the thermal
boundary-layer thickness.

The aim of this work is to introduce a direct and effective
approach to analytically obtain the exact solution for the flow
over an isothermal stretching sheet with effect of no-slip,
first order slip parameter, and second order slip parameter.
In addition, it is to examine the effect of the existence of
the most five common nanoparticles, namely, Silver, Copper,
Alumina, Titania, and Silicon Dioxide, in a base of water.
Further, we discuss the interested physical parameters, that
is, the velocity, temperature, reduced skin friction coefficient,
and reduced Nusselt number. The structure of the paper is
as follows. Description of the problem, basic equations, and
similarity solution are presented in Section 2. In Section 3,
second, third, and fourth degree algebraic equations, includ-
ing the investigated parameters, are governed on deducing
the exact solution of the flow with no, first order, and second
order slips, respectively. In addition, exact analytical solution
of the temperature equation, represented in a simple gamma
function, is proposed in the same section. This research is to
be considered as an extension to the work done by Hamad
[22] and Noghrehabadi et al. [23], besides the comparison
with Wang [25] and Reddy Gorla and Sidawi [26] in the
special cases.

2. Governing System of Equations

2.1. Description of the Problem. Consider a two-dimensional
incompressible, laminar, and steady boundary-layer flow past
an isothermal stretching sheet coinciding with the plane 𝑦 =
0, with the flow being confined to 𝑦 > 0. This sheet is in a
water-based nanofluids, which can contain different volume
fractions of nanofluids, such as Silver (Ag), Silicon Dioxide
(SiO
2
), Copper (Cu), Alumina (Al

2
O
3
), and Titania (TiO

2
).

In addition, we assume that the [15, 17]
(i) sheet surface has temperature at the wall 𝑇

𝑤
and at

ambient fluid 𝑇
∞
, where 𝑇

𝑤
> 𝑇
∞
;
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(ii) base fluid (i.e., water) and the nanoparticles are in a
thermal equilibrium;

(iii) fluid outside the boundary layer is quiescent and
stretching sheet velocity is linear;

(iv) velocity of the sheet is 𝑈
𝑤
(𝑥) = 𝑐𝑥, where 𝑐 > 0 is the

stretching constant and 𝑥 is the coordinate measured
along the stretching surface.

The thermophysical properties of the base fluid and nanopar-
ticles are given in Table 1.

2.2. Basic Equations. Under the above assumptions, the gov-
erning boundary-layer equations of the considered nanofluid
(continuity, momentum, and energy) can be written, respec-
tively, in the dimensional form as

𝜕𝑢

𝜕𝑥

+

𝜕V

𝜕𝑦

= 0, (1)

𝑢

𝜕𝑢

𝜕𝑥

+ V
𝜕𝑢

𝜕𝑦

=

𝜇
𝑛𝑓

𝜌
𝑛𝑓

𝜕
2
𝑢

𝜕𝑦
2
, (2)

𝑢

𝜕𝑇

𝜕𝑥

+ V
𝜕𝑇

𝜕𝑦

=

𝑘
𝑛𝑓

(𝜌𝐶
𝑝
)
𝑛𝑓

𝜕
2
𝑇

𝜕𝑦
2
, (3)

where (𝑥, 𝑦) denotes the Cartesian coordinates along the
sheet and normal to it, 𝑢 and V are the velocity components
of the nanofluid in the 𝑥- and 𝑦-directions, respectively, 𝑝
is the pressure of the nanofluid, 𝑇 is the temperature of
the nanofluid, 𝐶

𝑝
is the specific heat at constant pressure,

𝜌
𝑛𝑓

is the effective density, 𝜇
𝑛𝑓

is the effective dynamic
viscosity, (𝜌𝐶

𝑝
)
𝑛𝑓

is the heat capacitance, and 𝑘
𝑛𝑓

is the
thermal conductivity, where (∼)

𝑛𝑓
denotes the nanofluid and

is defined as follows [28, 29]:

𝜌
𝑛𝑓
= (1 − 𝜙) 𝜌

𝑓
+ 𝜙𝜌
𝑠
, (4a)

𝜇
𝑛𝑓
=

𝜇
𝑓

(1 − 𝜙)
2.5
, (4b)

(𝜌𝐶
𝑝
)
𝑛𝑓
= (1 − 𝜙) (𝜌𝐶

𝑝
)
𝑓
+ 𝜙(𝜌𝐶

𝑝
)
𝑠
, (4c)

𝑘
𝑛𝑓
=

(𝑘
𝑠
+ 2𝑘
𝑓
) − 2𝜙 (𝑘

𝑓
− 𝑘
𝑠
)

(𝑘
𝑠
+ 2𝑘
𝑓
) + 𝜙 (𝑘

𝑓
− 𝑘
𝑠
)

𝑘
𝑓
, (4d)

where 𝜙 is the solid volume fraction, 𝜇
𝑓
is the dynamic

viscosity, 𝜌
𝑓
and 𝜌

𝑠
are the densities, (𝜌𝐶

𝑝
)
𝑓
and (𝜌𝐶

𝑝
)
𝑠

are the heat capacitances, and 𝑘
𝑓
and 𝑘

𝑠
are the thermal

conductivities, where (∼)
𝑓
and (∼)

𝑠
denote the basic fluid

and solid fractions, respectively. The appropriate boundary
conditions of (1)–(3) are as follows:

𝑢 = 𝑈
𝑤
(𝑥) + 𝑈slip, V = V

𝑤
(𝑥) ,

𝑇 = 𝑇
𝑤
(𝑥) at 𝑦 = 0,

𝑢 = V = 0, 𝑇 → 𝑇
∞
, as 𝑦 → ∞,

(5)

where 𝑈slip is the slip velocity introduced in the next section.

