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We use Sadovskii’s fixed point method to investigate the existence and uniqueness of solutions of Caputo impulsive fractional
differential equations of order 𝛼 ∈ (0, 1) with one example of impulsive logistic model and few other examples as well. We also
discuss Caputo impulsive fractional differential equations with finite delay.The results proven are new and compliment the existing
one.

1. Introduction

Dynamics ofmany evolutionary processes from various fields
such as population dynamics, control theory, physics, biology,
andmedicine. undergo abrupt changes at certainmoments of
time like earthquake, harvesting, shock, and so forth. These
perturbations can be well approximated as instantaneous
change of states or impulses. These processes are modeled by
impulsive differential equations. In 1960,Milman andMyšhkis
introduced impulsive differential equations in their paper
[1]. Based on their work, several monographs have been
published by many authors like Samoilenko and Perestyuk
[2], Lakshmikantham et al. [3], Bainov and Simeonov [4, 5],
Bainov and Covachev [6], and Benchohra et al. [7]. All the
authorsmentioned perviously have considered impulsive dif-
ferential equations as ordinary differential equations coupled
with impulsive effects. They considered the impulsive effects
as difference equations being satisfied at impulses time. So,
the solutions are piecewise continuous with discontinuities at
impulses time. In the fields like biology, population dynamics,
and so forth, problems with hereditary are best modeled
by delay differential equations [8]. Problems associated with
impulsive effects and hereditary property are modeled by
impulsive delay differential equations.

The origin of fractional calculus (derivatives (𝑑
𝛼

/𝑑𝑡
𝛼

)𝑓

and integrals 𝐼
𝛼

𝑓 of arbitrary order 𝛼 > 0) goes back
to Newton and Leibniz in the 17th century. In a letter
correspondence with Leibniz, L’Hospital asked “What if the
order of the derivative is 1/2”? Leibniz replied, “Thus it
follows that will be equal to 𝑥√𝑑𝑥 : 𝑥, an apparent paradox,
from which one day useful consequences will be drawn.”
This letter of Leibniz was in September 1695. So, 1695 is
considered as the birthday of fractional calculus. Fractional
order differential equations are generalizations of classical
integer order differential equations and are increasingly used
to model problems in fluid dynamics, finance, and other
areas of application. Recent investigations have shown that
sometimes physical systems can be modeled more accurately
using fractional derivative formulations [9].There are several
excellent monographs available on this field [10–15]. In [11],
the authors give a recent and up-to-date description of the
developments of fractional differential and fractional integro-
differential equations including applications. The existence
and uniqueness of solutions to fractional differential equa-
tions has been considered bymany authors [16–21]. Impulsive
fractional differential equations represent a real framework
for mathematical modeling to real world problems. Signif-
icant progress has been made in the theory of impulsive
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fractional differential equations [7, 22–24]. Xu et al. in their
paper [25] have described an impulsive delay fishing model.

Fractional derivatives arise naturally in mathematical
problems, for 𝛼 > 0 and a function 𝑓 : [0, 𝑇] → R, recall
[10, Definitions 3.1, 2.2]

(a) the Caputo fractional derivative

𝐶

𝐷
𝛼

𝑓 (𝑡) =

1

Γ (1 − 𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
−𝛼

𝑓
󸀠

(𝑠) 𝑑𝑠, (1)

(b) the Riemann-Liouville fractional derivative

𝐷
𝛼

𝑓 (𝑡) =

𝑑
𝛼

𝑑𝑡
𝛼
𝑓 (𝑡) =

1

Γ (1 − 𝛼)

𝑑

𝑑𝑡

∫

𝑡

0

(𝑡 − 𝑠)
−𝛼

𝑓 (𝑠) 𝑑𝑠, (2)

provided that the right-hand sides exist pointwise on [0, 𝑇] (Γ
denotes the gamma function). Using the Riemann-Liouville
fractional integral [10, Definition 2.1] 𝐼𝛼

0
𝑓(𝑡) = (1/Γ(𝛼)) ∫

𝑡

0

(𝑡−

𝑠)
𝛼−1

𝑓(𝑠)𝑑𝑠, we have 𝐶𝐷𝛼𝑓(𝑡) = 𝐼
1−𝛼

0
(𝑑/𝑑𝑡)𝑓(𝑡) and

𝐷
𝛼

𝑓(𝑡) = (𝑑/𝑑𝑡)𝐼
1−𝛼

0
𝑓(𝑡). 𝐼

𝛼

0
𝑓 exists, for instance, for all

𝛼 > 0, if 𝑓 ∈ 𝐶
0

([0, 𝑇]) ∩ 𝐿
1

loc([0, 𝑇]); moreover, 𝐼𝛼
0
𝑓(0) = 0.

Throughout the paper, we assume that 𝐼 = [0, 𝑇].
One can see that both of the fractional derivatives are

actually nonlocal operator because integral is a nonlocal
operator.Moreover, calculating time fractional derivative of a
function at some time requires all the past history, and hence
fractional derivatives can be used for modeling systems with
memory. Fractional differential equations can be formulated
using both Caputo and Riemann-Liouville fractional deriva-
tives. A Riemann-Liouville initial value problem can be stated
as follows:

𝐷
𝛼

𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ 𝐼 = [0, 𝑇] ,

𝐷
𝛼−1

𝑥 (0) = 𝑥
0
,

(3)

or equivalently,𝑥(𝑡) = 𝑥
0
𝑡
𝛼−1

/Γ(𝛼)+∫

𝑡

0

(𝑡−𝑠)
𝛼−1

𝑓(𝑠, 𝑥(𝑠))𝑑𝑠 in
its integral representation [11, Theorem 3.24]. For a physical
interpretation of the initial conditions in (3), see [26–28].
If derivatives of Caputo type are used instead of Riemann-
Liouville type, then initial conditions for the corresponding
Caputo fractional differential equations can be formulated as
for classical ordinary differential equations, namely, 𝑥(0) =

𝑥
0
.
Ourmain objective is to discuss existence and uniqueness

of solutions of the following impulsive fractional differential
equation of Caputo type in a Banach space𝑋with norm ‖ ⋅ ‖

𝑋
:

