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We have considered linear partial differential algebraic equations (LPDAEs) of the form 𝐴𝑢
𝑡
(𝑡, 𝑥) + 𝐵𝑢

𝑥𝑥
(𝑡, 𝑥) + 𝐶𝑢(𝑡, 𝑥) = 𝑓(𝑡, 𝑥),

which has at least one singular matrix of 𝐴, 𝐵 ∈ R𝑛×𝑛. We have first introduced a uniform differential time index and a differential
space index. The initial conditions and boundary conditions of the given system cannot be prescribed for all components of the
solution vector 𝑢 here. To overcome this, we introduced these indexes. Furthermore, differential transformmethod has been given
to solve LPDAEs. We have applied this method to a test problem, and numerical solution of the problem has been compared with
analytical solution.

1. Introduction

The partial differential algebraic equation was first studied
by Marszalek. He also studied the analysis of the par-
tial differential algebraic equations [1]. Lucht et al. [2–
4] studied the numerical solution and indexes of the
linear partial differential equations with constant coeffi-
cients. A study about characteristics analysis and differ-
ential index of the partial differential algebraic equations
was given by Martinson and Barton [5, 6]. Debrabant
and Strehmel investigated the convergence of Runge-Kutta
method for linear partial differential algebraic equations
[7].

There are numerous LPDAEs applications in scientific
areas given, for instance, in the field of Navier-Stokes equa-
tions, in chemical engineering, in magnetohydrodynamics,
and in the theory of elastic multibody systems [4, 8–12].

On the other hand, the differential transform method
was used by Zhou [13] to solve linear and nonlinear ini-
tial value problems in electric circuit analysis. Analysis
of nonlinear circuits by using differential Taylor trans-
form was given by Köksal and Herdem [14]. Using one-
dimensional differential transform, Abdel-Halim Hassan

[15] proposed a method to solve eigenvalue problems.
The two-dimensional differential transform methods have
been applied to the partial differential equations [16–
19]. The differential transform method extended to solve
differential-difference equations by Arikoglu and Ozkol
[20]. Jang et al. have used differential transform method
to solve initial value problems [21]. The numerical solu-
tion of the differential-algebraic equation systems has
been studied by using differential transform method [22,
23].

In this paper, we have considered linear partial
differential equations with constant coefficients of the
form

𝐴𝑢
𝑡
(𝑡, 𝑥) + 𝐵𝑢

𝑥𝑥
(𝑡, 𝑥) + 𝐶𝑢 (𝑡, 𝑥) = 𝑓 (𝑡, 𝑥) ,

(𝑡, 𝑥) ∈ 𝐽 × Ω,

(1)

where 𝐽 = [0,∞), Ω = [−𝑙, 𝑙], 𝑙 > 0, and 𝐴, 𝐵, 𝐶 ∈ R𝑛×𝑛.
In (1) at least one of the matrices 𝐴, 𝐵 ∈ R𝑛×𝑛 should be
singular. If 𝐴 = 0 or 𝐵 = 0, then (1) becomes ordinary
differential equation or differential algebraic equation, so
we assume that none of the matrices 𝐴 or 𝐵 is the zero
matrix.
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2. Indexes of Partial Differential
Algebraic Equation

Let us consider (1), with initial values and boundary condi-
tions given as follows:

𝑢
𝑗
(𝑡, ±𝑙) = 0 for 𝑡 ∈ 𝐽,

𝑢
𝑖
(0, 𝑥) = 𝑔 (𝑥) for 𝑥 ∈ Ω,

(2)

where 𝑗 ∈ M
𝐵𝐶

⊆ {1, 2, . . . , 𝑛}, M
𝐵𝐶

is the set of indices
of components of 𝑢 for which boundary conditions can be
prescribed arbitrarily, and 𝑖 ∈ M

𝐼𝐶
⊆ {1, 2, . . . , 𝑛}, M

𝐼𝐶

is the set of indices of components of 𝑢 for which initial
conditions can be prescribed arbitrarily.The initial boundary
value problem (IBVP) (1) has only one solution where a
function 𝑢 is a solution of the problem, if it is sufficiently
smooth, uniquely determined by its initial values (IVs) and
boundary values (BVs), and if it solves the LPDAE point wise.

Definition of the indexes can be given using the following
assumptions.

(i) Each component of the vectors 𝑢, 𝑢
𝑡
, and 𝑓 satisfy the

following condition:
𝑦 (𝑡, 𝑥)

 ≤ 𝑀𝑒
𝛼𝑡
, 𝛼 ≥ 0, 𝑡 ≥ 0, (3)

where𝑀 and 𝛼 are independent of 𝑡 and 𝑥.
(ii) (𝐵, 𝜉𝐴 + 𝐶),Re(𝜉) > 𝛼, called as the matrix pencil, is

regular.
(iii) (𝐴, 𝜇

𝑘
𝐵 + 𝐶) is regular for all 𝑘, where 𝜇

𝑘
is an eigen-

value of the operator 𝜕2/𝜕𝑥2 together with prescribed
BCs.

(iv) The vector 𝑓(𝑡, 𝑥) and the initial vector 𝑔(𝑥) are
sufficiently smooth.

