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The qualitative theory of differential equations is applied to the osmosis K(2, 2) equation.The parametric conditions of existence of
the smooth periodic travelling wave solutions are given. We show that the solution map is not uniformly continuous by using the
theory of Himonas and Misiolek. The proof relies on a construction of smooth periodic travelling waves with small amplitude.

1. Introduction

It is well known that the study of nonlinear wave equations
and their solutions are of great importance in many areas
of physics. Travelling wave solution is an important type
of solution for the nonlinear partial differential equation
and many nonlinear partial differential equations have been
found to have a variety of travelling wave solutions.

The well-known Korteweg-de-Vries equation
𝑢
𝑡
− 6𝑢𝑢

𝑥
+ 𝑢
𝑥𝑥𝑥

= 0 (1)
was first derived by Boussinesq in 1877, and later by Korteweg
and de Vries in 1895, as an approximate description of
surface water waves propagating in a canal.This equation has
since found application to a range of problems in solid and
fluid mechanics as well as plasma physics and astrophysics.
The KdV equation has smooth solitary wave solutions and
smooth periodic wave solutions [1]. Bona and Smith [2]
considered the Cauchy problem for (1). Bona [3] investigated
the stability of solitary waves of (1). Angulo Pava et al. [4]
studied stability of cnoidal waves of (1).

The Camassa-Holm equation
𝑢
𝑡
− 𝑢
𝑥𝑥𝑡

+ 3𝑢𝑢
𝑥
= 2𝑢
𝑥
𝑢
𝑥𝑥
+ 𝑢𝑢
𝑥𝑥𝑥

(2)
was proposed by Camassa and Holm [5] as a model equation
for unidirectional nonlinear dispersive waves in shallow

water. This equation has attracted a lot of attention over the
past decade due to its interesting mathematical properties.
The Camassa-Holm equation has been found to has peakons,
cuspons, stumpons, and composite wave solutions [6–11].
Himonas and Misiołek [12] showed that for 𝑠 ≥ 2 the
solution map 𝑢

0
→ 𝑢 for the Camassa-Holm equation is

not uniformly continuous from any bounded set in 𝐻
𝑠
(𝑆)

into 𝐶([0, 𝑇],𝐻
𝑠
(𝑆)). A key step in the proof of that result

is a construction of a sequence of smooth travelling waves.
Himonas et al. [13] extend the result to the range 3/2 < 𝑠 < 2.
Their proof is based on the approximation of solutions by
terms containing high and low frequencies and exploring the
conservation of the𝐻1 norm.

The Degasperis-Procesi equation

𝑢
𝑡
− 𝑢
𝑥𝑥𝑡

+ 3𝑢𝑢
𝑥
= 2𝑢
𝑥
𝑢
𝑥𝑥
+ 𝑢𝑢
𝑥𝑥𝑥

(3)

was originally derived by Degasperis and Procesi. Zhang
and Qiao [14] gave smooth and cusped soliton solutions of
the Degasperis-Procesi equation. Liu and Yin [15] proved
that the first blowup in finite time to (3) must occur as
wave breaking, and shock waves possibly appear afterwards.
Christov and Hakkaev [16] considered the problem of the
uniformly continuity of Degasperis-Procesi equation.
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In 1993, Rosenau and Hyman [17] introduced a genuinely
nonlinear dispersive equation, a special type of KdV equa-
tion, of the form

𝑢
𝑡
+ (𝑢
𝑚
)
𝑥
+ (𝑢
𝑛
)
𝑥𝑥𝑥

= 0, (4)

where both the convection term (𝑢
𝑚
)
𝑥
and the dispersion

effect term (𝑢
𝑛
)
𝑥𝑥𝑥

are nonlinear.These equations arise in the
process of understanding the role of nonlinear dispersion in
the formation of structures like liquid drops. If 𝑚 = 𝑛 = 2,
then there exits special form

𝑢
𝑡
+ (𝑢
2
)
𝑥
+ 𝜆(𝑢

2
)
𝑥𝑥𝑥

= 0. (5)

When 𝜆 = 1, then (5) becomes the K(2, 2) equation

𝑢
𝑡
+ (𝑢
2
)
𝑥
+ (𝑢
2
)
𝑥𝑥𝑥

= 0. (6)

Rosenau andHyman derived solutions called compactons for
(6). For 𝜆 = −1, Xu and Tian [18] introduced the osmosis K(2,
2) equation

𝑢
𝑡
+ (𝑢
2
)
𝑥
− (𝑢
2
)
𝑥𝑥𝑥

= 0, (7)

where the negative coefficient of dispersion term denotes the
contracting dispersion. They obtained the peaked solitary
wave solution and the periodic cusp wave solution for (7).
Zhou et al. [19] obtained two new types of travelling wave
solutions called kink-like and antikink-like wave solutions.
Zhou and Tian [20] obtained the analytic expressions of
soliton solution of (7) by using the bifurcation method of
dynamical systems. Deng and Han [21] successfully found
a peaked wave solution of (7) by using the first-integral
method. Deng et al. [22] obtained some new exact travelling-
wave solutions and stationary-wave solutions by using the
auxiliary elliptic equationmethod. Recently, Chen and Li [23]
obtained single peak solitary wave solutions of the osmosis
K(2, 2) equation.