𝐶

𝐷
𝛼

𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ 𝐼 = [0, 𝑇] , 𝑡 ̸= 𝑡
𝑘
,

Δ𝑥 (𝑡) |
𝑡=𝑡𝑘

= 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
)) , 𝑘 = 1, 2, . . . , 𝑚,

𝑥 (0) = 𝑥
0
,

(4)

where 𝑓 ∈ 𝐶(𝐼 × 𝑋,𝑋), 𝐼
𝑘

: 𝑋 → 𝑋 and 𝑥
0
∈ 𝑋. 0 = 𝑡

0
<

𝑡
1

< 𝑡
2

< ⋅ ⋅ ⋅ < 𝑡
𝑚

< 𝑡
𝑚+1

= 𝑇, Δ𝑥(𝑡)|
𝑡=𝑡𝑘

= 𝑥(𝑡
+

𝑘
) − 𝑥(𝑡

−

𝐾
),

𝑥(𝑡
+

𝑘
) = lim

ℎ→0
𝑥(𝑡+ℎ), and𝑥(𝑡

−

𝑘
) = lim

ℎ→0
𝑥(𝑡−ℎ).We break

our function 𝑓 into two components which satisfy different

conditions. We observed that this kind of functions occurs in
ecological modeling. We have given the example of logistic
equation in the last section. Our main tool is Sadovskii’s fixed
point theorem.

Now, we define some important spaces and norm which
will encounter frequently:

PC (𝐼, 𝑋) = {𝑥 : [0, 𝑇] 󳨀→ 𝑋 | 𝑥 ∈ 𝐶 ([𝑡
0
, 𝑡
1
] , 𝑋)

∪ 𝐶 ((𝑡
𝑘
, 𝑡
𝑘+1

] , 𝑋) 𝑘 = 1, 2, . . . , 𝑚,

𝑥 (𝑡
+

𝑘
) and 𝑥 (𝑡

−

𝑘
) exist, 𝑥 (𝑡

𝑘
) = 𝑥 (𝑡

−

𝑘
) } ,

(5)

with sup-norm ‖ ⋅ ‖, defined by ‖𝑥‖ = sup{‖𝑥(𝑡)‖
𝑋

: 𝑡 ∈ 𝐼}.

Definition 1. A solution of fractional differential equation (4)
is a piecewise continuous function 𝑥 ∈ PC([0, 𝑇], 𝑋) which
satisfied (4).

Definition 2 ([29], Definition 11.1). Kuratowskii noncom-
pactness measure: let 𝑀 be a bounded set in metric space
(𝑋, 𝑑), then Kuratowskii noncompactness measure, 𝜇(𝑀)

is defined as inf{𝜖 : 𝑀 covered by a finitemany sets such
that the diameter of each set ≤ 𝜖}.

Definition 3 ([29], Definition 11.6). Condensing map: Let Φ :

𝑋 → 𝑋 be a bounded and continuous operator on Banach
space 𝑋 such that 𝜇(Φ(𝐵)) < 𝜇(𝐵) for all bounded set 𝐵 ⊂

𝐷(Φ), where 𝜇 is the Kuratowskii noncompactness measure,
then Φ is called condensing map.

Definition 4. Compact map: a map 𝑓 : 𝑋 → 𝑋 is said to be
compact if the image of every bounded subset of 𝑋 under 𝑓

is precompact (closure is compact).

Theorem 5 (see [30]). Let B be a convex, bounded, and closed
subset of a Banach space𝑋 and letΦ : 𝐵 → 𝐵 be a condensing
map. Then, Φ has a fixed point in 𝐵.

Lemma6 ([29], Example 11.7). AmapΦ = Φ
1
+Φ
2
: 𝑋 → 𝑋

is 𝑘-contraction with 0 ≤ 𝑘 < 1 if

(a) Φ
1
is 𝑘-contraction, that is, ‖Φ

1
(𝑥) − Φ

1
(𝑦)‖
𝑋

≤

𝑘‖𝑥 − 𝑦‖
𝑋
;

(b) Φ
2
is compact,

and hence Φ is a condensing map.

The structure of the paper is as follows. In Section 2, we
prove the existence (Theorem 8) and uniqueness of solutions
to (4). We show in Section 3 the existence and uniqueness
of solutions for a general class of impulsive functional
differential equations of fractional order 𝛼 ∈ (0, 1). In
Section 4, we give some examples in favor of our sufficient
conditions.
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2. Impulsive Fractional Differential Equation

Consider the initial value problem (4) on the cylinder 𝑅 =

{(𝑡, 𝑥) ∈ R×𝑋 : 𝑡 ∈ [0, 𝑇], 𝑥 ∈ 𝐵(0, 𝑟)} for some fixed 𝑇 > 0,
𝑟 > 0, and assume that there exist 𝑝 ∈ (0, 𝛼), 𝛼 ∈ (0, 1),
𝑀
1
,𝑀
2
, 𝐿
1

∈ 𝐿
1/𝑝

([0, 𝑇],R+) and functions 𝑓
1
, 𝑓
2

∈ 𝐶(𝑅 ×

𝑋,𝑋) such that 𝑓 = 𝑓
1
+ 𝑓
2
, and the following assumptions

are satisfied:

(A.1) 𝑓
1

is bounded and Lipschitz, in particular,
‖𝑓
1
(𝑡, 𝑥)‖

𝑋
≤ 𝑀

1
(𝑡) and ‖𝑓

1
(𝑡, 𝑥) − 𝑓

1
(𝑡, 𝑦)‖

𝑋
≤

𝐿
1
(𝑡)‖𝑥 − 𝑦‖

𝑋
for all (𝑡, 𝑥), (𝑡, 𝑦) ∈ 𝑅,

(A.2) 𝑓
2

is compact and bounded, in particular,
‖𝑓
2
(𝑡, 𝑥)‖

𝑋
≤ 𝑀
2
(𝑡) for all (𝑡, 𝑥) ∈ 𝑅,

(A.3) 𝐼
𝑘

∈ 𝐶(𝑋,𝑋) such that ‖𝐼
𝑘
(𝑥)‖
𝑋

≤ 𝑙
1
and ‖𝐼

𝑘
(𝑥) −

𝐼
𝑘
(𝑦)‖
𝑋

≤ 𝑙
2
‖𝑥 − 𝑦‖

𝑋
,

where 𝐶(𝑅 × 𝑋,𝑋) denotes set of continuous functions from
𝑅 × 𝑋 to 𝑋 and 𝐿

1/𝑝
([0, 𝑇],R+) denotes space 1/𝑝-Lesbegue

measurable functions from [0, 𝑇] to R+ with norm ‖ ⋅ ‖
1/𝑝

.