If we use Laplace transform, from assumption (ii), (1) can be
transformed into
𝐵𝑢


𝜉
(𝑥) + (𝜉𝐴 + 𝐶) 𝑢

𝜉
(𝑥) = 𝑓

𝜉
(𝑥) + 𝐴𝑔 (𝑥) , Re (𝜉) > 𝛼,

(4)

if 𝐵 is a singular matrix, then (4) is a DAE depending on the
parameter 𝜉. To characterizeM

𝐵𝐶
, we introduce 𝑗 ∈ M

(𝜉)

𝐵𝐶
⊆

{1, 2, . . . , 𝑛} as the set of indices of components of 𝑢
𝜉
for which

boundary conditions can be prescribed arbitrarily.
In order to define a spatial index, we need the Kronecker

normal form of theDAE (4). Assumption (iii) guarantees that
there are nonsingular matrices 𝑃

𝐿,𝜉
, 𝑄
𝐿,𝜉
∈ C𝑛×𝑛 such that

𝑃
𝐿,𝜉
𝐵𝑄
𝐿,𝜉
= (

𝐼
𝑚
1

0

0 𝑁
𝐿,𝜉

) ,

𝑃
𝐿,𝜉
(𝜉𝐴 + 𝐶)𝑄

𝐿,𝜉
= (

𝑅
𝐿,𝜉

0

0 𝐼
𝑚
2

) ,

(5)

where 𝑅
𝐿,𝜉
∈ C𝑚1×𝑚2 and𝑁

𝐿,𝜉
∈ R𝑚2×𝑚2 is a nilpotent Jordan

chain matrix with𝑚
1
+𝑚
2
= 𝑛. 𝐼

𝑘
is the unit matrix of order

𝑘. The Riesz index (or nilpotency) of 𝑁
𝐿,𝜉

is denoted by ]
𝐿,𝜉

(i.e.𝑁]
𝐿,𝜉

𝐿,𝜉
= 0,𝑁

]
𝐿,𝜉
−1

𝐿,𝜉
̸= 0).

Here, we will assume that there is a real number 𝛼∗ ≥ 𝛼

such that the index set M(𝜉)
𝐵𝐶

is independent of the Laplace
parameter 𝜉, provided Re(𝜉) ≥ 𝛼∗.

Definition 1. Let 𝛼∗ ∈ R+ be a number with 𝛼∗ ≥ 𝛼, such that
for all 𝜉 ∈ C with Re(𝜉) ≥ 𝛼∗

(1) the matrix pencil (𝐵, 𝜉𝐴 + 𝐶) is regular,

(2) M(𝜉)
𝐵𝐶

is independent of 𝜉, i.e.,M(𝜉)
𝐵𝐶

=M
𝐵𝐶
,

(3) the nilpotency of𝑁
𝐿,𝜉

is ]
𝐿
≥ 1.

Then ]
𝑑,𝑥

= 2]
𝐿
− 1 is called the “differential spatial index”

of the LPDAE. If ]
𝐿
= 0, then the differential spatial index of

LPDAE is defined to be zero.

If we use Fourier transform, (1) can be transformed into

𝐴�̂�


𝑘
(𝑡) + (𝜇

𝑘
𝐵 + 𝐶) �̂�

𝑘
(𝑡) = �̂�

𝑘
(𝑡) + 𝐵𝜌

𝑘
(𝑡) (6)

with 𝜌
𝑘
(𝑡) = (𝜌

𝑘1
(𝑡), . . . , 𝜌

𝑘𝑛
(𝑡))
𝑇 and

𝜌
𝑘𝑖
(𝑡) = 0 for 𝑖 ∈M

𝐵𝐶
,

𝜌
𝑘𝑗
(𝑡) =

1

𝑙
[𝜙


𝑘
(𝑥) 𝑢
𝑗
(𝑡, 𝑥) − 𝜙

𝑘
(𝑥) 𝑢
𝑥,𝑗
(𝑡, 𝑥)]

𝑥=𝑙

𝑥=−𝑙

(7)

for 𝑗 ∉ M
𝐵𝐶
, which results from partial integration of the

term ∫
𝑙

−𝑙
𝑢
𝑥𝑥
(𝑡, 𝑥)𝜙

𝑘
(𝑥)𝑑𝑥.

If 𝐴 is a singular matrix, then (6) is a DAE depending on
the parameter 𝜇

𝑘
which can be solved uniquely with suitable

ICs under the assumptions (iv) and (v). Analogous to the case
of the Laplace transform, the above assumption (iv) implies
that there exist regular matrices 𝑃

𝐹,𝑘
, 𝑄
𝐹,𝑘

such that

𝑃
𝐹,𝑘
𝐴𝑄
𝐹,𝑘

= (
𝐼
𝑛
1

0

0 𝑁
𝐹,𝑘

) ,

𝑃
𝐹,𝑘
(𝜇
𝑘
𝐵 + 𝐶)𝑄

𝐹,𝑘
= (

𝑅
𝐹,𝑘

0

0 𝐼
𝑛
2

) .

(8)

With 𝑅
𝐹,𝑘

∈ R𝑛1×𝑛1 .𝑁
𝐹,𝑘

∈ R𝑛2×𝑛2 is again a nilpotent Jordan
chain matrix with Riesz index ]

𝐹,𝑘
, where 𝑛

1
+ 𝑛
2
= 𝑛.