To the best of our knowledge, the problems of the well-
posedness and the uniformly continuity of (7) have not
yet been considered. Applying Kato’s theory for abstract
quasilinear evolution equation of hyperbolic type [16], ones
may obtain the local wellposedness for (7). Here, we do
not consider the wellposedness for (7). Following [12], we
consider the problem of the uniformly continuity of (7) by
constructing two sequences of solutions. We hope to extend
the result to the range 𝑠 < 2 by using approximate solutions
and delicate commutator and multiplier estimates in the
future. Our main result is the following theorem.

Theorem 1. For any 𝑠 ≥ 2, the solution map 𝑢
0
→ 𝑢 for

(7) is not uniformly continuous from any bounded set in𝐻𝑠(𝑆)
into 𝐶([0, 𝑇],𝐻𝑠(𝑆)), where 𝑆 = 𝑅/2𝜋𝑍. More precisely, for
each 𝑠 ≥ 2 there exist constants 𝑐

1
and 𝑐
2
and two sequences of

smooth solutions 𝑢
𝑛
and V
𝑛
of (7) such that for any 𝑡 ∈ [0, 1],

sup
𝑛

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
(𝑡)
󵄩
󵄩
󵄩
󵄩𝐻
𝑠 + sup
𝑛

󵄩
󵄩
󵄩
󵄩
V
𝑛
(𝑡)
󵄩
󵄩
󵄩
󵄩𝐻
𝑠 ≤ 𝑐1

,

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
(0) − V

𝑛
(0)

󵄩
󵄩
󵄩
󵄩𝐻
𝑠 = 0,

lim inf
𝑛

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
(𝑡) − V

𝑛
(𝑡)
󵄩
󵄩
󵄩
󵄩𝐻
𝑠 ≥ 𝑐2

sin( 𝑡
2

) .

(8)

The paper is organized as follows. In Section 2, we discuss
the dynamical behavior of solutions of the K(2, 2) equation
(5) and give parameter condition of existence of the smooth
periodic travelling wave solutions. In Section 3, we provide
a precise estimate of periods of the periodic travelling wave
solutions. In Section 3, we establish upper bounds for these
solutions in𝐻𝑠-norms. The last section contains the proof of
the main result.

2. Dynamical Analysis of Travelling Waves

In this section we investigate the periodic travelling wave
solutions of (5). Note that if 𝑢(𝑥, 𝑡) is a classical solution of
(5), then so is the function

𝑢
𝑐
(𝑥, 𝑡) = 𝑐𝑢 (𝑥, 𝑐𝑡) , for any constant 𝑐. (9)

If 𝑢(𝑥, 𝑡) = 𝜑(𝜉) = 𝜑(𝑥 − 𝑡) is to be a solution to (5), the
function 𝜑must satisfy the ordinary differential equation

−𝜑
󸀠
+ (𝜑
2
)

󸀠

+ 𝜆(𝜑
2
)

󸀠󸀠󸀠

= 0. (10)

Integrating this equation gives

2𝜆𝜑𝜑
󸀠󸀠
= 𝑎 + 𝜑 − 𝜑

2
− 2𝜆(𝜑

󸀠
)

2

, (11)

where 𝑎 is an integration constant. Equation (11) is equivalent
to the planar system

𝑑𝜑

𝑑𝜉

= 𝑦,

𝑑𝜑

𝑑𝜉

=

𝑎 + 𝜑 − 𝜑
2
− 2𝜆𝑦

2

2𝜆𝜑

,

(12)

with the first integral

𝐻(𝜑, 𝑦) = 𝜆𝜑
2
𝑦
2
+

1

4

𝜑
4
−

1

3

𝜑
3
−

𝑎

2

𝜑
2
= ℎ, (13)

where ℎ is also an integral constant. As well known, system
(12) has a periodic solution if and only if it has a center. Using
qualitative theory of differential equations [24, 25], we can
easily verify the following statement.

Proposition 2. System (12) has a center if and only if 𝜆, 𝑎
satisfies one of the following parameter set (see Figures 1, 2, 3,
4, 5, and 6):

𝐴 = {(𝜆, 𝑎) | 𝜆 > 0, −

1

4

< 𝑎 < 0} ;

𝐵 = {(𝜆, 𝑎) | 𝜆 > 0, 𝑎 = 0} ;

𝐶 = {(𝜆, 𝑎) | 𝜆 > 0, 𝑎 > 0} ;

𝐷 = {(𝜆, 𝑎) | 𝜆 < 0, −

2

9

< 𝑎 < 0} ;

𝐸 = {(𝜆, 𝑎) | 𝜆 < 0, 𝑎 = −

2

9

} ;

𝐹 = {(𝜆, 𝑎) | 𝜆 < 0, −

1

4

< 𝑎 < −

2

9

} .