Lemma 7 (Fečken et al. [24], Lemma 2). The initial value
problem (4) is equivalent to the nonlinear integral equation

𝑥 (𝑡) = 𝑥
0
+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓
1
(𝑠, 𝑥 (𝑠)) 𝑑𝑠

+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓
2
(𝑠, 𝑥 (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 𝑡

1
]

= 𝑥
0
+ 𝐼
1
(𝑥 (𝑡
−

1
)) +

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓
1
(𝑠, 𝑥 (𝑠)) 𝑑𝑠

+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓
2
(𝑠, 𝑥 (𝑠)) 𝑑𝑠, 𝑡 ∈ (𝑡

1
, 𝑡
2
]

= 𝑥
0
+

2

∑

𝑘=1

𝐼
𝑘
(𝑥 (𝑡
−

𝑘
)) +

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓
1
(𝑠, 𝑥 (𝑠)) 𝑑𝑠

+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓
2
(𝑠, 𝑥 (𝑠)) 𝑑𝑠, 𝑡 ∈ (𝑡

2
, 𝑡
3
]

= 𝑥
0
+

𝑚

∑

𝑘=1

𝐼
𝑘
(𝑥 (𝑡
−

𝑘
)) +

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓
1
(𝑠, 𝑥 (𝑠)) 𝑑𝑠

+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓
2
(𝑠, 𝑥 (𝑠)) 𝑑𝑠, 𝑡 ∈ (𝑡

𝑚
, 𝑇] .

(6)

In other words, every solution of the integral equation (6) is also
solution of our original initial value problem (4) and conversely.

Theorem 8 (existence of solutions). Under the assumptions
(A.1)–(A.3), the problem (4) has at least one solution in [0, 𝑇],
provided that

𝛾
1
= 𝑚𝑙
2
+

𝑐
󵄩
󵄩
󵄩
󵄩
𝐿
1

󵄩
󵄩
󵄩
󵄩1/𝑝

𝑇
𝛼−𝑝

Γ (𝛼 + 1)

< 1, where 𝑐 = (

1 − 𝑝

𝛼 − 𝑝

)

1−𝑝

.

(7)

Proof. Let 𝐵
𝜆
be the closed bounded and convex subset of

PC([0, 𝑇], 𝑋), where 𝐵
𝜆
is defined as 𝐵

𝜆
= {𝑥 : ‖𝑥‖ ≤ 𝜆}, 𝜆 =

max{𝜆
0
, 𝜆
1
, . . . , 𝜆

𝑚
}, and

𝜆
𝑘
=

󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩𝑋

+ 𝑘𝑙
1
+

𝑐 (
󵄩
󵄩
󵄩
󵄩
𝑀
1

󵄩
󵄩
󵄩
󵄩1/𝑝

+
󵄩
󵄩
󵄩
󵄩
𝑀
2

󵄩
󵄩
󵄩
󵄩1/𝑝

)

Γ (𝛼)

𝑇
𝛼−𝑝

,

𝑘 = 0, 1, 2, . . . , 𝑚.

(8)

Define a map 𝐹 : 𝐵
𝜆

→ 𝑋 such that

𝐹𝑥 (𝑡) = 𝑥
0
+ ∑

0<𝑡𝑘<𝑡

𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))

+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓
1
(𝑠, 𝑥 (𝑠)) 𝑑𝑠

+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓
2
(𝑠, 𝑥 (𝑠)) 𝑑𝑠.

(9)

Let us consider that

𝐹
1
𝑥 (𝑡) = 𝑥

0
+ ∑

0<𝑡𝑘<𝑡

𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))

+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓
1
(𝑠, 𝑥 (𝑠)) 𝑑𝑠,

𝐹
2
𝑥 (𝑡) =

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓
2
(𝑠, 𝑥 (𝑠)) 𝑑𝑠.

(10)

Step 1 (𝐹 is self mapping). Now, we show that 𝐹(𝐵
𝑟
) ⊂ 𝐵
𝑟
. For

𝑡 ∈ [0, 𝑡
1
]

‖𝐹𝑥 (𝑡)‖
𝑋

≤
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩𝑋

+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1󵄩

󵄩
󵄩
󵄩
𝑓 (𝑠 ⋅ 𝑥 (𝑠))

󵄩
󵄩
󵄩
󵄩𝑋

𝑑𝑠

≤
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩𝑋

+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1󵄩

󵄩
󵄩
󵄩
𝑓
1
(𝑠, 𝑥 (𝑠))

󵄩
󵄩
󵄩
󵄩𝑋

𝑑𝑠

+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1󵄩

󵄩
󵄩
󵄩
𝑓
2
(𝑠, 𝑥 (𝑠))

󵄩
󵄩
󵄩
󵄩𝑋

𝑑𝑠

≤
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩𝑋

+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑀
1
(𝑠) 𝑑𝑠

+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑀
2
(𝑠) 𝑑𝑠

≤
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩𝑋

+

1

Γ (𝛼)

(∫

𝑡

0

(𝑡 − 𝑠)
(𝛼−1)/(1−𝑝)

𝑑𝑠)

1−𝑝

× (∫

𝑡

0

𝑀
1/𝑝

1
(𝑠) 𝑑𝑠)

𝑝

+

1

Γ (𝛼)

× (∫

𝑡

0

(𝑡 − 𝑠)
(𝛼−1)/(1−𝑝)

𝑑𝑠)

1−𝑝

(∫

𝑡

0

𝑀
1/𝑝

2
(𝑠) 𝑑𝑠)

𝑝

≤
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩𝑋

+

𝑐 (
󵄩
󵄩
󵄩
󵄩
𝑀
1

󵄩
󵄩
󵄩
󵄩1/𝑝

+
󵄩
󵄩
󵄩
󵄩
𝑀
2

󵄩
󵄩
󵄩
󵄩1/𝑝

)

Γ (𝛼)

𝑇
𝛼−𝑝

= 𝜆
0
.