To characterize M
𝐼𝐶
, we introduce M(𝑘)

𝐼𝐶
⊆ {1, 2, . . . , 𝑛}

as the set of indices of components of �̂�
𝑘
for which initial

conditions can be prescribed arbitrarily.Therefore, we always
assume in the context of a Fourier analysis of 𝑢 that M(𝑘)

𝐼𝐶
is

independent of 𝑘 ∈ N
+
, i.e.,M(𝑘)

𝐼𝐶
=M
𝐼𝐶
.

Definition 2. Assume for 𝑘 = 1, 2, . . . that

(1) the matrix pencil (𝐴, 𝜇
𝑘
𝐵 + 𝐶) is regular,

(2) M(𝑘)
𝐼𝐶

is independent of 𝑘, i.e.,M(𝑘)
𝐼𝐶
=M
𝐼𝐶
,

(3) the nilpotency of𝑁
𝐹,𝑘

is ]
𝐹,𝑘

= ]
𝐹
.

Then the PDAE (1) is said to have uniform differential time
index ]

𝑑,𝑡
= ]
𝐹
.

The differential spatial and time indexes are used to
decide which initial and boundary values can be taken to
solve the problem.
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3. Two-Dimensional Differential
Transform Method

The two-dimensional differential transform of function
𝑤(𝑥, 𝑦) is defined as

𝑊(𝑘, ℎ) =
1

𝑘!ℎ!
[
𝜕
𝑘+ℎ
𝑤 (𝑥, 𝑦)

𝜕𝑥𝑘𝜕𝑦ℎ
]
𝑥=0

𝑦=0

, (9)

where it is noted that upper case symbol 𝑊(𝑘, ℎ) is used
to denote the two-dimensional differential transform of a
function represented by a corresponding lower case symbol
𝑤(𝑥, 𝑦). The differential inverse transform of 𝑊(𝑘, ℎ) is
defined as

𝑤 (𝑥, 𝑦) =

∞

∑

𝑘=0

∞

∑

ℎ=0

𝑊(𝑘, ℎ) 𝑥
𝑘
𝑦
ℎ
. (10)

From (9) and (10), we obtain

𝑤 (𝑥, 𝑦) =

∞

∑

𝑘=0

∞

∑

ℎ=0

𝑥
𝑘
𝑦
ℎ

𝑘!ℎ!
[
𝜕
𝑘+ℎ
𝑤 (𝑥, 𝑦)

𝜕𝑥𝑘𝜕𝑦ℎ
]
𝑥=0

𝑦=0

. (11)

The concept of two-dimensional differential transform is
derived from two-dimensional Taylor series expansion, but
the method doesn’t evaluate the derivatives symbolically.

Theorem 3. Differential transform of the function 𝑤(𝑥, 𝑦) =
𝑢(𝑥, 𝑦) ± V(𝑥, 𝑦) is

𝑊(𝑘, ℎ) = 𝑈 (𝑘, ℎ) ± 𝑉 (𝑘, ℎ) , (12)

see [17].

Theorem 4. Differential transform of the function 𝑤(𝑥, 𝑦) =
𝜆𝑢(𝑥, 𝑦) is

𝑊(𝑘, ℎ) = 𝜆𝑈 (𝑘, ℎ) , (13)

see [17].

Theorem 5. Differential transform of the function 𝑤(𝑥, 𝑦) =
𝜕𝑢(𝑥, 𝑦)/𝜕𝑥 is

𝑊(𝑘, ℎ) = (𝑘 + 1)𝑈 (𝑘 + 1, ℎ) , (14)

see [17].

Theorem 6. Differential transform of the function 𝑤(𝑥, 𝑦) =
𝜕𝑢(𝑥, 𝑦)/𝜕𝑦 is

𝑊(𝑘, ℎ) = (ℎ + 1)𝑈 (𝑘, ℎ + 1) , (15)

see [17].

Theorem 7. Differential transform of the function 𝑤(𝑥, 𝑦) =
𝜕
𝑟+𝑠
𝑢(𝑥, 𝑦)/𝜕𝑥

𝑟
𝜕𝑦
𝑠 is

𝑊(𝑘, ℎ) = (𝑘 + 1) (𝑘 + 2) ⋅ ⋅ ⋅ (𝑘 + 𝑟) (ℎ + 1)

× (ℎ + 2) ⋅ ⋅ ⋅ (ℎ + 𝑠)𝑈 (𝑘 + 𝑟, ℎ + 𝑠) ,

(16)

see [17].

Theorem 8. Differential transform of the function 𝑤(𝑥, 𝑦) =
𝑢(𝑥, 𝑦) ⋅ V(𝑥, 𝑦) is

𝑊(𝑘, ℎ) =

𝑘

∑

𝑟=0

ℎ

∑

𝑠=0

𝑈 (𝑟, ℎ − 𝑠) 𝑉 (𝑘 − 𝑟, 𝑠) , (17)

see [17].