(14)
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Figure 1: Phase portrait of system (12) for (𝜆, 𝑎) ∈ 𝐴.
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Figure 2: Phase portrait of system (12) for (𝜆, 𝑎) ∈ 𝐵.

3. Estimates of Periods of Solutions

In this section we construct a family of smooth travelling
wave solutions of suitably high frequency and provide a
precise estimate of their periods.

Let 𝑚 and 𝑀 be the minimum and maximum of the
function 𝜑, correspondingly; that is, 𝑚 ≤ 𝜑 ≤ 𝑀 (see
Figure 7). We assume that 0 ≪ 𝑚 = 𝛿 < 𝑀 = 𝛿 + 𝜖 < 1

for sufficiently small 𝜖, 𝛿 > 0. We assume that 𝜆 = −1, since
there are similar results for 𝜆 = 1. Equation (13) gives

𝜑
2
𝑦
2
=

1

4

𝜑
4
−

1

3

𝜑
3
−

𝑎

2

𝜑
2
− ℎ. (15)
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Figure 3: Phase portrait of system (12) for (𝜆, 𝑎) ∈ 𝐶.
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Figure 4: Phase portrait of system (12) for (𝜆, 𝑎) ∈ 𝐷.

Expressing 𝑎, ℎ through𝑀 and𝑚 we find

𝑎 =

3 (𝑀 + 𝑚) (𝑀
2
+ 𝑚
2
) − 4 (𝑀

2
+𝑀𝑚 + 𝑚

2
)

6 (𝑀 + 𝑚)

, (16)

ℎ =

𝑀
2
𝑚
2
(4 − 3 (𝑀 + 𝑚))

12 (𝑀 + 𝑚)

. (17)

Then (15) becomes

𝑦
2
=

𝑉 (𝜑)

4𝜑
2
, (18)
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Figure 5: Phase portrait of system (12) for (𝜆, 𝑎) ∈ 𝐸.
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Figure 6: Phase portrait of system (12) for (𝜆, 𝑎) ∈ 𝐹.
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Figure 7: The periodic solution of (18).

where

𝑉 (𝜑) = (𝑀 − 𝜑) (𝜑 − 𝑚) (−𝜑
2
+ 𝑝𝜑 + 𝑞) ,

𝑝 =

4

3

−𝑀 − 𝑚,

𝑞 =

𝑀𝑚(4 − 3 (𝑀 + 𝑚))

3 (𝑀 + 𝑚)

.

(19)

In comparison with Camassa-Holm equation, the function
𝑉(𝜑) is a quartic function rather than cubic function. It can
be seen that (18) admits to a nonconstant solutionwith period
2𝑙 for certain 𝑙 > 0, which satisfies the following initial value
problem:

𝜑
󸀠󸀠
= −

1

6

+

1

4

𝜑 +

ℎ

𝜑
3
, 𝜑 (0) = 𝛿, 𝜑

󸀠
(0) = 0. (20)

The above discussion can be summarized as follows.

Proposition 3. For any 𝜖, 𝛿 < 1/6, there exists a positive
number 𝑙 = 𝑙(𝜖, 𝛿) and even 2𝑙 periodic smooth function 𝜑 =

𝜑(𝜉) which solves (18) and (20). The function 𝜑 = 𝜑(𝜉) satisfies

𝑚 = 𝛿 ≤ 𝜑 ≤ 𝛿 + 𝜖 = 𝑀 (21)

and 𝑢(𝑥, 𝑡) = 𝜑(𝑥 − 𝑡), where 𝜑(𝜉) = 𝜑(𝑥 − 𝑡) is a travelling
wave solution of the osmosis K(2, 2) equation (7).

The next proposition gives precise estimates for the
period of the solution 𝜑 in terms of the parameters 𝜖 and 𝛿.

Proposition 4. The period 2𝑙 of function 𝜑 depends continu-
ously on parameters 𝜖 and 𝛿 and satisfies

√
3

8

𝜋√𝛿 + 𝜖 ≤ 𝑙 ≤ 2√2𝜋√𝛿 + 𝜖. (22)

Proof. The half period can be expressed as

𝑙 = ∫

𝑀

𝑚

𝑑𝜉

𝑑𝜑

𝑑𝜑 = ∫

𝑀

𝑚

2𝜑𝑑𝜑

√(𝑀 − 𝜑) (𝜑 − 𝑚)𝑓 (𝜑)

, (23)

where 𝑓(𝜑) = −𝜑
2
+ 𝑝𝜑 + 𝑞. The function 𝑓 is increasing in

the interval (−∞, 𝜑
∗
], where 𝜑

∗
= 2/3 − (𝑀 + 𝑚)/2. On the

other hand,

𝜑
∗
−𝑀 =

2

3

−

𝑀 + 𝑚

2

−𝑀

=

1

6

(4 − 9𝑀 − 3𝑚)

≥

1

6

(4 − 12𝑀)

≥

1

6

(4 − 12 (𝛿 + 𝜖)) > 0.