(11)
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For 𝑡 ∈ (𝑡
1
, 𝑡
2
],

‖𝐹𝑥 (𝑡)‖
𝑋

≤
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩𝑋

+
󵄨
󵄨
󵄨
󵄨
𝐼
1
(𝑥 (𝑡
−

1
))

󵄨
󵄨
󵄨
󵄨

+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1󵄩

󵄩
󵄩
󵄩
𝑓 (𝑠 ⋅ 𝑥 (𝑠))

󵄩
󵄩
󵄩
󵄩𝑋

𝑑𝑠

≤
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩𝑋

+ 𝑙
1
+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1󵄩

󵄩
󵄩
󵄩
𝑓
1
(𝑠, 𝑥 (𝑠))

󵄩
󵄩
󵄩
󵄩𝑋

𝑑𝑠

+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1󵄩

󵄩
󵄩
󵄩
𝑓
2
(𝑠, 𝑥 (𝑠))

󵄩
󵄩
󵄩
󵄩𝑋

𝑑𝑠

≤
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩𝑋

+ 𝑙
1
+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑀
1
(𝑠) 𝑑𝑠

+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑀
2
(𝑠) 𝑑𝑠

≤
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩𝑋

+ 𝑙
1
+

1

Γ (𝛼)

× (∫

𝑡

0

(𝑡 − 𝑠)
(𝛼−1)/(1−𝑝)

𝑑𝑠)

1−𝑝

(∫

𝑡

0

𝑀
1/𝑝

1
(𝑠) 𝑑𝑠)

𝑝

+

1

Γ (𝛼)

(∫

𝑡

0

(𝑡 − 𝑠)
(𝛼−1)/(1−𝑝)

𝑑𝑠)

1−𝑝

× (∫

𝑡

0

𝑀
1/𝑝

2
(𝑠) 𝑑𝑠)

𝑝

≤
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩𝑋

+ 𝑙
1
+

𝑐 (
󵄩
󵄩
󵄩
󵄩
𝑀
1

󵄩
󵄩
󵄩
󵄩1/𝑝

+
󵄩
󵄩
󵄩
󵄩
𝑀
2

󵄩
󵄩
󵄩
󵄩1/𝑝

)

Γ (𝛼)

𝑇
𝛼−𝑝

= 𝜆
1
.

(12)
For 𝑡 ∈ (𝑡

2
, 𝑡
3
],

‖𝐹𝑥 (𝑡)‖ ≤
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩𝑋

+

2

∑

𝑘=0

󵄨
󵄨
󵄨
󵄨
𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))

󵄨
󵄨
󵄨
󵄨

+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1󵄩

󵄩
󵄩
󵄩
𝑓 (𝑠 ⋅ 𝑥 (𝑠))

󵄩
󵄩
󵄩
󵄩𝑋

𝑑𝑠

≤
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩𝑋

+ 2𝑙
1
+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1󵄩

󵄩
󵄩
󵄩
𝑓
1
(𝑠, 𝑥 (𝑠))

󵄩
󵄩
󵄩
󵄩𝑋

𝑑𝑠

+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1 󵄨

󵄨
󵄨
󵄨
𝑓
2
(𝑠, 𝑥 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

≤
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩𝑋

+ 2𝑙
1
+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑀
1
(𝑠) 𝑑𝑠

+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑀
2
(𝑠) 𝑑𝑠

≤
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩𝑋

+ 2𝑙
1
+

1

Γ (𝛼)

(∫

𝑡

0

(𝑡 − 𝑠)
(𝛼−1)/(1−𝑝)

𝑑𝑠)

1−𝑝

×(∫

𝑡

0

𝑀
1/𝑝

1
(𝑠) 𝑑𝑠)

𝑝

+

1

Γ (𝛼)

× (∫

𝑡

0

(𝑡 − 𝑠)
(𝛼−1)/(1−𝑝)

𝑑𝑠)

1−𝑝

(∫

𝑡

0

𝑀
1/𝑝

2
(𝑠) 𝑑𝑠)

𝑝

≤
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩𝑋

+ 2𝑙
1
+

𝑐 (
󵄩
󵄩
󵄩
󵄩
𝑀
1

󵄩
󵄩
󵄩
󵄩1/𝑝

+
󵄩
󵄩
󵄩
󵄩
𝑀
2

󵄩
󵄩
󵄩
󵄩1/𝑝

)

Γ (𝛼)

𝑇
𝛼−𝑝

= 𝜆
2
.

(13)

For 𝑡 ∈ (𝑡
𝑚
, 𝑇],

‖𝐹𝑥 (𝑡)‖
𝑋

≤
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩𝑋

+

𝑚

∑

𝑘=0

󵄨
󵄨
󵄨
󵄨
𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))

󵄨
󵄨
󵄨
󵄨

+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1󵄩

󵄩
󵄩
󵄩
𝑓 (𝑠 ⋅ 𝑥 (𝑠))

󵄩
󵄩
󵄩
󵄩𝑋

𝑑𝑠

≤
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩𝑋

+ 𝑚𝑙
1

+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1󵄩

󵄩
󵄩
󵄩
𝑓
1
(𝑠, 𝑥 (𝑠))

󵄩
󵄩
󵄩
󵄩𝑋

𝑑𝑠

+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1 󵄩

󵄩
󵄩
󵄩
𝑓
2
(𝑠, 𝑥 (𝑠))

󵄩
󵄩
󵄩
󵄩
𝑑𝑠

≤
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩𝑋

+ 𝑚𝑙
1
+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑀
1
(𝑠) 𝑑𝑠

+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑀
2
(𝑠) 𝑑𝑠

≤
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩𝑋

+ 𝑚𝑙
1

+

1

Γ (𝛼)

(∫

𝑡

0

(𝑡 − 𝑠)
(𝛼−1)/(1−𝑝)

𝑑𝑠)

1−𝑝

× (∫

𝑡

0

𝑀
1/𝑝

1
(𝑠) 𝑑𝑠)

𝑝

+

1

Γ (𝛼)

× (∫

𝑡

0

(𝑡 − 𝑠)
(𝛼−1)/(1−𝑝)

𝑑𝑠)

1−𝑝

(∫

𝑡

0

𝑀
1/𝑝

2
(𝑠) 𝑑𝑠)

𝑝

≤
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩𝑋

+ 𝑚𝑙
1
+

𝑐 (
󵄩
󵄩
󵄩
󵄩
𝑀
1

󵄩
󵄩
󵄩
󵄩1/𝑝

+
󵄩
󵄩
󵄩
󵄩
𝑀
2

󵄩
󵄩
󵄩
󵄩1/𝑝

)

Γ (𝛼)

𝑇
𝛼−𝑝

= 𝜆
𝑚
,

(14)

and thus 𝐹(𝐵
𝜆
) ⊂ 𝐵
𝜆
.