Theorem 9. Differential transform of the function 𝑤(𝑥, 𝑦) =
𝑥
𝑚
𝑦
𝑛 is

𝑊(𝑘, ℎ) = 𝛿 (𝑘 − 𝑚, ℎ − 𝑛) = 𝛿 (𝑘 − 𝑚) 𝛿 (ℎ − 𝑛) , (18)

see [17], where

𝛿 (𝑘 − 𝑚) = {
1, 𝑘 = 𝑚

0, 𝑘 ̸=𝑚,

𝛿 (ℎ − 𝑛) = {
1, ℎ = 𝑛

0, ℎ ̸= 𝑛.

(19)

Theorem 10. Differential transform of the function 𝑤(𝑥, 𝑦) =
𝑔(𝑥 + 𝑎, 𝑦) is

𝑊(𝑘, ℎ) =

𝑁

∑

𝑝=𝑘

(
𝑝

𝑘
) 𝑎
𝑝−𝑘

𝐺 (𝑝, ℎ) . (20)

Proof. From Definition 1, we can write

𝑤 (𝑥, 𝑦) =

∞

∑

ℎ=0

∞

∑

𝑘=0

𝐺 (𝑘, ℎ) (𝑥 + 𝑎)
𝑘
𝑦
ℎ

= 𝐺 (0, 0) + 𝐺 (0, 1) 𝑦 + 𝑎𝐺 (1, 0) + 𝐺 (1, 0) 𝑥

+ 𝐺 (0, 2) 𝑦
2
+ 𝐺 (1, 1) 𝑥𝑦 + 𝑎𝐺 (1, 1) 𝑦

+ 𝑎
2
𝐺 (2, 0) + 2𝑎𝐺 (2, 0) 𝑥 + 𝐺 (2, 0) 𝑥

2

+ 𝐺 (0, 3) 𝑦
3
+ 𝐺 (1, 2) 𝑥𝑦

2
+ 𝑎𝐺 (1, 2) 𝑦

2

+ 𝐺 (2, 1) 𝑥
2
𝑦 + 2𝑎𝐺 (2, 1) 𝑥𝑦 + 𝑎

2
𝐺 (2, 1) 𝑦

+ 𝑎
3
𝐺 (3, 0) + 3𝑎

2
𝐺 (3, 0) 𝑥 + 3𝑎𝐺 (3, 0) 𝑥

2

+ 𝐺 (3, 0) 𝑥
3
+ ⋅ ⋅ ⋅ ,

𝑤 (𝑥, 𝑦) = [𝐺 (0, 0) + 𝑎𝐺 (1, 0)

+𝑎
2
𝐺 (2, 0) + 𝑎

3
𝐺 (3, 0) + ⋅ ⋅ ⋅]

+ 𝑥 [𝐺 (1, 0) + 2𝑎𝐺 (2, 0) + 3𝑎
2
𝐺 (3, 0) + ⋅ ⋅ ⋅]

+ 𝑦 [𝐺 (0, 1) + 𝑎𝐺 (1, 1) + 𝑎
2
𝐺 (2, 1) + ⋅ ⋅ ⋅]

+ 𝑥
2
[𝐺 (2, 0) + 3𝑎𝐺 (3, 0) + ⋅ ⋅ ⋅]

+ 𝑥𝑦 [𝐺 (1, 1) + 2𝑎𝐺 (2, 1) + ⋅ ⋅ ⋅]

+ 𝑦
2
[𝐺 (0, 2) + 𝑎𝐺 (1, 2) + ⋅ ⋅ ⋅] + ⋅ ⋅ ⋅
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=

∞

∑

𝑝=0

𝑎
𝑝
𝐺 (𝑝, 0) + 𝑥

∞

∑

𝑝=1

𝑝𝑎
𝑝−1

𝐺 (𝑝, 0)

+ 𝑦

∞

∑

𝑝=0

𝑎
𝑝
𝐺 (𝑝, 1) + 𝑥

2

∞

∑

𝑝=2

𝑝!

(𝑝 − 2)!2!

× 𝑎
𝑝−2

𝐺 (𝑝, 0) + 𝑥𝑦

∞

∑

𝑝=1

𝑝𝑎
𝑝−1

𝐺 (𝑝, 1) + ⋅ ⋅ ⋅ ,

(21)

where

𝑤 (𝑥, 𝑦) =

∞

∑

ℎ=0

∞

∑

𝑘=0

∞

∑

𝑝=𝑘

(
𝑝

𝑘
) 𝑎
𝑝−𝑘

𝐺 (𝑝, ℎ) 𝑥
𝑘
𝑦
ℎ (22)

hence,

𝑊(𝑘, ℎ) =

𝑁

∑

𝑝=𝑘

(
𝑝

𝑘
) 𝑎
𝑝−𝑘

𝐺 (𝑝, ℎ) . (23)

Theorem 11. Differential transform of the function 𝑤(𝑥, 𝑦) =
𝑔(𝑥 + 𝑎, 𝑦 + 𝑏) is

𝑊(𝑘, ℎ) =

𝑁

∑

𝑝=𝑘

𝑁

∑

𝑞=ℎ

(
𝑞

ℎ
)(

𝑝

𝑘
) 𝑎
𝑝−𝑘

𝑏
𝑞−ℎ
𝐺 (𝑝, 𝑞) . (24)

Proof. From Definition 2, we can write

𝑤 (𝑥, 𝑦) =

∞

∑

ℎ=0

∞

∑

𝑘=0

𝐺 (𝑘, ℎ) (𝑥 + 𝑎)
𝑘
(𝑦 + 𝑏)