2.3. Slip Model. In the present work, we consider Wu’s slip
model [30] (valid for arbitrary Knudsen number, 𝐾

𝑛
) which

is given by

𝑈slip =
2

3

(

3 − 𝛼
𝑚
𝑙
3

𝛼
𝑚

−

3

2

1 − 𝑙
2

𝐾
𝑛

)𝜆
𝑚

𝜕𝑢

𝜕𝑦

−

1

4

[𝑙
4
+

2

𝐾
2

𝑛

(1 − 𝑙
2
)] 𝜆
2

𝑚

𝜕
2
𝑢

𝜕𝑦
2
= 𝐴

𝜕𝑢

𝜕𝑦

+ 𝐵

𝜕
2
𝑢

𝜕𝑦
2
,

(6)

where 𝑙 = min[1/𝐾
𝑛
, 1] and 0 ≤ 𝛼

𝑚
≤ 1 and 𝜆

𝑚
are the

momentum accommodation and molecular mean free path,
respectively. Based on the definition of 𝑙, it is noticed that for
any given value of 𝐾

𝑛
, we have 0 ≤ 𝑙 ≤ 1. Therefore, the

molecular mean free path is always positive. Therefore, we
know that𝐵 < 0, and hence the second term in the right hand
side of (6) is a positive number.

2.4. Similarity Solution. The dimensionless variables can be
introduced as follows [22, 31]:

𝜂 = 𝑦√
𝑐

V
, 𝑓 (𝜂) =

𝜓

𝑥√𝑐V
, 𝜃 (𝜂) =

𝑇 − 𝑇
∞

𝑇
𝑤
− 𝑇
∞

, (7)

where 𝜂 is the similarity variable, 𝑓(𝜂) is the dimensionless
stream function, and 𝜃(𝜂) is the dimensionless temperature.
Further,𝜓 is the stream functionwhich is defined in the usual
way as 𝑢 = 𝜕𝜓/𝜕𝑦 and V = −𝜕𝜓/𝜕𝑥 to identically satisfy (1).
From (7), we therefore obtain

𝑢 = 𝑐𝑥𝑓

(𝜂) , V = −√𝑐V𝑓 (𝜂) , (8)

where the prime denotes differentiation with respect to 𝜂.
Hence, the mass transfer velocity at the wall becomes

V
𝑤
= −√𝑐V𝑓 (0) . (9)

Now on substituting (7) and (8) into (2) and (3), we obtain
the following nonlinear ordinary differential equations:

1

(1 − 𝜙)
2.5

[(1 − 𝜙) + (𝜙𝜌
𝑠
/𝜌
𝑓
)]

𝑓

(𝜂)

+ 𝑓 (𝜂) 𝑓

(𝜂) − 𝑓

2
(𝜂) = 0,

1

𝑃𝑟

𝑘
𝑛𝑓
/𝑘
𝑓

(1 − 𝜙) + 𝜙(𝜌𝐶
𝑝
)
𝑠
/(𝜌𝐶
𝑝
)
𝑓

𝜃

(𝜂) + 𝑓 (𝜂) 𝜃


(𝜂) = 0,

(10)

where𝑃𝑟 = V(𝜌𝐶
𝑝
)
𝑓
/𝑘
𝑓
is the Prandtl number.Theboundary

conditions (5) then turn into

𝑓 (0) = 𝑠, 𝑓

(0) = 1 + 𝛿

1
𝑓

(0) + 𝛿

2
𝑓

(0) ,

𝜃 (0) = 1, 𝑓

(𝜂) → 0,

𝜃 (𝜂) → 0 as 𝜂 → ∞,

(11)

where 𝑠 (= −V
𝑤
/√𝑐V) is the wall mass transfer parameter,

which refers to the suction and injection when 𝑠 > 0 and
𝑠 < 0, respectively, and 0 < 𝛿

1
(= 𝐴√𝑐/V) and 0 > 𝛿

2
(=

𝐵𝑐/V) are the first order slip and second order slip parameters,
respectively.
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Table 1: Thermophysical properties of the base fluid and nanoparticles [27].

Physical properties Fluid phase (water) Ag Cu TiO2 Al2O3 SiO2

𝐶
𝑝
(J/kgK) 4179 235 385 686.2 765 765

𝜌 (kg/m3) 997.1 10500 8933 4250 3970 3970
𝑘 (W/mK) 0.613 429 401 8.9538 40 36

2.5. The Quantities of Practical Interest. In this type of study,
it should be noted that the quantities of practical interest are
the skin friction coefficient 𝐶

𝑓
and local Nusselt number Nu,

which are defined as

𝐶
𝑓
=

𝜏
𝑤

𝜌
𝑓
𝑈
2

𝑤

, Nu =
𝑥𝑞
𝑤

𝑘
𝑓
(𝑇
𝑤
− 𝑇
∞
)

, (12)

where 𝜏
𝑤
and 𝑞
𝑤
are the skin friction, or the shear stress, and

heat flux from the surface, respectively, which are given by

𝜏
𝑤
= −𝜇
𝑛𝑓
(

𝜕𝑢

𝜕𝑦

)

𝑦=0

, 𝑞
𝑤
= −𝑘
𝑛𝑓
(

𝜕𝑇

𝜕𝑦

)

𝑦=0

. (13)

Therefore, on using (7) and (8) in (12) and (13), the reduced
skin friction coefficient and reduced Nusselt number [22, 31]
are

𝐶
𝑓
(Re
𝑥
)
1/2

=

1

(1 − 𝜙)
2.5
𝑓

(0) ,

Nu(Re
𝑥
)
−1/2

= −

𝑘
𝑛𝑓

𝑘
𝑓

𝜃

(0) ,

(14)

where Re
𝑥
= 𝑐𝑥
2
/V is the local Reynolds number based on

the stretching velocity.