Step 2 (𝐹
1
is continuous and 𝛾-contraction). To prove the

continuity of 𝐹
1
for 𝑡 ∈ [0, 𝑇], let us consider a sequence 𝑥

𝑛

converging to 𝑥. Taking the norm of 𝐹
1
𝑥
𝑛
(𝑡)−𝐹

1
𝑥(𝑡), we have

󵄩
󵄩
󵄩
󵄩
𝐹
1
𝑥
𝑛
(𝑡) − 𝐹

1
𝑥 (𝑡)

󵄩
󵄩
󵄩
󵄩𝑋

≤ ∑

0<𝑡𝑘<𝑡

󵄩
󵄩
󵄩
󵄩
𝐼
1
(𝑥
𝑛
(𝑡
−

𝑘
) − 𝑥 (𝑡

−

𝑘
))

󵄩
󵄩
󵄩
󵄩𝑋

+

1

Γ𝛼

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝐿 (𝑠)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
(𝑠) − 𝑥 (𝑠)

󵄩
󵄩
󵄩
󵄩𝑋

𝑑𝑠

≤ ∑

0<𝑡𝑘<𝑡

𝑙
2

󵄩
󵄩
󵄩
󵄩
(𝑥
𝑛
(𝑡
−

𝑘
) − 𝑥 (𝑡

−

𝑘
)
󵄩
󵄩
󵄩
󵄩𝑋
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+

1

Γ𝛼

(∫

𝑡

0

(𝑡 − 𝑠)
(𝛼−1)/(1−𝑝)

𝑑𝑠)

1−𝑝

× (∫

𝑡

0

𝐿
1/𝑝

1
(𝑠) 𝑑𝑠)

𝑝

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑥

󵄩
󵄩
󵄩
󵄩

≤ (𝑚𝑙
2
+

𝑐
󵄩
󵄩
󵄩
󵄩
𝐿
1

󵄩
󵄩
󵄩
󵄩1/𝑝

𝑇
𝛼−𝑝

Γ𝛼

)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑥

󵄩
󵄩
󵄩
󵄩
.

(15)

From the pervoius analysis, we obtain

󵄩
󵄩
󵄩
󵄩
𝐹
1
𝑥
𝑛
− 𝐹
1
𝑥
󵄩
󵄩
󵄩
󵄩
≤ (𝑚𝑙

2
+

𝑐
󵄩
󵄩
󵄩
󵄩
𝐿
1

󵄩
󵄩
󵄩
󵄩1/𝑝

𝑇
𝛼−𝑝

Γ (𝛼)

)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑥

󵄩
󵄩
󵄩
󵄩
. (16)

To prove that 𝐹
1
is 𝛾
1
-contraction, let us consider that, for

𝑥, 𝑦 ∈ 𝐵
𝑟
,

󵄩
󵄩
󵄩
󵄩
𝐹
1
𝑥 (𝑡) − 𝐹

1
𝑦 (𝑡)

󵄩
󵄩
󵄩
󵄩𝑋

≤ ∑

0<𝑡𝑘<𝑡

󵄩
󵄩
󵄩
󵄩
𝐼
𝑘
(𝑥 (𝑡
−

𝑘
) − 𝑦 (𝑡

−

𝑘
))

󵄩
󵄩
󵄩
󵄩𝑋

+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝐿
1
(𝑠)

󵄩
󵄩
󵄩
󵄩
𝑥 (𝑠) − 𝑦 (𝑠)

󵄩
󵄩
󵄩
󵄩𝑋

𝑑𝑠

≤ ∑

0<𝑡𝑘<𝑡

𝑙
2

󵄩
󵄩
󵄩
󵄩
(𝑥 (𝑡
−

𝑘
) − 𝑦 (𝑡

−

𝑘
)
󵄩
󵄩
󵄩
󵄩𝑋

+

1

Γ (𝛼)

(∫

𝑡

0

(𝑡 − 𝑠)
(𝛼−1)/(1−𝑝)

𝑑𝑠)

1−𝑝

× (∫

𝑡

0

𝐿
1/𝑝

1
(𝑠) 𝑑𝑠)

𝑝

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

≤ (𝑚𝑙
2
+

𝑐
󵄩
󵄩
󵄩
󵄩
𝐿
1

󵄩
󵄩
󵄩
󵄩1/𝑝

𝑇
𝛼−𝑝

Γ (𝛼)

)
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩
.

(17)

Thus, for

𝛾
1
= (𝑚𝑙

2
+

𝑐
󵄩
󵄩
󵄩
󵄩
𝐿
1

󵄩
󵄩
󵄩
󵄩1/𝑝

𝑇
𝛼−𝑝

Γ (𝛼)

) < 1, (18)

𝐹
1
is 𝛾
1
-contraction.

Step 3 (𝐹
2
is compact). For 0 ≤ 𝜏

1
≤ 𝜏
2
≤ 𝑇, we have

󵄩
󵄩
󵄩
󵄩
𝐹
2
𝑥 (𝜏
2
) − 𝐹
2
𝑥 (𝜏
1
)
󵄩
󵄩
󵄩
󵄩𝑋

≤

1

Γ (𝛼)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝜏2

0

(𝜏
2
− 𝑠)
𝛼−1

𝑓
2
(𝑠, 𝑥 (𝑠)) 𝑑𝑠

−∫

𝜏1

0

(𝜏
1
− 𝑠)
𝛼−1

𝑓
2
(𝑠, 𝑥 (𝑠)) 𝑑𝑠

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩𝑋

≤

1

Γ (𝛼)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝜏1

0

(𝜏
2
− 𝑠)
𝛼−1

𝑓
2
(𝑠, 𝑥 (𝑠)) 𝑑𝑠

+ ∫

𝜏2

𝜏1

(𝜏
2
− 𝑠)
𝛼−1

𝑓
2
(𝑠, 𝑥 (𝑠)) 𝑑𝑠

−∫

𝜏1

0

(𝜏
1
− 𝑠)
𝛼−1

𝑓
2
(𝑠, 𝑥 (𝑠)) 𝑑𝑠

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩𝑋

≤

1

Γ (𝛼)