ℎ

= 𝐺 (0, 0) + 𝐺 (1, 0) 𝑥 + 𝑎𝐺 (1, 0)

+ 𝐺 (0, 1) 𝑦 + 𝑏𝐺 (0, 1) + 𝐺 (2, 0) 𝑥
2

+ 2𝑎𝐺 (2, 0) 𝑥 + 𝑎
2
𝐺 (2, 0) + 𝐺 (1, 1) 𝑥𝑦

+ 𝑏𝐺 (1, 1) 𝑥 + 𝑎𝐺 (1, 1) 𝑦 + 𝑎𝑏𝐺 (1, 1)

+ 𝐺 (0, 2) 𝑦
2
+ 2𝑏𝐺 (0, 2) 𝑦 + 𝑏

2
𝐺 (0, 2)

+ 𝐺 (3, 0) 𝑥
3
+ 3𝑎𝐺 (3, 0) 𝑥

2
+ 3𝑎
2
𝐺 (3, 0) 𝑥

+ 𝑎
3
𝐺 (3, 0) + 𝐺 (2, 1) 𝑥

2
𝑦 + ⋅ ⋅ ⋅

𝑤 (𝑥, 𝑦) = [𝐺 (0, 0) + 𝑎𝐺 (1, 0) + 𝑏𝐺 (0, 1)

+𝑎
2
𝐺 (2, 0) + 𝑎𝑏𝐺 (1, 1) + ⋅ ⋅ ⋅]

+ [𝐺 (1, 0) + 2𝑎𝐺 (2, 0) + 𝑏𝐺 (1, 1)

+3𝑎
2
𝐺 (3, 0) + 2𝑎𝑏𝐺 (2, 1) + ⋅ ⋅ ⋅] 𝑥

+ [𝐺 (0, 1) + 𝑎𝐺 (1, 1) + 2𝑏𝐺 (0, 2)

+𝑎
2
𝐺 (2, 1) + ⋅ ⋅ ⋅] 𝑦 + ⋅ ⋅ ⋅

=

𝑁

∑

𝑝=0

𝑁

∑

𝑞=0

𝑎
𝑝
𝑏
𝑞
𝐺 (𝑝, 𝑞) + 𝑥

𝑁

∑

𝑝=1

𝑁

∑

𝑞=0

𝑝𝑎
𝑝−1

𝑏
𝑞
𝐺 (𝑝, 𝑞)

+ 𝑦

𝑁

∑

𝑝=0

𝑁

∑

𝑞=1

𝑞𝑎
𝑝
𝑏
𝑞−1
𝐺 (𝑝, 𝑞)

+ 𝑥
2

𝑁

∑

𝑝=2

𝑁

∑

𝑞=0

𝑝!

(𝑝 − 2)!2!
𝑎
𝑝−2

𝑏
𝑞
𝐺 (𝑝, 𝑞)

+ 𝑥𝑦

𝑁

∑

𝑝=1

𝑁

∑

𝑞=1

𝑝𝑞𝑎
𝑝−1

𝑏
𝑞−1
𝐺 (𝑝, 𝑞) + ⋅ ⋅ ⋅ .

(25)

Hence, we can write

𝑤 (𝑥, 𝑦) =

∞

∑

ℎ=0

∞

∑

𝑘=0

𝑁

∑

𝑝=𝑘

𝑁

∑

𝑞=ℎ

(
𝑞

ℎ
)(

𝑝

𝑘
)

× 𝑎
𝑝−𝑘

𝑏
𝑞−ℎ
𝐺 (𝑝, 𝑞) 𝑥

𝑘
𝑦
ℎ
.

(26)

Using Definition 2, we obtain

𝑊(𝑘, ℎ) =

𝑁

∑

𝑝=𝑘

𝑁

∑

𝑞=ℎ

(
𝑞

ℎ
)(

𝑝

𝑘
) 𝑎
𝑝−𝑘

𝑏
𝑞−ℎ
𝐺 (𝑝, 𝑞) . (27)

Theorem 12. Differential transform of the function 𝑤(𝑥, 𝑦) =
𝜕
𝑟+𝑠
𝑔(𝑥 + 𝑎, 𝑦 + 𝑏)/𝜕𝑥

𝑟
𝜕𝑦
𝑠 is

𝑊(𝑘, ℎ) =
(𝑘 + 𝑟)!

𝑘!

(ℎ + 𝑠)!

ℎ!

×

𝑁

∑

𝑝=𝑘+𝑟

𝑁

∑

𝑞=ℎ+𝑠

(
𝑞

ℎ + 𝑠
)(

𝑝

𝑘 + 𝑟
)

× 𝑎
𝑝−𝑘−𝑟

𝑏
𝑞−ℎ−𝑠

𝐺 (𝑝, 𝑞) .

(28)

Proof. Let 𝐶(𝑘, ℎ) be differential transform of the function
𝑔(𝑥+𝑎, 𝑦+𝑏). FromTheorem 7, we can write that differential
transform of the function 𝑤(𝑥, 𝑦) is

𝑊(𝑘, ℎ) =
(𝑘 + 𝑟)!

𝑘!

(ℎ + 𝑠)!

