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By piecewise Euler method, we construct a discrete logistic equation with impulses. The constructed model is more easily
implemented at computer and is a better analogue of the continuous-time dynamic system. The dynamic behaviors of the
constructed model are investigated. Sufficient conditions which guarantee the permanence and the global attractivity of positive
solutions of the model are obtained. Numerical simulations show the feasibility of the main results.

1. Introduction

It is well known that impulsive differential equations have
been considered by many authors (see, e.g., [1–7]). Such
equations may exhibit several real world phenomena, such as
rhythmical beating, merging of solutions, and noncontinuity
of solutions. Since it is much richer than the corresponding
theory of differential equations without impulsive effects, the
theory of impulsive differential equations is emerging as an
important area of investigation of model.

At all times, continuous-time dynamic systems play an
important role in control theory, networks design, and so
on. However, with the development of computer techniques,
when implementing the continuous-time dynamic systems
for computer simulation, for experimental or computa-
tional purposes, it is essential to formulate discrete-time
dynamic systems which are an analogue of the continuous-
time dynamic systems. These discrete-time systems, which
are described by difference equations, inherit the similar
dynamical characteristics. Because of that, more and more
researchers pay their attention to the dynamical behaviors of
difference equations (see [8–12]). However, few papers inves-
tigate the discrete model with impulses (see [13–17]). The
main difficulty of constructing discrete model with impulses
is how to describe impulsive moment. The main purpose of
this paper is to construct the discrete model with impulses

and investigate the permanence and global stability of the
discrete model with impulses.

By piecewise Euler method, we construct the following
discrete logistic model with impulses:

𝑥
𝑚𝑘+𝑙+1

= 𝑥
𝑚𝑘+𝑙

exp {𝑟 (1 −
𝑥
𝑚𝑘+𝑙

𝐾

)} ,

𝑥
𝑚𝑘+0

= (1 + 𝑏
𝑘
) 𝑥
𝑚𝑘
,

𝑙 = 0, 1, 2, . . . , (𝑚
𝑘+1

− 𝑚
𝑘
− 2) , (𝑚

𝑘+1
− 𝑚
𝑘
− 1) ,

𝑘 = 0, 1, 2, . . . ,

(1)

where the fixed moments of time 𝑚
𝑘
satisfy 𝑚

0
= 0, 𝑚

𝑘
<

𝑚
𝑘+1

, and lim
𝑘→∞

𝑚
𝑘
= +∞. 𝑟 is the intrinsic rate and 𝐾 is

the carrying capacity of the system; 𝑥
0
= 𝑥
0+0

is the initial
value.

In this paper, we always assume that 0 < 𝐵
1
< 1+𝑏

𝑘
< 𝐵
2
,

𝑘 = 1, 2, 3, . . ..
We simply explain model (1).
It is obvious that 𝑥

𝑚𝑘+𝑙
> 0, 𝑘 = 0, 1, 2, . . ., 𝑙 = 0, 1, 2, . . . ,

(𝑚
𝑘+1

− 𝑚
𝑘
− 2), (𝑚

𝑘+1
− 𝑚
𝑘
− 1), for 𝑥

0
> 0.

When 𝑘 = 0, 𝑥
𝑙+1

= 𝑥
𝑙
exp{𝑟(1 − (𝑥

𝑙
/𝐾))}, 𝑙 = 0, 1,

2, . . . , 𝑚
1
− 1. We can obtain that 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚1
and 𝑥

𝑚1+0
=

(1 + 𝑏
1
)𝑥
𝑚1
.
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When 𝑘 = 1, 𝑥
𝑚1+𝑙+1

= 𝑥
𝑚1+𝑙

exp{𝑟(1 − (𝑥
𝑚1+𝑙

/𝐾))}, 𝑙 =
0, 1, 2, . . . , 𝑚

2
− 𝑚
1
− 1. We can obtain that 𝑥

𝑚1+1
, 𝑥
𝑚1+2

,

. . . , 𝑥
𝑚2
, and 𝑥

𝑚2+0
= (1 + 𝑏

2
)𝑥
𝑚2
, and so on.