(24)
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Thus,𝑓min = 𝑓(𝑚) and𝑓max = 𝑓(𝑀) in interval [𝑚,𝑀].Then

𝑙 ≤

2

√𝑓 (𝑚)

∫

𝑀

𝑚

𝜑𝑑𝜑

√(𝑀 − 𝜑) (𝜑 − 𝑚)

=

𝜋

√𝑓 (𝑚)

(𝑀 + 𝑚) ,

(25)

𝑙 ≥

2

√𝑓 (𝑀)

∫

𝑀

𝑚

𝜑𝑑𝜑

√(𝑀 − 𝜑) (𝜑 − 𝑚)

=

𝜋

√𝑓 (𝑀)

(𝑀 + 𝑚) .

(26)

The estimate for 𝑓(𝑀) is 𝑓(𝑀) ≤ (8/3)𝑀. Then from (26) it
follows the lower bound

𝑙 ≥

𝜋

√𝑓 (𝑀)

(𝑀 + 𝑚) ≥

𝜋

√(8/3)𝑀

(𝑀 + 𝑚)

≥ √
3

8

𝜋√𝑀 = √
3

8

𝜋√𝛿 + 𝜖.

(27)

Estimating 𝑓(𝑚) we have 𝑓(𝑚) ≥ 2𝑚(2/3 −𝑀 −𝑚). Choose
𝑀 and𝑚 in such a way to achieve

𝑓 (𝑚) ≥ 2𝑚(

2

3

−𝑀 − 𝑚) ≥

𝑀

2

. (28)

Then with the help of (25) it follows

𝑙 ≤

𝜋

√𝑓 (𝑚)

(𝑀 + 𝑚) ≤

𝜋

√𝑀/2

(𝑀 + 𝑚)

≤ 2√2𝜋√𝑀 = 2√2𝜋√𝛿 + 𝜖.

(29)

Combining (27) and (29), we complete the proof of the
proposition.

4. Sobolev Estimates of Solutions

We write 𝑙 ≃ √𝛿 + 𝜖 for the sake of (22). Since 𝑙(𝜖, 𝛿) is
continuous for 𝑛 sufficiently large, we can find 𝜖 and 𝛿 such
that

𝑙 =

𝜋

𝑛

, (30)

𝑛 ≃

1

√𝛿 + 𝜖

, (31)

where 𝛿𝑠 = 𝜖
2
, 𝑠 ≥ 2. Hence, we have constructed high-

frequency solution 𝜑 = 𝜑
𝑛
(𝜉) with the period 𝑇 = 2𝜋/𝑛.

Next we need some estimates in order to obtain upper
bounds for these solutions. We start with 𝐿∞ estimates of the
derivatives.

Proposition 5. Suppose 𝛿 ≥ 𝜖. Then for any 𝑘 = 2, 3, . . ., there
exists a constant 𝑐

𝑘
> 0 such that
󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
(𝑘)
(𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨
≤

𝑐
𝑘

(√𝛿)

𝑘−2
. (32)

For 𝑘 = 1 we have

󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
󸀠
(𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨
≤

2√3

3

𝜖

√𝛿

. (33)

Proof. With the help of (18), the first derivative is estimated
as follows:

󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
󸀠󵄨󵄨
󵄨
󵄨
󵄨
=

√(𝑀 − 𝜑) (𝜑 − 𝑚)𝑓 (𝜑)

2𝜑

≤

(𝑀 − 𝑚)√𝑓max
2𝑚

≤

(𝑀 − 𝑚)√(8/3)𝑀

2𝑚

≤

2√3

3

𝜖

√𝛿

.

(34)

For 𝑘 = 2 using (20) we have

󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
󸀠󸀠󵄨󵄨
󵄨
󵄨
󵄨
≤

1

6

+

1

4

󵄨
󵄨
󵄨
󵄨
𝜑
󵄨
󵄨
󵄨
󵄨
+

|ℎ|

󵄨
󵄨
󵄨
󵄨
𝜑
3󵄨󵄨
󵄨
󵄨

≤

1

6

+

1

4

(𝛿 + 𝜖) +

|ℎ|

󵄨
󵄨
󵄨
󵄨
𝛿
3󵄨󵄨
󵄨
󵄨

=

1

6

+

1

4

(𝛿 + 𝜖) +

𝛿
2
(𝛿 + 𝜖)

2
(4 − 6𝛿 − 3𝜖)

12𝛿
3
(2𝛿 + 𝜖)

≤

11

12

.