3. Exact Solution

Equations (2) and (3) can be rewritten as

𝜆𝑓

+ 𝑓𝑓

− 𝑓
2
= 0, (15)

𝜏𝜃

+ 𝑓𝜃

= 0, (16)

where

𝜆 =

(1 − 𝜙)
−2.5

1 − 𝜙 + 𝜙 (𝜌
𝑠
/𝜌
𝑓
)

,

𝜏 =

((𝑘
𝑠
+ 2𝑘
𝑓
)−2𝜙 (𝑘

𝑓
− 𝑘
𝑠
))/((𝑘

𝑠
+ 2𝑘
𝑓
)+𝜙 (𝑘

𝑓
− 𝑘
𝑠
))

𝑃𝑟 (1 − 𝜙 + 𝜙 ((𝜌𝐶
𝑝
)
𝑠
/(𝜌𝐶
𝑝
)
𝑓
))

,

(17)

which is exactly solved, subject to the boundary conditions
(11) in the next sections.

3.1. Exact Solution of the Flow: 𝑓(𝜂). Following the spirit
analysis as introduced by Wang [32] and, Aly and Ebaid
[33, 34], the exact solution of 𝑓equation can be deduced as
follows:

𝑓 (𝜂) = 𝑎 + 𝑏𝑒
−𝛽𝜂

, where 𝑎 = 𝜆𝛽, 𝑏 = 𝑠 − 𝑎, (18)

which satisfies (15) and the first condition in (11). Further,
from the second condition in (11), the parameter 𝛽 satisfies
algebraic equations for three models discussed in the next
three subsections.

3.1.1. No Slips: 𝛿
1
=𝛿
2
=0. When there is no slip between the

base fluid and nanoparticles, that is, 𝛿
1
= 𝛿
2
= 0, then 𝛽

satisfies the following second degree algebraic equation:

𝜆𝛽
2
− 𝑠𝛽 − 1 = 0 ⇒ 𝛽 =

𝑠 ± √𝑠
2
+ 4𝜆

2𝜆

. (19)

This expressions ismore easier than those given in [17–19, 23].

3.1.2. Effect of the First Slip Only: 𝛿
2
=0. If the first order slip

is only to be considered, then 𝛽 has to achieve the following
third degree algebraic equation:

𝛿
1
𝜆𝛽
3
+ (𝜆 − 𝛿

1
𝑠) 𝛽
2
− 𝑠𝛽 − 1 = 0. (20)

By solving (20) and taking into account Descartes’ rule of
signs and from the fact that 𝛿

1
> 0 and 𝜆 > 0, there is only

one positive root; see Van Gorder et al. [35].

3.1.3. Effect of the Second Slip: 𝛿
1
̸= 0, 𝛿
2
̸= 0. In this case, 𝛽

satisfies the following fourth degree algebraic equation:

𝛿
2
𝜆𝛽
4
− (𝛿
1
𝜆 + 𝛿
2
𝑠) 𝛽
3
+ (𝛿
1
𝑠 − 𝜆) 𝛽

2
+ 𝑠𝛽 + 1 = 0. (21)

Following the analysis in [19], the corresponding four roots
of (21) are given by

𝛽 =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

1

4𝛿
2
𝜆

[𝛿
1
+ 𝛿
2
𝜆(𝑠 ∓ √12𝛽3 −

𝛽
4

√𝛽
6

− 4𝛽
6
)

−2𝛿
2
𝜆√𝛽
6
] ,

1

4𝛿
2
𝜆

[𝛿
1
+ 𝛿
2
𝜆(𝑠 ∓ √12𝛽3 +

𝛽
4

√𝛽
6

− 4𝛽
6
)

+2𝛿
2
𝜆√𝛽
6
] ,

(22)
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with the following dummy variables:

𝛽
1
= 27𝑠
2
𝛿
2
𝜆 − 72𝛿

2
𝜆 (𝛿
1
𝑠 − 𝜆) + 2(𝛿

1
𝑠 − 𝜆)

3

+ 9𝑠 (𝛿
1
𝑠 − 𝜆) (𝛿

1
𝜆 + 𝛿
2
𝑠) + 27(𝛿

1
𝜆 + 𝛿
2
𝑠)
2

,

𝛽
2
=

3
√2

3𝛿
2
𝜆

[12𝛿
2
𝜆 + (𝛿

1
𝑠 − 𝜆)

2

+ 3𝑠 (𝛿
1
𝜆 + 𝛿
2
𝑠)] ,

𝛽
3
= −

2 (𝛿
1
𝑠 − 𝜆)

3𝛿
2
𝜆

+

(𝛿
1
𝜆 + 𝛿
2
𝑠)
2

4𝛿
2

2
𝜆
2

,

𝛽
4
= −

8𝑠

𝛿
2
𝜆

+

4 (𝛿
1
𝑠 − 𝜆) (−𝛿

1
𝜆 − 𝛿
2
𝑠)

𝛿
2

2
𝜆
2

−

(−𝛿
1
𝜆 − 𝛿
2
𝑠)
3

𝛿
3

2
𝜆
3

,

𝛽
5
= 𝛽
1
+ √𝛽
2

1
− 54𝛿

2

2
𝜆
2
𝛽
2

2
,

𝛽
6
= 𝛽
3
+

𝛽
2

3
√𝛽
5

+

3
√𝛽
5

3
√32𝛿
2
𝜆

.