In some papers, authors use 𝑚+
𝑘
to denote impulsive

moment (see [15]). It is obvious that describing the impulsive
moment of model (1) is easily realized at computer. In addi-
tion, some authors use 𝑚

𝑘
+ 1 to denote impulsive moment

(see [13, 16]). Compared with it, model (1) is a better analogue
of the continuous-time dynamic system.

The organization of this paper is as follows. In the next
two sections, we give sufficient conditions on permanence
and global stability of system (1), respectively. In Section 4,
two examples are given. To conclude this paper, a discussion
follows in Section 5.

2. Permanence

For convenience, let 𝑛 = 𝑚
𝑘
+ 𝑙.

Definition 1. The species 𝑥
𝑛
of system (1) is said to be perma-

nence if there exist positive constants𝑀 and𝑚 such that each
positive solution 𝑥

𝑛
of the system satisfies

𝑚 ≤ lim inf
𝑛→∞

𝑥
𝑛
≤ lim sup
𝑛→∞

𝑥
𝑛
≤ 𝑀. (2)

If the species of the system is permanence, then the system is
called permanent.

Lemma 2. There exists a positive constant 𝑀, such that for
every solution 𝑥

𝑛
of system (1), one has

𝑥
𝑛
≤ 𝑀, 𝑓𝑜𝑟 𝑛 > 0. (3)

Proof. To prove (3), we have two cases.

Case I. For any 𝑥
0
> 0, we have

𝑥
𝑛+1

= 𝑥
𝑛
exp {𝑟 (1 −

𝑥
𝑛

𝐾

)}

≤

𝐾 exp {𝑟 − 1}
𝑟

≜ 𝑀
1
.

(4)

Here, we used

max
𝑥≥0

{𝑥 exp {𝑏 − 𝑎𝑥}} =
exp {𝑏 − 1}

𝑎

. (5)

Case II. 𝑛 = 𝑚
𝑘
+ 0, 𝑘 = 1, 2, 3, . . .. We have

𝑥
𝑚𝑘+0

= (1 + 𝑏
𝑘
) 𝑥
𝑚𝑘

= (1 + 𝑏
𝑘
) 𝑥
𝑚𝑘−1

exp {𝑟 (1 −
𝑥
𝑚𝑘−1

𝐾

)}

≤ 𝐵
2

𝐾 exp {𝑟 − 1}
𝑟

≜ 𝑀̂
1
.

(6)

Let𝑀 = max{𝑀
1
, 𝑀̂
1
}. This completes the proof.

Lemma3. Assume there exists a positive constant𝐵
3
, such that

𝐵
3
< ∏
∞

𝑘
(1+𝑏
𝑘
).Then there exist two positive constants𝑚 and

𝑛
1
, such that for every solution 𝑥

𝑛
of system (1), one has 𝑥

𝑛
> 𝑚

for 𝑛 > 𝑛
1
.

Proof
Step I. Let 0 < 𝑚󸀠 < 𝐾. We will firstly prove that there exists
𝑛
1
such that 𝑥

𝑛1
≥ 𝑚
󸀠. Otherwise, for all 𝑛, 𝑥

𝑛
< 𝑚
󸀠,

𝑥
𝑛+1

= 𝑥
𝑛
exp {𝑟 (1 −

𝑥
𝑛

𝐾

)}

≥ 𝑥
𝑛
exp{𝑟(1 − 𝑚

󸀠

𝐾

)} .

(7)

Therefore, there exists a constant 𝑘󸀠, such that if 𝑘 > 𝑘󸀠,

𝑥
𝑚𝑘+1

≥ 𝑥
𝑚𝑘+1−1

exp{𝑟(1 − 𝑚
󸀠

𝐾

)}

≥ 𝑥
𝑚𝑘+1−2

exp{2𝑟(1 − 𝑚
󸀠

𝐾

)}

...