(35)

Next, we proceed by induction and assume that (32) is true
for all positive integers up to 𝑘 + 2. To estimate (𝑘 + 3)-order
derivative we have from (20)

𝜑
3
𝜑
󸀠󸀠
=

1

4

𝜑
4
−

1

6

𝜑
3
+ ℎ. (36)

Differentiate both sides of (36) and divide by 𝜑2 to obtain

𝜑𝜑
󸀠󸀠󸀠
= −3𝜑

󸀠
𝜑
󸀠󸀠
+ 𝜑𝜑
󸀠
−

1

2

𝜑
󸀠
. (37)

Taking 𝑘 derivatives and using Leibniz rule we have

𝑘

∑

𝑗=0

(

𝑘

𝑗
)𝜑
(𝑘−𝑗)

𝜑
(𝑗+3)

= −3

𝑘

∑

𝑗=0

(

𝑘

𝑗
)𝜑
(𝑘−𝑗+1)

𝜑
(𝑗+2)

+

𝑘

∑

𝑗=0

(

𝑘

𝑗
)𝜑
(𝑘−𝑗)

𝜑
(𝑗+1)

−

1

2

𝜑
(𝑘+1)

.

(38)

Now, 𝜑(𝑘+3) can be expressed as follows:

𝜑
(𝑘+3)

=

1

𝜑

(−

𝑘−1

∑

𝑗=0

(

𝑘

𝑗
)𝜑
(𝑘−𝑗)

𝜑
(𝑗+3)

− 3

𝑘

∑

𝑗=0

(

𝑘

𝑗
)𝜑
(𝑘−𝑗+1)

𝜑
(𝑗+2)

+

𝑘

∑

𝑗=0

(

𝑘

𝑗
)𝜑
(𝑘−𝑗)

𝜑
(𝑗+1)

−

1

2

𝜑
(𝑘+1)

) .

(39)
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The last equation together with the induction hypothesis
gives

󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
(𝑘+3)󵄨󵄨

󵄨
󵄨
󵄨

≤

1

𝛿

𝑘−1

∑

𝑗=0

(

𝑘

𝑗
)

𝑐
𝑘−𝑗

(√𝛿)

𝑘−𝑗−2

𝑐
𝑗+3

(√𝛿)

𝑗+3−2

+

3

𝛿

𝑘

∑

𝑗=0

(

𝑘

𝑗
)

𝑐
𝑘−𝑗+1

(√𝛿)

𝑘−𝑗+1−2

𝑐
𝑗+2

(√𝛿)

𝑗+2−2

+

1

𝛿

𝑘

∑

𝑗=0

(

𝑘

𝑗
)

𝑐
𝑘−𝑗

(√𝛿)

𝑘−𝑗−2

𝑐
𝑗+1

(√𝛿)

𝑗+1−2
+

1

2𝛿

𝑐
𝑘+1

(√𝛿)

𝑘+1−2
,

(40)

and therefore we have

󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
(𝑘+3)󵄨󵄨

󵄨
󵄨
󵄨
≤

𝑐
󸀠

𝑘+3

𝛿

(

𝑘−1

∑

𝑗=0

(

𝑘

𝑗
)

1

(√𝛿)

𝑘−1
+

𝑘

∑

𝑗=0

(

𝑘

𝑗
)

1

(√𝛿)

𝑘−1

+

𝑘

∑

𝑗=0

(

𝑘

𝑗
)

1

(√𝛿)

𝑘−3
+

1

(√𝛿)

𝑘−1
) .

(41)

Thus
󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
(𝑘+3)

(𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨
≤

𝑐
𝑘+3

(√𝛿)

(𝑘+3)−2
, (42)

which complete the proof.

Further, we proceed with 𝐿2 estimates.

Proposition 6. For any 𝑘 = 2, 3, . . ., there exists a constant
𝑐
𝑘
> 0 such that

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
(𝑘)󵄩󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(−𝑙,𝑙)

≤

𝑐
𝑘

𝛿
𝑘−1

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
󸀠󵄩󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(−𝑙,𝑙)

. (43)

For 𝑘 = 1 we have

∫

𝑙

−𝑙

(𝜑
󸀠
)

2

𝑑𝜉 ≤

√3𝜋

6

𝜖
2

√𝛿

. (44)

Proof. For the first derivative we get

∫

𝑙

−𝑙

(𝜑
󸀠
)

2

𝑑𝜉

= ∫

𝛿+𝜖

𝛿

√(𝛿 + 𝜖 − 𝜑) (𝜑 − 𝛿) (−𝜑
2
+ 𝑝𝜑 + 𝑞)

𝜑

𝑑𝜑

≤

𝑓max
𝛿

∫

𝛿+𝜖

𝛿

√(𝛿 + 𝜖 − 𝜑) (𝜑 − 𝛿)𝑑𝜑

≤

√(8/3)𝑀

𝛿

⋅

𝜖
2

8

⋅ 𝜋 ≤

√3𝜋

6

𝜖
2

√𝛿

.