(23)

3.1.4. Important Note. Solutions exist for all values of 𝑠
(suction and injection), 𝛿

1
≥ 0 (first slip), and 𝛿

2
≤ 0

(second slip). It should be noted that any number of decimal
places can be therefore obtained in a direct way on applying
any software package, like Mathematica, Maple, or Matlab.
Mathematica 6 has been used in the current analysis, where
the positive root of (19), (20), and (21) gives the physically
meaningful and therefore this is only the root to be consid-
ered. In addition, Turkyilmazoglu [19] has recently proved
that there exists a unique solution for any combination of the
considered parameters if the stretching sheet is considered
(which was also spotted in [17]). Therefore, on obtaining the
roots, skin friction coefficient of the physical significance is
easily given by

𝑓

(0) = 𝛽

2
(𝑠 − 𝜆𝛽) . (24)

In an indirect and difficult analysis, this was the same result
obtained by Fang et al. [18] and Nandeppanavar et al. [17], in
the special case when 𝜆 = 1 (i.e., when 𝜙 = 0).

3.2. Exact Solution of the Heat Transfer: 𝜃(𝜂). Substituting
(18) into (16), we obtain

𝜃


𝜃

= −

1

𝜏

(𝑎 + 𝑏𝑒
−𝛽𝜂

) ; (25)

then by the integration of this equation, we get

𝜃

(𝜂) = 𝜃


(0) exp [− 𝑏

𝜏𝛽

(1 − 𝑒
−𝛽𝜂

) −

𝑎

𝜏

𝜂] . (26)

Further, on integrating the last equation again, we obtain

𝜃 (𝜂) = 1 + 𝜃

(0) 𝑒
−(𝑏/𝜏𝛽)

Ω(𝜂) , (27)

where 𝜃(0) = 1, and

Ω(𝜂) = ∫

𝜂

0

𝑒
−(𝑎/𝜏)𝜎

× 𝑒
(𝑏/𝜏𝛽)𝑒

−𝛽𝜎

𝑑𝜎. (28)

On supposing that

𝑧 = −

𝑏

𝜏𝛽

𝑒
−𝛽𝜎

, (29)

then (28) becomes

Ω =

1

𝛽

(−

𝜏𝛽

𝑏

)

𝑎/𝜏𝛽

∫

−𝑏/𝜏𝛽

(−𝑏/𝜏𝛽)𝑒
−𝜏𝛽

𝑧
(𝑎/𝜏𝛽)−1

𝑒
−𝑧
𝑑𝑧. (30)

On substituting (30) into (27), taking into account the
definition of Γ function, we obtain

𝜃 (𝜂) = 1 + 𝜃

(0) 𝑒
−𝑏/𝜏𝛽 1

𝛽

(−

𝜏𝛽

𝑏

)

𝑎/𝜏𝛽

Γ(

𝑎

𝜏𝛽

,

−𝑏

𝜏𝛽

𝑒
−𝜏𝛽
,

−𝑏

𝜏𝛽

) .

(31)

Applying the condition 𝜃(∞) = 0, we get

𝜃

(0) 𝑒
−𝑏/𝜏𝛽 1

𝛽

(−

𝜏𝛽

𝑏

)

𝑎/𝜏𝛽

=

−1

Γ (𝑎/𝜏𝛽, 0, −𝑏/𝜏𝛽)

. (32)

Hence with the help of Γ properties, (31) is given in the final
exact form as

𝜃 (𝜂) =

Γ (𝜆/𝜏, 0, ((𝜆𝛽 − 𝑠) /𝜏𝛽) 𝑒
−𝛽𝜂

)

Γ (𝜆/𝜏, 0, (𝜆𝛽 − 𝑠) /𝜏𝛽)

, (33)

where Γ here is the generalized incomplete gamma function,
and 𝜆, 𝜏, and𝛽 are well defined in (17) and (19), respectively. It
should be noted here that 𝜃(0), which is the importance term
asmentioned in Section 2, can be easily formulated from (32)
and also by differentiating (33), as

𝜃

(0) = −

𝛽𝑒
((𝑠−𝜆𝛽)/𝜏𝛽)

((𝜆𝛽 − 𝑠) /𝜏𝛽)
(𝜆/𝜏)

Γ ((𝜆/𝜏) , 0, (𝜆𝛽 − 𝑠) /𝜏𝛽)

. (34)

4. Results and Discussion

In this paper, the flow and heat equations of nanofluids over
an isothermal stretching sheet with effect of the slip model
were analytically solved. Exact solutions were obtained for
stream function, in the presence of first order and second
order slips, and temperature, in a direct and very effective way
using gamma function. In addition, five metallic and non-
metallic nanoparticles have been considered in this analysis,
namely, Silver (Ag), Copper (Cu), Alumina (Al

2
O
3
), Titania

(TiO
2
), and Silicon Dioxide (SiO

2
). Comparison with the

published results via four tables was presented considering
the no-slip model. The two types of slip model are then
considered; these cases are to be discussed in the next sections
with the effect of the various physical parameters, where the
Prandtl number of the base fluid (water) is kept at 6.2.