≥ 𝑥
𝑚𝑘+0

exp{(𝑚
𝑘+1

− 𝑚
𝑘
) 𝑟 (1 −

𝑚
󸀠

𝐾

)}

= (1 + 𝑏
𝑘
) 𝑥
𝑚𝑘

exp{(𝑚
𝑘+1

− 𝑚
𝑘
) 𝑟 (1 −

𝑚
󸀠

𝐾

)}

≥ 𝑥
𝑚
𝑘
󸀠

𝑘

∏

𝑖=𝑘
󸀠

(1 + 𝑏
𝑖
) exp{(𝑚

𝑘+1
− 𝑚
𝑘
󸀠) 𝑟 (1 −

𝑚
󸀠

𝐾

)}

󳨀→ ∞

(8)

as 𝑘 → ∞, which contradicts the boundedness of 𝑥
𝑛
. Hence,

we conclude that there exists 𝑛
1
such that 𝑥

𝑛1
≥ 𝑚
󸀠.

Step II. If 𝑥
𝑛
≥ 𝑚
󸀠, for all 𝑛 ≥ 𝑛

1
, then our aim is achieved.

Otherwise, 𝑥
𝑛
< 𝑚
󸀠 for some 𝑛 > 𝑛

1
. Set 𝑛∗ = min

𝑛>𝑛1
{𝑥
𝑛
<

𝑚
󸀠

}. We have 𝑥
𝑛
≥ 𝑚
󸀠 for 𝑛 ∈ [𝑛

1
, 𝑛
∗

).
Assume that 𝑛∗ ∈ [𝑚

𝑘
, 𝑚
𝑘+1
). It is easy to see that 𝑥

𝑛
∗ <

𝑚
󸀠, 𝑥
𝑛
∗
−1
≥ 𝑚
󸀠.

There are two possible cases for 𝑛 ∈ [𝑛∗, 𝑚
𝑘+1
).

Case A. There exists a 𝑛󸀠󸀠 ∈ [𝑛∗, 𝑚
𝑘+1
), such that 𝑥

𝑛
󸀠󸀠 ≥ 𝑚

󸀠.
Let 𝑛 = min

𝑛>𝑛
∗{𝑥
𝑛
≥ 𝑚
󸀠

}; then 𝑥
𝑛
< 𝑚
󸀠 for 𝑛 ∈ [𝑛∗, 𝑛) and

𝑥
𝑛
≥ 𝑚
󸀠. Select an𝑀 such that

𝑥
𝑛
< 𝑀, max (1, 𝐵

1
) exp(𝑟 (1 − 𝑀

𝐾

)) < 1. (9)

If 𝑛∗ ̸= 𝑚
𝑘
+ 0, then

𝑥
𝑛
∗ = 𝑥
𝑛
∗
−1
exp (𝑟 (1 −

𝑥
𝑛
∗
−1

𝐾

))

≥ 𝑚
󸀠 exp (𝑟 (1 − 𝑀

𝐾

)) .

(10)

If 𝑛∗ = 𝑚
𝑘
+ 0, then𝑚

𝑘
≥ 𝑛
1
.

Case 1 (𝑚
𝑘
= 𝑛
1
). Consider

𝑥
𝑛
∗ = (1 + 𝑏

𝑘
) 𝑥
𝑚𝑘
≥ 𝐵
1
𝑚
󸀠

. (11)
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Case 2 (𝑚
𝑘
> 𝑛
1
). Consider

𝑥
𝑛
∗ = (1 + 𝑏

𝑘
) 𝑥
𝑚𝑘

≥ (1 + 𝑏
𝑘
) 𝑥
𝑚𝑘−1

exp(𝑟 (1 −
𝑥
𝑚𝑘−1

𝐾

))

≥ (1 + 𝑏
𝑘
)𝑚
󸀠 exp(𝑟 (1 − 𝑀

𝐾

))

≥ 𝐵
1
𝑚
󸀠 exp(𝑟 (1 − 𝑀

𝐾

)) .