∫

𝜏1

0

((𝜏
1
− 𝑠)
𝛼−1

− (𝜏
2
− 𝑠)
𝛼−1

)

×
󵄩
󵄩
󵄩
󵄩
𝑓
2
(𝑠, 𝑥 (𝑠))

󵄩
󵄩
󵄩
󵄩𝑋

𝑑𝑠

+

1

Γ (𝛼)

∫

𝜏2

𝜏1

(𝜏
2
− 𝑠)
𝛼−1󵄩

󵄩
󵄩
󵄩
𝑓
2
(𝑠, 𝑥 (𝑠))

󵄩
󵄩
󵄩
󵄩𝑋

𝑑𝑠

((𝜏 − 𝑠)
𝛼−1 is a decreasing function of 𝜏 − 𝑠.)

≤

1

Γ (𝛼)

∫

𝜏1

0

((𝜏
1
− 𝑠)
𝛼−1

− (𝜏
2
− 𝑠)
𝛼−1

)𝑀
2
(𝑠) 𝑑𝑠

+

1

Γ (𝛼)

∫

𝜏2

𝜏1

(𝜏
2
− 𝑠)
𝛼−1

𝑀
2
(𝑠) 𝑑𝑠

≤

1

Γ (𝛼)

((∫

𝜏1

0

((𝜏
1
− 𝑠)
𝛼−1

−(𝜏
2
− 𝑠)
𝛼−1

)

1/(1−𝑝)

𝑑𝑠)

1−𝑝

)

× (∫

𝜏1

0

𝑀
1/𝑝

2
(𝑠) 𝑑𝑠)

𝑝

+

1

Γ (𝛼)

×(∫

𝜏2

𝜏1

(𝜏
2
− 𝑠)
(𝛼−1)/(1−𝑝)

𝑑𝑠)

1−𝑝

(∫

𝜏1

0

𝑀
1/𝑝

2
(𝑠) 𝑑𝑠)

𝑝

≤

1

Γ (𝛼)

((∫

𝜏1

0

((𝜏
1
− 𝑠)
(𝛼−1)/(1−𝑝)

−(𝜏
2
− 𝑠)
(𝛼−1)/(1−𝑝)

) 𝑑𝑠)

1−𝑝

)

× (∫

𝜏1

0

𝑀
1/𝑝

2
(𝑠) 𝑑𝑠)

𝑝

(𝑥
𝑧

− 𝑦
𝑧

≥ (𝑥 − 𝑦)
𝑧

, ∀𝑥 ≥ 𝑦 ≥ 0, 𝑧 > 1.)

+

1

Γ (𝛼)

(∫

𝜏2

𝜏1

(𝜏
2
− 𝑠)
(𝛼−1)/(1−𝑝)

𝑑𝑠)

1−𝑝

×(∫

𝜏1

0

𝑀
1/𝑝

2
(𝑠) 𝑑𝑠)

𝑝

≤

𝑐

Γ (𝛼)

(𝜏
1

(𝛼−𝑝)/(1−𝑝)

− 𝜏
2

(𝛼−𝑝)/(1−𝑝)

+(𝜏
2
− 𝜏
1
)
(𝛼−𝑝)/(1−𝑝)

)

1−𝑝

×
󵄩
󵄩
󵄩
󵄩
𝑀
2

󵄩
󵄩
󵄩
󵄩1/𝑝

+

𝑐

Γ (𝛼)

(𝜏
2
− 𝜏
1
)
𝛼−𝑝󵄩

󵄩
󵄩
󵄩
𝑀
2

󵄩
󵄩
󵄩
󵄩1/𝑝

≤

𝑐

Γ (𝛼)

((𝜏
1
− 𝜏
2
)
(𝛼−𝑝)/(1−𝑝)

)

1−𝑝
󵄩
󵄩
󵄩
󵄩
𝑀
2

󵄩
󵄩
󵄩
󵄩1/𝑝

+

𝑐

Γ (𝛼)

(𝜏
2
− 𝜏
1
)
𝛼−𝑝󵄩

󵄩
󵄩
󵄩
𝑀
2

󵄩
󵄩
󵄩
󵄩1/𝑝

(𝜏
2
> 𝜏
1
.)

≤

2𝑐
󵄩
󵄩
󵄩
󵄩
𝑀
2

󵄩
󵄩
󵄩
󵄩1/𝑝

Γ (𝛼)

(𝜏
2
− 𝜏
1
)
𝛼−𝑝

.

(19)



6 International Journal of Differential Equations

The right-hand side of the pervoiusly expression does not
depend on 𝑥. Thus using Arzela-Ascoli theorem for equicon-
tinuous functions (Diethelm, Theorem D.10 [10]), we con-
clude that 𝐹

2
(𝐵
𝑟
) is relatively compact, and hence 𝐹

2
is

completely continuous on 𝐼− {𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑚
}. In a similar way,

it can be prove the equi-continuity of 𝐹 on 𝑡 = 𝑡
−

𝑘
and 𝑡 = 𝑡

+

𝑘
,

𝑘 = 1, 2, . . . , 𝑚. And thus 𝐹
2
is compact on [0, 𝑇].

Step 4 (𝐹 is condensing). As 𝐹 = 𝐹
1
+ 𝐹
2
, 𝐹
1
is continuous

contraction, 𝐹
2
is compact, so by using Lemma 6, 𝐹 is

condensing map on 𝐵
𝑟
.

And hence by using the Theorem 5, we conclude that (4)
has a solution in 𝐵

𝑟
.