4.1. Case 1: When 𝛿
1
= 𝛿
2
= 0. In the case of 𝛿

1
= 𝛿
2
=

0, that is, no-slip model effects, (24) and (32) with (19)
have been programmed. The results of −𝑓(0) and −𝜃


(0)

for variation of 𝑃𝑟, different nanoparticles, and Ag-water
nanoparticles are compared with Hamad [22], Wang [25],
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Table 2: Comparison of results for −𝜃(0) when 𝜙 = 0, 𝑠 = 0, and 𝛿
1
= 𝛿
2
= 0.

−𝜃

(0)

Pr Present results Hamad [22] Wang [25] Reddy Gorla and Sidawi [26]
0.07 0.0655625 0.06556 0.0656 0.0656
0.02 0.1690886 0.16909 0.1691 0.1691
0.70 0.4539162 0.45391 0.4539 0.4539
2.00 0.9113577 0.91136 0.9114 0.9114
7.00 1.8954033 1.89540 1.8954 1.8905
20.0 3.3539041 3.35390 3.3539 3.3539
70.0 6.4621995 6.46220 6.4622 6.4622

Table 3: Comparison between the results of −𝑓(0) and −𝜃(0) for different nanoparticles when Pr = 6.2, 𝑠 = 0, and 𝛿
1
= 𝛿
2
= 0.

𝜙
Cu-water Ag-water Al2O3-water TiO2-water

Present results Hamad [22] Present results Hamad [22] Present results Hamad [22] Present results Hamad [22]
−𝑓

(0)

0.05 1.1089199 1.10892 1.1396597 1.13966 1.0053774 1.00538 1.0115012 1.01150
0.10 1.1747460 1.17475 1.2250681 1.22507 0.9987720 0.99877 1.0095168 1.00952
0.15 1.2088623 1.20886 1.2721529 1.27215 0.9818445 0.98185 0.9960305 0.99603
0.20 1.2180438 1.21804 1.2897880 1.28979 0.9559188 0.95592 0.9725895 0.97259

−𝜃

(0)

0.05 1.5989923 1.59899 1.5813558 1.58136 1.6224626 1.62246 1.6379138 1.63791
0.10 1.4520723 1.45207 1.4205773 1.42058 1.4916979 1.49170 1.5195895 1.51959
0.15 1.3246459 1.32465 1.2819255 1.28193 1.3754278 1.37543 1.4135927 1.41359
0.20 1.2128974 1.21290 1.1609900 1.16100 1.2711811 1.27118 1.3180499 1.31805

Table 4: Comparison between the results of −𝑓(0) and −𝜃(0) for Ag-water nanoparticles when Pr = 6.2 and 𝛿
1
= 𝛿
2
= 0.

𝜙
𝑠 = −0.5 𝑠 = 0.5 𝑠 = 3 𝑠 = 10

Present results Noghrehabadi
et al. [23]

Present results Noghrehabadi
et al. [23]

Present results Noghrehabadi
et al. [23]

Present results Noghrehabadi
et al. [23]

−𝑓

(0)

0.00 0.7807764 0.78078 1.2807764 1.28078 3.3027756 3.30278 10.099020 10.09902
0.05 0.8603080 0.86031 1.5097201 1.50972 4.2053250 4.20532 13.087484 13.08748
0.10 0.9060379 0.90604 1.6564339 1.65643 4.8141236 4.81412 15.107262 15.10726
0.15 0.9303482 0.93035 1.7395348 1.73953 5.1682565 5.16826 16.283121 16.28312
0.20 0.9392930 0.93929 1.7710695 1.77107 5.3042838 5.30428 16.734937 16.73494

−𝜃

(0)

0.00 0.3341463 0.33415 4.1338760 4.13375 18.877000 18.87699 62.085783 62.08581
0.05 0.3374948 0.33750 3.5686858 3.56861 16.003319 16.00329 52.565657 52.56564
0.10 0.3412474 0.34125 3.0990601 3.00902 13.637179 13.63716 44.731160 44.73115
0.15 0.3441451 0.34415 2.7036778 2.70365 11.662391 11.66238 38.194788 38.19476
0.20 0.3458192 0.34582 2.3673248 2.36732 9.995764 9.99572 32.679360 32.67934

Reddy Gorla and Sidawi [26], and Noghrehabadi et al. [23]
in Tables 2, 3, and 4, respectively. These tables indicate an
excellent agreement between the present exact solutions and
the previous results but in a simple and direct analysis rather
than the long analytical presentation in [22] and even the
difficult combination of a symbolic power series and Padé
approximation method in [23].

4.2. Case 2: When 𝛿
1
̸= 0 and 𝛿

2
=0. Figures 1 and 2 show the

effect of the volume friction 𝜙 of Cu-water and Al
2
O
3
-water

nanoparticles, respectively, on velocity distribution 𝑓(𝜂) at
different values of 𝑠 when 𝑃𝑟 = 6.2 and 𝛿

1
= 1. These figures

indicate that the increase in nanoparticle volume friction
decreases the velocity magnitude in the case of Cu-water
nanofluid; however it increases the velocity magnitude in
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Figure 1: Effect of the volume friction 𝜙 of Cu-water nanoparticles
on velocity distribution 𝑓(𝜂) at different values of 𝑠 when 𝑃𝑟 = 6.2,
𝛿
1
= 1, and 𝛿

2
= 0.
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Figure 2: Effect of the volume friction 𝜙 of Al
2
O
3
-water nanopar-

ticles on velocity distribution 𝑓

(𝜂) at different values of 𝑠 when

𝑃𝑟 = 6.2, 𝛿
1
= 1, and 𝛿

2
= 0.