(12)

For 𝑛 ∈ [𝑛∗, 𝑛 − 1),

𝑥
𝑛+1

≥ 𝑥
𝑛
exp(𝑟(1 − 𝑚

󸀠

𝐾

))

...

≥ 𝑥
𝑛
∗ exp((𝑛 + 1 − 𝑛∗) 𝑟 (1 − 𝑚

󸀠

𝐾

)) .

(13)

If 𝑛∗ ̸= 𝑚
𝑘
+ 0, then

𝑥
𝑛+1

≥ 𝑥
𝑛
∗ exp((𝑛 + 1 − 𝑛∗) 𝑟 (1 − 𝑚

󸀠

𝐾

))

≥ 𝑚
󸀠 exp (𝑟 (1 − 𝑀

𝐾

)) exp(𝑟(1 − 𝑚
󸀠

𝐾

))

≥ 𝑚
󸀠 exp (𝑟 (1 − 𝑀

𝐾

)) ≜ 𝑚.

(14)

If 𝑛∗ = 𝑚
𝑘
+ 0, then

𝑥
𝑛+1

≥ 𝑥
𝑛
∗ exp((𝑛 + 1 − 𝑛∗) 𝑟 (1 − 𝑚

󸀠

𝐾

))

≥ (1 + 𝑏
𝑘
)𝑚
󸀠 exp(𝑟 (1 − 𝑀

𝐾

))

× exp((𝑛 + 1 − 𝑛∗) 𝑟 (1 − 𝑚
󸀠

𝐾

))

≥ (1 + 𝑏
𝑘
)𝑚
󸀠 exp(𝑟 (1 − 𝑀

𝐾

)) exp(𝑟(1 − 𝑚
󸀠

𝐾

))

≥ 𝐵
1
𝑚
󸀠 exp (𝑟 (1 − 𝑀

𝐾

)) ≜ 𝑚̃.

(15)

The argument of Step II can be continued since 𝑥
𝑛
≥ 𝑚
󸀠, and

we have 𝑥
𝑛
≥ 𝑚 = min(𝑚̃, 𝑚) for all 𝑛 > 𝑛

1
.

Case B. 𝑥
𝑛
< 𝑚
󸀠 for 𝑛 ∈ [𝑛∗, 𝑚

𝑘+1
). If 𝑥

𝑛
≥ 𝑚
󸀠 for all 𝑛 ≥

𝑚
𝑘+1

, then our aim is achieved. Otherwise, 𝑥
𝑛
< 𝑚
󸀠 for some

𝑛 > 𝑚
𝑘+1

. Set 𝑛 = min
𝑛>𝑚𝑘+1

{𝑥
𝑛
< 𝑚
󸀠

}.
For 𝑛 > 𝑛, the argument of step II can be continued since

𝑥
𝑛
≥ 𝑚
󸀠 for 𝑛 ∈ [𝑚

𝑘+1
, 𝑛); hence 𝑥

𝑛
≥ 𝑚 = min(𝑚̃, 𝑚), for all

𝑛 > 𝑚
𝑘+1

. The proof is complete.

Combining Lemmas 2 and 3, we have proved the main
result of this paper, which is stated next.

Theorem 4. If the condition of Lemma 3 holds, system (1) is
permanent.

3. Global Attractivity of the Positive Solution

Next we discuss the global attractivity of the positive solution
of system (1). In the following we say a positive solution of
system (1) is globally asymptotically stable if it attracts all
other positive solutions of the system.

Let 𝑥
𝑛
= ln(𝑥

𝑛
). Then system (1) becomes the following

form:

𝑥
𝑛+1

= 𝑥
𝑛
+ 𝑟(1 −

𝑒
𝑥𝑛

𝐾

) ,

𝑥
𝑚𝑘+0

= ln (1 + 𝑏
𝑘
) + 𝑥
𝑚𝑘
.