Theorem 9. If 𝑓 is bounded and Lipschitz, in particular,
‖𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)‖

𝑋
≤ 𝐿
∗

1
(𝑡)‖𝑥 − 𝑦‖

𝑋
for all (𝑡, 𝑥), (𝑡, 𝑦) ∈ 𝑅

and 𝐿
∗

1
∈ 𝐿
1/𝑝

([0, 𝑇],R+), then the problem (4) has a unique
solution in 𝐵

𝜆
, provided that

𝛾
∗

1
= 𝑚𝑙
2
+

𝑐
󵄩
󵄩
󵄩
󵄩
𝐿
∗

1

󵄩
󵄩
󵄩
󵄩
(1/𝑝) 𝑇

𝛼−𝑝

Γ (𝛼 + 1)

< 1, (20)

where 𝑐 = ((1 − 𝑝)/(𝛼 − 𝑝))
1−𝑝.

3. Impulsive Fractional Differential Equations
with Finite Delay

In this section, we discuss existence and uniqueness of
solutions of the following impulsive fractional differential
equations of Caputo type with finite delay in a Banach space
𝑋 with norm | ⋅ |

𝐶

𝐷
𝛼

𝑥 (𝑡) = 𝑓 (𝑡, 𝑥
𝑡
) , 𝑡 ∈ 𝐼 = [0, 𝑇] , 𝑡 ̸= 𝑡

𝑘
,

Δ𝑥 (𝑡) |
𝑡=𝑡𝑘

= 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
)) , 𝑘 = 1, 2, . . . , 𝑚,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝑟, 0] ,

(21)

where 𝑓 : 𝐼 × C → 𝑋, C = 𝐶([−𝑟, 0], 𝑋) with norm ‖𝑥‖
𝑟
=

sup{‖𝑥(𝑡)‖
𝑋

: 𝑡 ∈ [−𝑟, 0]}. 𝐼
𝑘
∈ 𝐶(𝑋,𝑋), (𝑘 = 1, 2, . . . , 𝑚), and

𝑋 is a Banach space with a norm | ⋅ |
𝑋
. For any 𝑥 : [−𝑟, 𝑇] →

𝑋 and 𝑡 ∈ 𝐼, 𝑥
𝑡
∈ C and is defined by 𝑥

𝑡
(𝑠) = 𝑥(𝑡 + 𝑠), 𝑠 ∈

[−𝑟, 0]. Here, our tools are Banach and Schaefer fixed point
theorems.

Define a new Banach space PC([−𝑟, 𝑇], 𝑋)

PC ([−𝑟, 𝑇] , 𝑋) = {𝑥 : [−𝑟, 𝑇] 󳨀→ 𝑋 | 𝑥 ∈ 𝐶 ((𝑡
𝑘
, 𝑡
𝑘+1

] , 𝑋)

∪ 𝐶 ([−𝑟, 0] , 𝑋) , 𝑘 = 0, 1, 2, . . . , 𝑚,

𝑥 (𝑡
+

𝑘
) and 𝑥 (𝑡

−

𝑘
) exist,

𝑥 (𝑡
𝑘
) = 𝑥 (𝑡

−

𝑘
)}

(22)

with sup-norm ‖ ⋅ ‖, defined by ‖𝑥‖ = sup{‖𝑥(𝑡)‖
𝑋

: 𝑡 ∈

[−𝑟, 𝑇]}.

Definition 10. A solution of fractional differential equation
(21) is a piecewise continuous function 𝑥 ∈ PC([−𝑟, 𝑇], 𝑋)

which satisfies (21).

Consider the initial value problem (21) on 𝐼 ×C for some
fixed 𝑇 > 0 and assume that there exist 𝑝 ∈ (0, 𝛼), 𝛼 ∈

(0, 1),𝑀
3
,𝑀
4
, 𝐿
2

∈ 𝐿
1/𝑝

([0, 𝑇],R+) such that the following
assumptions are satisfied:
(A.4) 𝑓 ∈ 𝐶(𝐼 × C, 𝑋),
(A.5) 𝑓 bounded, in particular, ‖𝑓(𝑡, 𝜙)‖

𝑋
≤ 𝑀
3
(𝑡) for all

(𝑡, 𝜙) ∈ 𝐼 × C,
(A.6) 𝑓 is Lipschitz, in particular, ‖𝑓(𝑡, 𝜙) − 𝑓(𝑡, 𝜓)‖

𝑋
≤

𝐿
2
(𝑡) ‖𝜙 − 𝜓‖

𝑟
for all (𝑡, 𝜙), (𝑡, 𝜓) ∈ 𝐼 × C.

Lemma 11 (Fečken et al. [24], Lemma 2). The initial value
problem (21) is equivalent to the nonlinear integral equation

𝑥 (𝑡) = 𝜙 (0) +

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠, 𝑥
𝑠
) 𝑑𝑠,

𝑡 ∈ [0, 𝑡
1
]

= 𝜙 (0) + 𝐼
1
(𝑥 (𝑡
−

1
))

+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠, 𝑥
𝑠
) 𝑑𝑠, 𝑡 ∈ (𝑡

1
, 𝑡
2
]

= 𝜙 (0) +

2

∑

𝑘=1

𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))

+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠, 𝑥
𝑠
) 𝑑𝑠, 𝑡 ∈ (𝑡

2
, 𝑡
3
]

= 𝜙 (0) +

𝑚

∑

𝑘=1

𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))

+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠, 𝑥
𝑠
) 𝑑𝑠, 𝑡 ∈ (𝑡

𝑚
, 𝑇]

= 𝜙 (𝑡) , 𝑡 ∈ [−𝑟, 0] .

(23)

In other words, every solution of the integral equation (23)
is also solution of our original initial value problem (21) and
conversely.

Remark 12. Since history part/initial condition 𝑥(𝑡) =

𝜙(𝑡), 𝑡 ∈ [−𝑟, 0], is known, sowewill investigate the existence
and uniqueness of solution in 𝐼 = [0, 𝑇].

Theorem 13 (existence and uniqueness of solution). Under
the assumptions (A.3)–(A.6), the problem (21) has a unique
solution in [0, 𝑇], provided that

𝛾
2
= 𝑚𝑙
2
+

𝑐
󵄩
󵄩
󵄩
󵄩
𝐿
2

󵄩
󵄩
󵄩
󵄩1/𝑝

𝑇
𝛼−𝑝

Γ (𝛼)

< 1, (24)

where 𝑐 = ((1 − 𝑝)/(𝛼 − 𝑝))
1−𝑝.