the case of Al
2
O
3
-water nanofluid. The difference between

their behaviour is because of the difference between density
ratios of the proposed nanoparticles to the density of water,
which affects the momentum equation. Further, in both
cases of Cu-water and Al

2
O
3
-water nanofluids, the increase

in 𝑠 decreases the magnitude of 𝑓(𝜂) and hydrodynamic
boundary layer. It should be mentioned here that the other
nanoparticles have been also examined and it was found that
Ag-water nanofluid behaves like Cu-water nanofluid, while
TiO
2
-water and SiO

2
-water nanofluids behave as Al

2
O
3
-

water nanofluid. However, the velocity distribution 𝑓(𝜂) of
these nanoparticles is as follows: 𝑓|Ag < 𝑓


|Cu < 𝑓


|TiO2 <

𝑓

|Al2O3 ≅ 𝑓


|SiO2 . This is presented in Figure 3, which shows

a comparison of the variation of the velocity profiles for all
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Figure 3: Comparing the variation of velocity distribution 𝑓(𝜂) for
the investigated nanoparticles when 𝑃𝑟 = 6.2, 𝛿

1
= 0.5, 𝛿

2
= 0,

𝑠 = 0.5, and 𝜙 = 0.1.
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Figure 4: Effect of the volume friction 𝜙 of Cu-water nanoparticles
on temperature distribution 𝜃(𝜂) at different values of 𝑠 when 𝑃𝑟 =
6.2, 𝛿

1
= 1, and 𝛿

2
= 0.

the studied nanoparticles at specific values of the physical
parameters.

The effect of the volume friction 𝜙 of Cu-water nanopar-
ticles on temperature distribution 𝜃(𝜂) at different values of
𝑠 when 𝑃𝑟 = 6.2 and 𝛿

1
= 1 is plotted in Figure 4. This

figure indicates that the increase in 𝜙 increases 𝜃(𝜂) and
hence the thermal boundary-layer thickness. This result is
compatible with those obtained very recently by Vajravelu
et al. [24] and also agrees with the physical behaviour as
addition of 𝜙 increases the thermal conductivity of the pure
fluid and this results in increasing the thermal diffusion in
the boundary layer. Further, increase in 𝑠 decreases 𝜃(𝜂) as
well as the thermal boundary-layer thickness. All of the other
investigated nanoparticles behave like Cu-water nanofluid
with 𝜃|Ag > 𝜃|Cu > 𝜃|Al2O3 ≅ 𝜃|SiO2 > 𝜃|TiO2 , as illustrated
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Figure 5: Comparing the variation of temperature distribution 𝜃(𝜂)
for the investigated nanoparticles when 𝑃𝑟 = 6.2, 𝛿

1
= 0.5, 𝛿

2
= 0,

𝑠 = 0.5, and 𝜙 = 0.1.
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Figure 6: Effect of the first slip 𝛿
1
on velocity distribution 𝑓(𝜂) at

different values of 𝑠 for Cu-water nanoparticles when 𝑃𝑟 = 6.2, 𝜙 =
0.1, and 𝛿

2
= 0.

in Figure 5, which presents a comparison of the variation of
temperature distribution for all the studied nanoparticles at
specific values of the physical parameters.

Figures 6 and 7 present the effect of the first slip 𝛿
1
on

the velocity 𝑓 and temperature 𝜃 distributions at different
values of 𝑠 for Cu-water nanoparticles when 𝑃𝑟 = 6.2, and
𝜙 = 0.1, respectively. Figure 6 shows that the increase in
𝛿
1
significantly decreases the velocity near 𝜂 = 0 and then

slightly increases it as 𝜂 → 𝜂
∞
. However, the increase

in 𝛿
1
increases significantly the temperature and thermal

boundary-layer thickness in the injection case, that is, when
𝑠 < 0, with a little increasing in the suction case when 𝑠 > 0,
and no effect when 𝑠 ≫ 1. From these figures, one can also
notice that increase in 𝑠 decreases 𝑓(𝜂) and 𝜃(𝜂), as well
as the hydrodynamic and thermal boundary-layer thickness,
respectively.Thismeans that, although the increase in the first
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Figure 7: Effect of the first slip 𝛿
1
on temperature distribution 𝜃(𝜂)

at different values of 𝑠 for Cu-water nanoparticles when 𝑃𝑟 = 6.2,
𝜙 = 0.1, and 𝛿

2
= 0.

slip slows down the velocity, it increases the temperature with
impressive effect in the injection case.

The most important parameters of hydrodynamic and
thermal boundary layer, namely, reduced skin friction coef-
ficient and reduced Nusselt number, have been indicated
in Figures 8–11. In particular, Figures 8 and 9 present the
effect of the first slip 𝛿

1
and 𝑠, respectively, for reduced skin

friction coefficient as a function of 0 ≤ 𝜙 ≤ 0.2 for Cu-
water nanofluid, as a representative for the behaviour of all
investigated nanoparticles, when 𝑃𝑟 = 6.2 and 𝑠 = 0.5,
while Figures 10 and 11 show also the effect of 𝛿

1
and 𝑠 on

reducedNusselt number at the same specific values. Figures 8
and 9 show that increase in 𝛿

1
and 𝑠 decreases and increases,

respectively, the local skin friction. With significant effects,
the same result is also observed in Figures 10 and 11 for the
reduced Nusselt number.