(16)

Theorem 5. If 0 < 𝑀 < 2(𝐾/𝑟), then for any two positive
solutions 𝑥

𝑛
and 𝑦

𝑛
of system (1), one has

lim
𝑛→∞

󵄨
󵄨
󵄨
󵄨
𝑥
𝑛
− 𝑦
𝑛

󵄨
󵄨
󵄨
󵄨
= 0. (17)

Proof. Let 𝑥
𝑛
= ln(𝑥

𝑛
) and let 𝑦

𝑛
= ln(𝑦

𝑛
). Then

󵄨
󵄨
󵄨
󵄨
𝑥
𝑛+1

− 𝑦
𝑛+1

󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥
𝑛
− 𝑦
𝑛
−

𝑟

𝐾

(𝑒
𝑥𝑛
− 𝑒
𝑦𝑛
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥
𝑛
− 𝑦
𝑛
−

𝑟

𝐾

𝑒
𝜉(𝑛)

(𝑥
𝑛
− 𝑦
𝑛
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(1 −

𝑟

𝐾

𝑒
𝜉(𝑛)

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
(𝑥
𝑛
− 𝑦
𝑛
)
󵄨
󵄨
󵄨
󵄨
,

(18)

where 𝑒𝜉(𝑛) is between 𝑥
𝑛
and 𝑦

𝑛
and 0 < 𝑚 < 𝑒

𝜉(𝑛)

< 𝑀 for
sufficiently large 𝑛.

In view of 0 < 𝑀 < 2(𝐾/𝑟) such that
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(1 −

𝑟

𝐾

𝑒
𝜉(𝑛)

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

< 1, (19)

hence,

lim
𝑛→∞

󵄨
󵄨
󵄨
󵄨
𝑥
𝑛
− 𝑦
𝑛

󵄨
󵄨
󵄨
󵄨
= 0, (20)

which implies that

lim
𝑛→∞

󵄨
󵄨
󵄨
󵄨
𝑥
𝑛
− 𝑦
𝑛

󵄨
󵄨
󵄨
󵄨
= 0. (21)

This completes the proof.

4. Examples and Numerical Simulation

Example 1. Corresponding to the system (1), we assume that

𝑟 = 0.2, 𝐾 = 100, 𝑚
0
= 0,

𝑚
𝑘
= 2
𝑘

, 𝑏
𝑘
= sin 𝑘, 𝑘 = 1, 2, . . . .

(22)

It is easy to see that the conditions inTheorem 4 are verified.
Therefore, (1) is permanent (see Figure 1).
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Figure 1: Permanence of system (1) with initial condition 𝑥
0
= 50.
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Figure 2: Global attractivity of system (1) with initial conditions
𝑥
0
= 50 and 𝑦

0
= 60.

Example 2. Corresponding to the system (1), we assume that

𝑟 = 0.2, 𝐾 = 100, 𝑚
0
= 0,

𝑚
𝑘
= 2
𝑘

, 𝑏
𝑘
= (1 + (−1)

𝑘
1

𝑘

) , 𝑘 = 1, 2, . . . .

(23)

It is easy to see that the conditions in Theorem 5 are verified.
Therefore, (1) is global attractivity. Our numerical simulation
supports our result (see Figure 2).

5. Conclusion

In this paper, by piecewise Euler method, we construct a dis-
crete logistic equation with impulses. The model gives a new

form of describing the impulsive moment, and the model is
more easily implemented at computer and is a better analogue
of the continuous-time dynamic system. The permanence
and the global attractivity of positive solutions of the model
are investigated. In our opinion, this discrete idea of the paper
can apply to more complex model with impulses, such as
model with impulses and delay and multigroup mode with
impulses and delay. The other dynamic behaviors of discrete
model can be researched, such as stability, periodic solution,
and invariant sets.
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