ℎ!
𝐶 (𝑘 + 𝑟, ℎ + 𝑠) , (29)

fromTheorem 4, we can write

𝐶 (𝑘 + 𝑟, ℎ + 𝑠) =

𝑁

∑

𝑝=𝑘+𝑟

𝑁

∑

𝑞=ℎ+𝑠

(
𝑞

ℎ + 𝑠
)(

𝑝

𝑘 + 𝑟
)

× 𝑎
𝑝−𝑘−𝑟

𝑏
𝑞−ℎ−𝑠

𝐺 (𝑝, 𝑞) .

(30)
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If we substitute (30) into (29), we find

𝑊(𝑘, ℎ) =
(𝑘 + 𝑟)!

𝑘!

(ℎ + 𝑠)!

ℎ!

×

𝑁

∑

𝑝=𝑘+𝑟

𝑁

∑

𝑞=ℎ+𝑠

(
𝑞

ℎ + 𝑠
)(

𝑝

𝑘 + 𝑟
)

× 𝑎
𝑝−𝑘−𝑟

𝑏
𝑞−ℎ−𝑠

𝐺 (𝑝, 𝑞) .

(31)

4. Application

We have considered the following PDAE as a test problem:

(
1 1

0 0
) 𝑢
𝑡
+ (

−1 0

−1 0
) 𝑢
𝑥𝑥
+ (

1 1

−1 0
) 𝑢 = 𝑓,

𝑡 ∈ [0,∞) , 𝑥 ∈ [−1, 1] ,

(32)

with initial values and boundary values

𝑢
1
(0, 𝑥) = 𝑥

3
− 𝑥, 𝑢

2
(0, 𝑥) = 𝑥

4
− 1,

𝑢
1
(𝑡, 1) = 𝑢

1
(𝑡, −1) = 0, 𝑢

2
(𝑡, 1) = 𝑢

2
(𝑡, −1) = 0.

(33)

The right hand side function 𝑓 is

𝑓 = ((𝑥
4
− 1) (cos 𝑡 − sin 𝑡) − 6𝑥𝑒−𝑡, −𝑒−𝑡 (𝑥3 + 5𝑥))

𝑇

,

(34)

and the exact solutions are

𝑢
1
(𝑡, 𝑥) = (𝑥

3
− 𝑥) 𝑒

−𝑡
, 𝑢

2
(𝑡, 𝑥) = (𝑥

4
− 1) cos 𝑡. (35)

If nonsingular matrices 𝑃
𝐹,𝑘
, 𝑄
𝐹,𝑘
, 𝑃
𝐿,𝜉
, and 𝑄

𝐿,𝜉
are chosen

such as

𝑃
𝐹,𝑘

= (

1
−𝜇
𝑘

𝜇
𝑘
− 1

0
1

𝜇
𝑘
− 1

) , 𝑄
𝐹,𝑘

= (
0 −1

1 −1
) ,

𝑃
𝐿,𝜉
= (

0
1

𝜉 + 1
1

𝜉 + 1
−

1

𝜉 + 1

) , 𝑄
𝐿,𝜉
= (

−𝜉 − 1 0

𝜉 1
) ,

(36)

matrices 𝑃
𝐹,𝑘
𝐴𝑄
𝐹,𝑘

and 𝑃
𝐿,𝜉
𝐵𝑄
𝐿,𝜉

are found as

𝑃
𝐹,𝑘
𝐴𝑄
𝐹,𝑘

= (
1 0

0 0
) , 𝑃

𝐿,𝜉
𝐵𝑄
𝐿,𝜉
= (

1 0

0 0
) . (37)

From (38), we have 𝑁
𝐿,𝜉

= 0 and 𝑁
𝐹,𝑘

= 0. Then the PDAE
(32) has differential spatial index 1 and differential time index
1. So, it is enough to takeM(𝜉)

𝐵𝐶
= {1} andM

(𝑘)

𝐼𝐶
= {2} to solve

the problem.
Taking differential transformation of (32), we obtain

(𝑘 + 1)𝑈
1
(𝑘 + 1, ℎ) + (𝑘 + 1)𝑈

2
(𝑘 + 1, ℎ)

− (ℎ + 1) (ℎ + 2)𝑈
1
(𝑘, ℎ + 2) + 𝑈

1
(𝑘, ℎ)

+ 𝑈
2
(𝑘, ℎ) = 𝐹

1
(𝑘, ℎ) ,

(38)

− (ℎ + 1) (ℎ + 2)𝑈
1
(𝑘, ℎ + 2) − 𝑈

1
(𝑘, ℎ) = 𝐹

2
(𝑘, ℎ) . (39)

Table 1: The numerical and exact solution of the test problem(32),
where 𝑢

1
(𝑡, 𝑥) is the exact solution and 𝑢

∗

1
(𝑡, 𝑥) is the numerical

solution, for 𝑥 = 0.1.