(45)

For the second derivative using symmetry, periodicity, and
integrating by parts, we have

∫

𝑙

0

(𝜑
󸀠󸀠
)

2

𝑑𝜉 = −∫

𝑙

0

𝜑
󸀠󸀠󸀠
(𝜉) 𝜑
󸀠
(𝜉) 𝑑𝜉

= −∫

𝛿+𝜖

𝛿

(

1

4

−

3ℎ

𝜑
4
)𝜑
󸀠
𝑑𝜑.

(46)

Since 𝛿 ≤ 𝜑 ≤ 𝛿 + 𝜖, using (17), the last equality gives

∫

𝑙

0

(𝜑
󸀠󸀠
)

2

𝑑𝜉 ≤ (

3 |ℎ|

𝛿
4
−

1

4

)∫

𝛿+𝜖

𝛿

𝜑
󸀠
𝑑𝜑

= (

3 |ℎ|

𝛿
4
−

1

4

)

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
󸀠󵄩󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(0,𝑙)

= (

(𝛿 + 𝜖)
2
(4 − 6𝛿 − 3𝜖)

4𝛿
2
(2𝛿 + 𝜖)

−

1

4

)

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
󸀠󵄩󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(0,𝑙)

≤

2

𝛿

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
󸀠󵄩󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(0,𝑙)

.

(47)

Proceeding by induction and using the expression for 𝜑𝑘+3 in
Proposition 5, we obtain

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
(𝑘+3)󵄩󵄩

󵄩
󵄩
󵄩𝐿
2
(−𝑙,𝑙)

≤

1

𝛿

(

𝑘−1

∑

𝑗=0

(
𝑘

𝑗
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
(𝑘−𝑗)

𝜑
(𝑗+3)󵄩󵄩

󵄩
󵄩
󵄩𝐿
2
(−𝑙,𝑙)

+ 3

𝑘

∑

𝑗=0

(
𝑘

𝑗
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
(𝑘−𝑗+1)

𝜑
(𝑗+2)󵄩󵄩

󵄩
󵄩
󵄩𝐿
2
(−𝑙,𝑙)

+

𝑘

∑

𝑗=0

(
𝑘

𝑗
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
(𝑘−𝑗)

𝜑
(𝑗+1)󵄩󵄩

󵄩
󵄩
󵄩𝐿
2
(−𝑙,𝑙)

+

1

2

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
(𝑘+1)󵄩󵄩

󵄩
󵄩
󵄩𝐿
2
(−𝑙,𝑙)

)

≤

1

𝛿

(

𝑘−1

∑

𝑗=0

(
𝑘

𝑗
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
(𝑘−𝑗)󵄩󵄩

󵄩
󵄩
󵄩𝐿
∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
(𝑗+3)󵄩󵄩

󵄩
󵄩
󵄩𝐿
2
(−𝑙,𝑙)

+ 3

𝑘

∑

𝑗=0

(
𝑘

𝑗
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
(𝑘−𝑗+1)󵄩󵄩

󵄩
󵄩
󵄩𝐿
∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
(𝑗+2)󵄩󵄩

󵄩
󵄩
󵄩𝐿
2
(−𝑙,𝑙)

+

𝑘

∑

𝑗=0

(
𝑘

𝑗
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
(𝑘−𝑗)󵄩󵄩

󵄩
󵄩
󵄩𝐿
∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
(𝑗+1)󵄩󵄩

󵄩
󵄩
󵄩𝐿
2
(−𝑙,𝑙)

+

1

2

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
(𝑘+1)󵄩󵄩

󵄩
󵄩
󵄩𝐿
2
(−𝑙,𝑙)

) .

(48)
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Applying the estimates of Proposition 5 and using the induc-
tion hypothesis, we estimate further as follows:
󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
(𝑘+3)󵄩󵄩

󵄩
󵄩
󵄩𝐿
2
(−𝑙,𝑙)

≤

1

𝛿

(

𝑘−1

∑

𝑗=0

(

𝑘

𝑗
)

𝑐
𝑘−𝑗

(√𝛿)

𝑘−𝑗−2
⋅

𝑐
𝑗+3

(√𝛿)

𝑗+2

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
󸀠󵄩󵄩
󵄩
󵄩
󵄩𝐿
2
(−𝑙,𝑙)

+ 3

𝑘

∑

𝑗=0

(

𝑘

𝑗
)

𝑐
𝑘−𝑗+1

(√𝛿)

𝑘−𝑗−1
⋅

𝑐
𝑗+2

(√𝛿)

𝑗+1

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
󸀠󵄩󵄩
󵄩
󵄩
󵄩𝐿
2
(−𝑙,𝑙)

+

𝑘

∑

𝑗=0

(

𝑘

𝑗
)

𝑐
𝑘−𝑗

(√𝛿)

𝑘−𝑗−2
⋅

𝑐
𝑗+1

(√𝛿)

𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
󸀠󵄩󵄩
󵄩
󵄩
󵄩𝐿
2
(−𝑙,𝑙)

+

1

2

𝑐
𝑘+1

(√𝛿)

𝑘

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
󸀠󵄩󵄩
󵄩
󵄩
󵄩𝐿
2
(−𝑙,𝑙)

) .