Comparison of the variation of reduced skin friction coef-
ficient and reduced Nusselt number for the studied nanopar-
ticles, at selected values of the physical parameters, is plotted
in Figures 12 and 13. These figures show that the reduced
skin friction coefficient (RSFC) of these nanoparticles is as
follows: RSFC|Ag > RSFC|Cu > RSFC|TiO2 > RSFC|Al2O3
≅ RSFC|SiO2 . However, vise versa behaviour is noticed in
Figure 13.The difference between these types of nanoparticles
is because the difference between their densities. Observing
Table 1 and (15)–(17), as the nanoparticle becomes heavy,
this results in increase and decrease in reduced skin friction
coefficient and reduced Nusselt number, respectively.

4.3. Case 3: When 𝛿
1
̸= 0, and 𝛿

2
̸= 0. In the presence of

second order slip, as shown in Figures 14, 15, 16, and 17,
behaviour of the velocity and temperature is similar to those
in 1, 3, 4, and 5, respectively. However, for Ag-water and
Cu-water nanoparticles, a decreasing difference is noticed on
comparing Figures 15 and 3. This means that the second slip
affects significantly the heaviest nanoparticles. Figures 18 and
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Figure 8: Effect of the first slip 𝛿
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on reduced skin friction coefficient as a function of 0 ≤ 𝜙 ≤ 0.2 for Cu-water nanoparticles when 𝑃𝑟 = 6.2,
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Figure 9: Effect of 𝑠 on reduced skin friction coefficient as a function of 0 ≤ 𝜙 ≤ 0.2 for Cu-water nanoparticles when 𝑃𝑟 = 6.2, 𝛿
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= 1, and
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Figure 10: Effect of the first slip 𝛿
1
on reduced Nusselt number as a function of 0 ≤ 𝜙 ≤ 0.2 for Cu-water nanoparticles when 𝑃𝑟 = 6.2,

𝑠 = 0.5, and 𝛿
2
= 0.

19 compare the variation of reduced skin friction coefficient
and reduced Nusselt number, respectively, for the studied
nanoparticles, at selected values of the physical parameters.
These figures show that the RSFC of these nanoparticles is as
follows: RSFC|Ag < RSFC|Cu < RSFC|TiO2 < RSFC|Al2O3 ≅
RSFC|SiO2 . This is vise versa behaviour comparing with

Figure 12 with significant change in the Ag-water and Cu-
water nanoparticles, as stated before. Although the same
behaviour is observed in Figures 13 and 19, the nanoparticles
with highest density are more affected in the presence of the
second slip. The results of this section demonstrate clearly
that the second order slip flow model is necessary to predict
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Figure 11: Effect of 𝑠 on reduced Nusselt number as a function of 0 ≤ 𝜙 ≤ 0.2 for Cu nanoparticles when 𝑃𝑟 = 6.2, 𝛿
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Figure 14: Effect of the volume friction 𝜙 of Cu-water nanoparticles on velocity distribution 𝑓(𝜂) when 𝑃𝑟 = 6.2, 𝑠 = 0.5, 𝛿
1
= 1, and

𝛿
2
= −1.

0.5 1.0 1.5 2.0

0.1

0.2

0.3

0.4

0.5

Cu
TiO2

Al2O3

SiO2

Ag

f
 (
𝜂
)

𝜂

Figure 15: Comparing the variation of velocity distribution 𝑓(𝜂) for the investigated nanoparticles when 𝑃𝑟 = 6.2, 𝛿
1
= 1, 𝛿

2
= −1, 𝑠 = 0.5,

and 𝜙 = 0.1.

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

Cu-water

𝜂

𝜃
(𝜂
)

𝜙 = 0

𝜙 = 0.05

𝜙 = 0.1

𝜙 = 0.2

Figure 16: Effect of the volume friction 𝜙 of Cu-water nanoparticles on temperature distribution 𝜃(𝜂) when 𝑃𝑟 = 6.2, 𝑠 = 0.5, 𝛿
1
= 1, and

𝛿
2
= −1.



12 Abstract and Applied Analysis

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

Cu
TiO2

Al2O3

SiO2

Ag

𝜂

𝜃
(𝜂
)

Figure 17: Comparing the variation of temperature distribution 𝜃(𝜂) for the investigated nanoparticles when 𝑃𝑟 = 6.2, 𝛿
1
= 1, 𝛿

2
= −1,

𝑠 = 0.5, and 𝜙 = 0.1.

0.00 0.05 0.10 0.15 0.20
0.2

0.4

0.6

0.8

1.0

1.2

𝜙

Cu
TiO2

Al2O3

SiO2

Ag

C
f
/√

Re
x

Figure 18: Comparing the variation of reduced skin friction coefficient as a function of 0 ≤ 𝜙 ≤ 0.2 for the investigated nanoparticles𝑃𝑟 = 6.2,
𝛿
1
= 1, 𝛿

2
= −1, and 𝑠 = 0.5.

0.00 0.05 0.10 0.15 0.20
3.0

3.2

3.4

3.6

3.8

4.0

𝜙

Cu
TiO2

Al2O3

SiO2

Ag

N
u/
√
Re

x

Figure 19: Comparing the variation of reduced Nusselt number as a function of 0 ≤ 𝜙 ≤ 0.2 for the investigated nanoparticles 𝑃𝑟 = 6.2,
𝛿
1
= 1, 𝛿

2
= −1, and 𝑠 = 0.5.



Abstract and Applied Analysis 13

the flow characteristics accurately. This agrees with the result
obtained recently by Roşca and Pop [20].

5. Conclusion

The governing equations for nanofluids flow over an isother-
mal stretching sheet with the effect of the slip model were
examined in this paper. In a direct and very effective manner,
we analytically obtained the exact solutions for the flow
and temperature equations. Further, five nanoparticles were
considered and compared in the present analysis. Therefore,
the most interesting physical parameters were discussed in
the presence of no slip, first order slip, and second order slip,
parameters.