𝑡 𝑢
1
(𝑡, 𝑥) 𝑢

∗

1
(𝑡, 𝑥) |𝑢

1
(𝑡, 𝑥) − 𝑢

∗

1
(𝑡, 𝑥)|

0.1 −0.0895789043 −0.0895789043 0
0.2 −0.0810543445 −0.0810543422 0.0000000023
0.3 −0.0733410038 −0.0733409887 0.0000000151
0.4 −0.0663616845 −0.0663616355 0.0000000490
0.5 −0.0600465353 −0.0600464409 0.0000000944
0.6 −0.0543323519 −0.0543322800 0.0000000719
0.7 −0.0491619450 −0.0491621943 0.0000002493
0.8 −0.0444835674 −0.0444849422 0.0000013748
0.9 −0.0402503963 −0.0402546487 0.0000042524
1.0 −0.0364200646 −0.0364305555 0.0000104909

Table 2: The numerical and exact solution of the test problem(32),
where 𝑢

2
(𝑡, 𝑥) is exact solution and 𝑢∗

2
(𝑡, 𝑥) is numerical solution,

for 𝑥 = 0.1.

𝑡 𝑢
2
(𝑡, 𝑥) 𝑢

∗

2
(𝑡, 𝑥) |𝑢

2
(𝑡, 𝑥) − 𝑢

∗

2
(𝑡, 𝑥)|

0.1 −0.9949046649 −0.9949046653 0.0000000004
0.2 −0.9799685711 −0.9799685778 0.0000000067
0.3 −0.9552409555 −0.9552409875 0.0000000320
0.4 −0.9209688879 −0.9209689778 0.0000000899
0.5 −0.8774948036 −0.8774949653 0.0000001637
0.6 −0.8252530813 −0.8252532000 0.0000001187
0.7 −0.7647657031 −0.7647652653 0.0000004378
0.8 −0.6966370386 −0.6966345778 0.0000024608
0.9 −0.6215478073 −0.6215398875 0.0000079198
1.0 −0.5402482757 −0.5402277778 0.0000204979

The Taylor series of functions 𝑓
1
and 𝑓

2
about 𝑥 = 0, 𝑡 = 0

are

𝑓
1
(𝑡, 𝑥) = − 1 + 𝑡 − 6𝑥 +

1

2
𝑡
2
+ 6𝑥𝑡

−
1

6
𝑡
3
− 3𝑥𝑡
2
−
1

24
𝑡
4
+ 𝑥
4
+ 𝑥𝑡
3

− 𝑥
4
𝑡 +

1

120
𝑡
5
−
1

4
𝑥𝑡
4
+

1

720
𝑡
6

−
1

2
𝑥
4
𝑡
2
+
1

20
𝑥𝑡
5
+
1

6
𝑥
4
𝑡
3

−
1

5040
𝑡
7
−

1

120
𝑥𝑡
6
+ ⋅ ⋅ ⋅ ,

(40)

𝑓
2
(𝑡, 𝑥) = − 5𝑥 + 5𝑥𝑡 −

5

2
𝑥𝑡
2
− 𝑥
3

+
5

6
𝑥𝑡
3
+ 𝑥
3
𝑡 −

1

2
𝑥
3
𝑡
2
−
5

24
𝑥𝑡
4

+
1

6
𝑥
3
𝑡
3
+
1

24
𝑥𝑡
5
−

1

144
𝑥𝑡
6

−
1

24
𝑥
3
𝑡
4
+ ⋅ ⋅ ⋅ .

(41)
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Figure 1: The graphic of the function 𝑢
1
(𝑡, 𝑥) in the test problem

(32).
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Figure 2: The graphic of the function 𝑢∗
1
(𝑡, 𝑥) in the test problem

(32).

The values 𝐹
1
(𝑘, ℎ) and 𝐹

2
(𝑘, ℎ) in (39) and (40) are coeffi-

cients of polynomials (41) and (42). If we use Theorem 3 for
boundary values, we obtain

7

∑

𝑖=0

𝑈
1
(𝑗, 𝑖) = 0, 𝑗 = 0, 1, . . . , 7, (42)

7

∑

𝑖=0

(−1)
𝑖
𝑈
1
(𝑗, 𝑖) = 0, 𝑗 = 0, 1, . . . , 7. (43)

0.4
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Figure 3: The graphic of the function 𝑢
2
(𝑡, 𝑥) in the test problem

(32).
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Figure 4: The graphic of the function 𝑢∗
2
(𝑡, 𝑥) in the test problem

(32).

In order to write 𝑘 = 0 and ℎ = 0, 1, 2, 3, 4, 5 in (40), we have

2𝑈
1
(0, 2) + 𝑈

1
(0, 0) = 0, 20𝑈

1
(0, 5) + 𝑈

1
(0, 3) = 1,

6𝑈
1
(0, 3) + 𝑈

1
(0, 1) = 5, 30𝑈

1
(0, 6) + 𝑈

1
(0, 4) = 0,

12𝑈
1
(0, 4) + 𝑈

1
(0, 2) = 0, 42𝑈

1
(0, 7) + 𝑈

1
(0, 5) = 0.

(44)

If we take 𝑗 = 0 in (43) and (44), we obtain

𝑈
1
(0, 0) + 𝑈

1
(0, 1) + 𝑈

1
(0, 2) + 𝑈

1
(0, 3)

+ 𝑈
1
(0, 4) + 𝑈

1
(0, 5) + 𝑈

1
(0, 6) + 𝑈

1
(0, 7) = 0,

𝑈
1
(0, 0) − 𝑈

1
(0, 1) + 𝑈

1
(0, 2) − 𝑈

1
(0, 3)

+ 𝑈
1
(0, 4) − 𝑈

1
(0, 5) + 𝑈

1
(0, 6) − 𝑈

1
(0, 7) = 0.