(49)

Therefore, we have
󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
(𝑘+3)󵄩󵄩

󵄩
󵄩
󵄩𝐿
2
(−𝑙,𝑙)

≤

𝑐
𝑘+3

√𝛿

(𝑘+3)−1

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
󸀠󵄩󵄩
󵄩
󵄩
󵄩𝐿
2
(−𝑙,𝑙)

. (50)

We close the section with an interpolation argument to
obtain the estimates for noninteger values of the Sobolev
index in the norm

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

2

𝐻
𝑠 = ∑

𝜉∈𝑍

(1 + 𝜉
2
)

𝑠󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝑓(𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨

2

, (51)

where ̂
𝑓(𝜉) is the Fourier transform of 𝑓.

Proposition 7 (see [12]). Let 𝜑 = 𝜑
𝑛
be the 2𝜋/𝑛 periodic

smooth solution constructed in Proposition 3 for any 𝑠 ≥ 2,
there exists a constant 𝑐

𝑠
> 0 such that

󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩

2

𝐻
𝑠
(−𝜋,𝜋)

≤ 𝑐
𝑠
(

1

𝛿
𝑠−1

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
󸀠󵄩󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(−𝜋,𝜋)

+ (𝛿 + 𝜖)
2
) . (52)

5. Proof of Main Theorem

Define two sequences of travelling wave solutions

𝑢
𝑛
(𝑥, 𝑡) = 𝜑

𝑛
(𝑥 − 𝑡) , V

𝑛
(𝑥, 𝑡) = 𝑐

𝑛
𝜑
𝑛
(𝑥 − 𝑐

𝑛
𝑡) , (53)

and pick

𝑐
𝑛
= 1 +

1

𝑛

. (54)

We show that these sequences are bounded, their difference
goes to zero at time zero and stays away from zero at any other
time.

It is sufficient to estimate the 𝐻𝑠-norm of V
𝑛
since it is

bigger than the𝐻𝑠-norm of 𝑢
𝑛
. From (53), we have

󵄩
󵄩
󵄩
󵄩
V
𝑛
(𝑡)
󵄩
󵄩
󵄩
󵄩

2

𝐻
𝑠
(−𝜋,𝜋)

=
󵄩
󵄩
󵄩
󵄩
𝑐
𝑛
𝜑
𝑛

󵄩
󵄩
󵄩
󵄩

2

𝐻
𝑠
(−𝜋,𝜋)

≤ 𝑐
2

𝑛
𝑐
𝑠
(

1

𝛿
𝑠−1

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
󸀠󵄩󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(−𝜋,𝜋)

+ (𝛿 + 𝜖)
2
) .

(55)

Also, using (31) and the first of the estimates in (44) of
Proposition 6, we find that

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
󸀠

𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(−𝜋,𝜋)

= 𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
󸀠

𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(−𝜋/𝑛,𝜋/𝑛)

≤

1

√𝛿 + 𝜖

⋅

𝜖
2

√𝛿

. (56)

Combining this inequality, we get

󵄩
󵄩
󵄩
󵄩
V
𝑛
(𝑡)
󵄩
󵄩
󵄩
󵄩

2

𝐻
𝑠
(−𝜋,𝜋)

=
󵄩
󵄩
󵄩
󵄩
𝑐
𝑛
𝜑
𝑛

󵄩
󵄩
󵄩
󵄩

2

𝐻
𝑠
(−𝜋,𝜋)

≤ 𝑐
2

𝑛
𝑐
𝑠

𝜖
2

𝛿
𝑠
, (57)

where 𝑠 ≥ 2. Note that it is already chosen 𝛿𝑠 = 𝜖
2. Hence,

both sequences of smooth solutions are bounded. Further,
󵄩
󵄩
󵄩
󵄩
V
𝑛
(0) − 𝑢

𝑛
(0)

󵄩
󵄩
󵄩
󵄩

2

𝐻
𝑠
(𝑆)

=
󵄩
󵄩
󵄩
󵄩
𝑐
𝑛
𝜑
𝑛
− 𝜑
𝑛

󵄩
󵄩
󵄩
󵄩

2

𝐻
𝑠
(𝑆)

= (𝑐
𝑛
− 1)
2󵄩
󵄩
󵄩
󵄩
𝜑
𝑛

󵄩
󵄩
󵄩
󵄩

2

𝐻
𝑠
(𝑆)

≃

1

𝑛
2
󳨀→ 0.