With no-slip effect, the present exact solutions are in a
very good agreement with the results presented in [22, 23, 25,
26]. Some of the interesting results of applying the slip model
are as follows:

(1) increase in the nanoparticle volume friction decreases
the velocity of Cu/Ag-water nanoparticles, increases
it for Al

2
O
3
/TiO
2
/SiO
2
-water nanoparticles, and

increases the temperature, and hence the thermal
boundary-layer thickness, for the whole five investi-
gated nanoparticles;

(2) increase in the wall mass decreases the velocity and
temperature, as well as the thermal and hydrody-
namic boundary-layer thickness, and increases the
local skin friction;

(3) increase in the slips slows down the velocity, increases
the temperature with an impressive effect in the
injection case, and decreases the local skin friction
and the reduced Nusselt number, with significate
effects;

(4) as the nanoparticle becomes heavier, this results in
increase and decrease in the reduced skin friction
coefficient and reduced Nusselt number, respectively;

(5) the second order slip parameter affects considerably
the flow characteristics, specially for the heaviest
nanoparticles.

The final note is for practical and industrial applications;
Silver is the suitable nanoparticle if slowing down the velocity
and increasing the temperature are needed; on the other
hand, Silicon Dioxide is the appropriate nanoparticle if vise
versa behaviour is to be considered.
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[20] A. V. Roşca and I. Pop, “Flow and heat transfer over a vertical
permeable stretching/shrinking sheet with a second order slip,”
International Journal ofHeat andMass Transfer, vol. 60, pp. 355–
364, 2013.

[21] N. A. Yacob, A. Ishak, I. Pop, and K. Vajravelu, “Boundary layer
flow past a stretching/shrinking surface beneath an external
uniform shear flow with a convective surface boundary condi-
tion in a nanofluid,” Nanoscale Research Letters, vol. 6, pp. 314–
321, 2011.

[22] M. A. A.Hamad, “Analytical solution of natural convection flow
of a nanofluid over a linearly stretching sheet in the presence of
magnetic field,” International Communications inHeat andMass
Transfer, vol. 38, no. 4, pp. 487–492, 2011.

[23] A. Noghrehabadi, M. Ghalambaz, M. Ghalambaz, and A.
Ghanbarzadeh, “Comparing thermal enhancement of Ag-water
and SiO

2
-water nanofluids over an isothermal stretching sheet

with suction or injection,” Journal of Computational andApplied
Research in Mechanical Engineering, vol. 2, pp. 35–47, 2012.

[24] K. Vajravelu, K. V. Prasad, and C.-O. Ng, “The effect of variable
viscosity on the flow and heat transfer of a viscous Ag-water and
Cu-water nanofluids,” Journal of Hydrodynamics, vol. 25, pp. 1–
9, 2013.

[25] C. Y. Wang, “Free convection on a vertical stretching surface,”
Journal of Applied Mathematics and Mechanics, vol. 69, pp. 418–
420, 1989.

[26] R. S. Reddy Gorla and I. Sidawi, “Free convection on a vertical
stretching surface with suction and blowing,” Applied Scientific
Research, vol. 52, no. 3, pp. 247–257, 1994.

[27] H. F. Oztop and E. Abu-Nada, “Numerical study of natural
convection in partially heated rectangular enclosures filled with
nanofluids,” International Journal of Heat and Fluid Flow, vol.
29, no. 5, pp. 1326–1336, 2008.

[28] K. Khanafer, K. Vafai, and M. Lightstone, “Buoyancy-driven
heat transfer enhancement in a two-dimensional enclosure
utilizing nanofluids,” International Journal of Heat and Mass
Transfer, vol. 46, no. 19, pp. 3639–3653, 2003.

[29] K. Khanafer andK.Vafai, “A critical synthesis of thermophysical
characteristics of nanofluids,” International Journal of Heat and
Mass Transfer, vol. 54, no. 19-20, pp. 4410–4428, 2011.

[30] L. Wu, “A slip model for rarefied gas flows at arbitrary Knudsen
number,” Applied Physics Letters, vol. 93, no. 25, Article ID
253103, 2008.

[31] K. Vajravelu, K. V. Prasad, J. Lee, C. Lee, I. Pop, and R. A.
Van Gorder, “Convective heat transfer in the flow of viscous
Ag-water and Cu-water nanofluids over a stretching surface,”
International Journal ofThermal Sciences, vol. 50, no. 5, pp. 843–
851, 2011.

[32] C. Y. Wang, “Analysis of viscous flow due to a stretching sheet
with surface slip and suction,” Nonlinear Analysis. Real World
Applications, vol. 10, no. 1, pp. 375–380, 2009.

[33] E. H. Aly and A. Ebaid, “On the exact analytical and numerical
solutions of nano boundary-layer fluid flows,” Abstract and
Applied Analysis, vol. 2012, Article ID 415431, 22 pages, 2012.

[34] E. H. Aly and A. Ebaid, “New exact solutions for boundary-
layer flow of a nanofluid past a stretching sheet,” Journal of

Computational and Theoretical Nanoscience, vol. 10, pp. 2591–
2595, 2013.

[35] R. A. Van Gorder, E. Sweet, and K. Vajravelu, “Nano boundary
layers over stretching surfaces,” Communications in Nonlinear
Science and Numerical Simulation, vol. 15, no. 6, pp. 1494–1500,
2010.