(45)
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From (45) and (46), we find

𝑈
1
(0, 0) = 0, 𝑈

1
(0, 1) = −1, 𝑈

1
(0, 2) = 0,

𝑈
1
(0, 3) = 1, 𝑈

1
(0, 4) = 0, 𝑈

1
(0, 5) = 0,

𝑈
1
(0, 6) = 0, 𝑈

1
(0, 7) = 0.

(46)

In this manner, from (40), (44), and (45), the coefficients of
the 𝑢
1
are obtained as follows:

𝑈
1
(1, 0) = 0, 𝑈

1
(1, 1) = 1, 𝑈

1
(1, 2) = 0,

𝑈
1
(1, 3) = −1, 𝑈

1
(1, 4) = 0, 𝑈

1
(1, 5) = 0,

𝑈
1
(1, 6) = 0, 𝑈

1
(2, 0) = 0, 𝑈

1
(2, 1) = −

1

2
,

𝑈
1
(2, 2) = 0, 𝑈

1
(2, 3) =

1

2
, 𝑈

1
(2, 4) = 0,

𝑈
1
(2, 5) = 0, 𝑈

1
(3, 0) = 0, 𝑈

1
(3, 1) =

1

6
,

𝑈
1
(3, 2) = 0, 𝑈

1
(3, 3) = −

1

6
, 𝑈

1
(3, 4) = 0,

𝑈
1
(4, 0) = 0, 𝑈

1
(4, 1) = −

1

24
, 𝑈

1
(4, 2) = 0,

𝑈
1
(4, 3) =

1

24
, 𝑈

1
(5, 0) = 0, 𝑈

1
(5, 1) =

1

120
,

𝑈
1
(5, 2) = 0, 𝑈

1
(6, 0) = 0, 𝑈

1
(6, 1) = −

1

720
,

𝑈
1
(7, 0) = 0.

(47)

Using the initial values for the second component, we obtain
the following coefficients:

𝑈
2
(0, 0) = −1, 𝑈

2
(0, 1) = 0, 𝑈

2
(0, 2) = 0,

𝑈
2
(0, 3) = 0, 𝑈

2
(0, 4) = 1, 𝑈

2
(0, 5) = 0,

𝑈
2
(0, 6) = 0, 𝑈

2
(0, 7) = 0.

(48)

The coefficients of the 𝑢
2
can be found using (47), (48), (49),

and taking 𝑘 = 0, 1, 2, . . . and ℎ = 0, 1, 2, . . . in (39) as follows:

𝑈
2
(1, 2) = 0, 𝑈

2
(1, 3) = 0, 𝑈

2
(1, 4) = 0,

𝑈
2
(1, 5) = 0, 𝑈

2
(1, 6) = 0, 𝑈

2
(2, 1) = 0,

𝑈
2
(2, 2) = 0, 𝑈

2
(2, 3) = 0, 𝑈

2
(2, 4) = −

1

2
,

𝑈
2
(2, 5) = 0, 𝑈

2
(3, 0) = 0, 𝑈

2
(3, 1) = 0,

𝑈
2
(3, 2) = 0, 𝑈

2
(3, 3) = 0, 𝑈

2
(3, 4) = 0,

𝑈
2
(4, 1) = 0, 𝑈

2
(4, 2) = 0, 𝑈

2
(4, 3) = 0,

𝑈
2
(4, 0) = −

1

24
, 𝑈

2
(5, 0) = 0, 𝑈

2
(5, 1) = 0,

𝑈
2
(5, 2) = 0, 𝑈

2
(6, 0) =

1

720
, 𝑈

2
(6, 1) = 0,

𝑈
2
(7, 0) = 0.

(49)

If we write the above values in (39) and (40), then we have

𝑢
∗

1
(𝑡, 𝑥) = − 𝑥 + 𝑥𝑡 −

1

2
𝑥𝑡
2
+ 𝑥
3
+
1

6
𝑥𝑡
3

− 𝑥
3
𝑡 +

1

2
𝑥
3
𝑡
2
−
1

24
𝑥𝑡
4
−
1

6
𝑥
3
𝑡
3

+
1

120
𝑥𝑡
5
−

1

720
𝑥𝑡
6
+
1

24
𝑥
3
𝑡
4
+ ⋅ ⋅ ⋅ ,

(50)

𝑢
∗

2
(𝑡, 𝑥) = − 1 +

1

2
𝑡
2
−
1

24
𝑡
4

+ 𝑥
4
+

1

720
𝑡
6
−
1

2
𝑥
4
𝑡
2
+ ⋅ ⋅ ⋅ .

(51)

Numerical and exact solution of the given problem has been
compared in Tables 1 and 2, and simulations of solutions have
been depicted in Figures 1, 2, 3, and 4, respectively.

5. Conclusion

The computations associated with the example discussed
above were performed by using Computer Algebra Tech-
niques [24]. We show the results in Tables 1 and 2 for the
solution of (32) by numerical method. The numerical values
on Tables 1 and 2 obtained above are in full agreement with
the exact solutions of (32). This study has shown that the
differential transform method often shows superior perfor-
mance over series approximants, providing a promising tool
for using in applied fields.
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