(58)

Finally, the behavior at time 𝑡 > 0 can be established as
follows:

󵄩
󵄩
󵄩
󵄩
V
𝑛
(𝑡) − 𝑢

𝑛
(𝑡)
󵄩
󵄩
󵄩
󵄩

2

𝐻
𝑠
(𝑆)

= ∑

𝜉∈𝑍

(1 + 𝜉
2
)

𝑠󵄨
󵄨
󵄨
󵄨
𝑐
𝑛
𝜑
𝑛
(⋅ − 𝑐
𝑛
𝑡)(𝜉) − 𝜑

𝑛
(⋅ − 𝑡)(𝜉)

󵄨
󵄨
󵄨
󵄨

2

,

(59)

where 𝜑
𝑛
(⋅ − 𝑐

𝑛
𝑡)(𝜉) denotes the Fourier transform of the

function 𝜑
𝑛
(𝑥 − 𝑐

𝑛
𝑡) with respect to 𝑥; that is,

𝜑
𝑛
(⋅ − 𝑐
𝑛
𝑡) (𝜉) =

1

√2𝜋

∫

𝜋

−𝜋

𝑒
−𝑖𝑥𝜉

𝜑
𝑛
(𝑥 − 𝑐

𝑛
𝑡) 𝑑𝑥

=

𝑒
−𝑖𝑐
𝑛
𝑡𝜉

√2𝜋

∫

𝜋

−𝜋

𝑒
−𝑖𝑥𝜉

𝜑
𝑛
(𝑥) 𝑑𝑥

= 𝑒
−𝑖𝑐
𝑛
𝑡𝜉
𝜑
𝑛
(𝜉)

(60)

after a change of variables. Therefore,
󵄩
󵄩
󵄩
󵄩
V
𝑛
(𝑡) − 𝑢

𝑛
(𝑡)
󵄩
󵄩
󵄩
󵄩

2

𝐻
𝑠
(𝑆)

= ∑

𝜉∈𝑍

(1 + 𝜉
2
)

𝑠
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝑒
−𝑖𝑡𝜉/𝑛

− 1) +

1

𝑛

𝑒
−𝑖𝑡𝜉/𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2
󵄨
󵄨
󵄨
󵄨
𝜑
𝑛
(𝜉)
󵄨
󵄨
󵄨
󵄨

2

.

(61)

Keep only the term that corresponds to 𝜉 = 𝑛 gives the
inequality

󵄩
󵄩
󵄩
󵄩
V
𝑛
(𝑡) − 𝑢

𝑛
(𝑡)
󵄩
󵄩
󵄩
󵄩

2

𝐻
𝑠
(𝑆)

≥ (1 + 𝑛
2
)

𝑠
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝑒
−𝑖𝑡
− 1) +

1

𝑛

𝑒
−𝑖𝑡
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2
󵄨
󵄨
󵄨
󵄨
𝜑
𝑛
(𝑛)

󵄨
󵄨
󵄨
󵄨

2

.

(62)

Since 𝜑
𝑛
is 2𝜋/𝑛-periodic, we have

𝜑
𝑛
(𝑛) =

𝑛

√2𝜋

∫

𝜋/𝑛

−(𝜋/𝑛)

𝑒
−𝑖𝑛𝑥

𝜑
𝑛
(𝑥) 𝑑𝑥. (63)

Also using the fact that 𝜑
𝑛
(𝑥) is an even function and

integrating by parts, we obtain

𝜑
𝑛
(𝑛) =

2𝑛

√2𝜋

∫

𝜋/𝑛

0

cos (𝑛𝑥) 𝜑
𝑛
(𝑥) 𝑑𝑥

=

2

√2𝜋

∫

𝜋/𝑛

0

sin (𝑛𝑥) 𝜑󸀠
𝑛
(𝑥) 𝑑𝑥.

(64)
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Therefore,

󵄩
󵄩
󵄩
󵄩
V
𝑛
(𝑡) − 𝑢

𝑛
(𝑡)
󵄩
󵄩
󵄩
󵄩

2

𝐻
𝑠
(𝑆)

≥

2

𝜋

(1 + 𝑛
2
)

𝑠
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝑒
−𝑖𝑡
− 1) +

1

𝑛

𝑒
−𝑖𝑡
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2
󵄨
󵄨
󵄨
󵄨
𝐵
𝑛

󵄨
󵄨
󵄨
󵄨

2

,

(65)

where

𝐵
𝑛
= ∫

𝜋/𝑛

0

sin (𝑛𝑥) 𝜑󸀠
𝑛
(𝑥) 𝑑𝑥. (66)

Then, in the same line as Lemma 4.1 in [12] the integral for 𝐵
𝑛

can be estimated as

𝐵
𝑛
≥ 𝑐
0
𝜖. (67)

Returning to (65) one gets

󵄩
󵄩
󵄩
󵄩
V
𝑛
(𝑡) − 𝑢

𝑛
(𝑡)
󵄩
󵄩
󵄩
󵄩

2

𝐻
𝑠
(𝑆)

≥ 𝑛
2𝑠
𝜖
2
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝑒
−𝑖𝑡
− 1) +

1

𝑛

𝑒
−𝑖𝑡
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

. (68)

Thus, the desired estimate is obtained as in [12] using (31) and
𝛿
𝑠
= 𝜖
2.
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