Proof. In this case, we define the operator 𝐹 : PC(𝐼, 𝑋) →

PC(𝐼, 𝑋) by

𝐹𝑥 (𝑡) =

𝑚

∑

0<𝑡𝑘<𝑡

𝐼
𝑘
(𝑥
𝑛
(𝑡
−

𝑘
)) +

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠, 𝑥
𝑠
) 𝑑𝑠.

(25)
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Step 1. To prove that 𝐹 is self mapping, we need to prove that
for each 𝑥 ∈ PC(𝐼, 𝑋), 𝐹

𝑥
∈ PC(𝐼, 𝑋).

The proof is similar to the proof of continuity of 𝐹
1
in

Step 2 of Theorem 8, and hence we omit it.
Step 2 (𝐹 is continuous and 𝛾

2
-contraction). The proof of

this step is also similar to the proof of continuous and 𝛾
1
-

contraction of 𝐹
1
in Step 2 of Theorem 8.

Now by applying Banach’s fixed point theorem, we get
that the operator 𝐹 has an unique fixed point in PC(𝐼, 𝑋),
and hence the problem (21) has a unique solution in
PC([−𝑟, 𝑇], 𝑋).

Our next result is based on Schaefer’s fixed point theorem.
In this case, we replace assumption (A.3) with the following
linear growth condition:

(A.3
󸀠) 𝐼
𝑘
bounded, in particular, ‖𝐼

𝑘
(𝑥)‖
𝑋

≤ 𝑙
∗

1
,

(A.5
󸀠) 𝑓 bounded, in particular, ‖𝑓(𝑡, 𝜙)‖

𝑋
≤ 𝑀
4
(𝑡)(1 +

‖𝜙‖
𝑟
) for all (𝑡, 𝜙) ∈ 𝐼 × C.

Theorem 14. Under the assumptions (A.3
󸀠

) and (A.5
󸀠

), prob-
lem (21) has at least one solution.

Proof. We transform the problem into a fixed point problem.
For this purpose, consider the operator 𝐹 : PC(𝐼, 𝑋) →

PC(𝐼, 𝑋) defined by

𝐹𝑥 (𝑡) =

𝑚

∑

0<𝑡𝑘<𝑡

𝐼
𝑘
(𝑥
𝑛
(𝑡
−

𝑘
)) +

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠, 𝑥
𝑠
) 𝑑𝑠.

(26)

Step 1 (𝐹 is continuous). Let {𝑥
𝑛

} be a sequence such that
𝑥
𝑛

→ 𝑥 in PC(𝐼, 𝑋). Then, for every 𝑡 ∈ 𝐼, we have
󵄩
󵄩
󵄩
󵄩
𝐹𝑥
𝑛

(𝑡) − 𝐹𝑥 (𝑡)
󵄩
󵄩
󵄩
󵄩𝑋

≤ ∑

0<𝑡𝑘<𝑡

󵄩
󵄩
󵄩
󵄩
𝐼
𝑘
(𝑥
𝑛

(𝑡
−

𝑘
)) − 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))

󵄩
󵄩
󵄩
󵄩

+

1

Γ𝛼

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1󵄩

󵄩
󵄩
󵄩
𝑓 (𝑠, 𝑥

𝑛

𝑠
) − 𝑓 (𝑠, 𝑥

𝑠
)
󵄩
󵄩
󵄩
󵄩𝑋

𝑑𝑠

≤ ∑

0<𝑡𝑘<𝑡

󵄩
󵄩
󵄩
󵄩
𝐼
𝑘
(𝑥
𝑛

(𝑡
−

𝑘
)) − 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))

󵄩
󵄩
󵄩
󵄩𝑋

+
󵄩
󵄩
󵄩
󵄩
𝑓 (⋅, 𝑥

𝑛

.
) − 𝑓 (⋅, 𝑥

.
)
󵄩
󵄩
󵄩
󵄩

1

Γ𝛼

(∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

)

1−𝑝

𝑑𝑠

≤

𝑚

∑

𝑘=1

󵄩
󵄩
󵄩
󵄩
𝐼
𝑘
(𝑥
𝑛

(⋅)) − 𝐼
𝑘
(𝑥 (⋅))

󵄩
󵄩
󵄩
󵄩

+

𝑇
𝛼

Γ (𝛼 + 1)

󵄩
󵄩
󵄩
󵄩
𝑓 (⋅, 𝑥

𝑛

.
) − 𝑓 (⋅, 𝑥

.
)
󵄩
󵄩
󵄩
󵄩
.

(27)

We can see that if 𝑛 → ∞, 𝐹𝑥
𝑛

→ 𝐹𝑥, as 𝑥
𝑛

→ 𝑥 and
𝐼
𝑘
and both 𝑓 are continuous. Hence, 𝐹 is continuous.

Step 2 (𝐹 maps bounded sets into bounded sets in PC(𝐼, 𝑋)).
It is enough to show that for any 𝛿 > 0, there exists an

𝑙 = ‖𝜙(0)‖
𝑟
+ 𝑚𝑙
∗

1
+ (𝑐(1 + 𝛿)(‖𝑀

4
‖
1/𝑝

)/Γ(𝛼))𝑇
𝛼−𝑝

> 0 such
that 𝑥 ∈ 𝐵

𝛿
= {𝑥 ∈ PC(𝐼, 𝑋) | ‖𝑥‖ ≤ 𝛿}, and we have

‖𝐹𝑥‖ ≤ 𝑙.
For 𝑡 ∈ [0, 𝑇], we have

‖𝐹𝑥 (𝑡)‖
𝑋

≤
󵄩
󵄩
󵄩
󵄩
𝜙 (0)

󵄩
󵄩
󵄩
󵄩𝑟

+ ∑

0<𝑡𝑘<𝑡

󵄨
󵄨
󵄨
󵄨
𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))

󵄨
󵄨
󵄨
󵄨

+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1󵄩

󵄩
󵄩
󵄩
𝑓 (𝑠, 𝑥

𝑠
)
󵄩
󵄩
󵄩
󵄩𝑋

𝑑𝑠

≤
󵄩
󵄩
󵄩
󵄩
𝜙 (0)

󵄩
󵄩
󵄩
󵄩𝑟

+ 𝑚𝑙
∗

1

+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑀
4
(𝑠) (1 +

󵄩
󵄩
󵄩
󵄩
𝑥
𝑠

󵄩
󵄩
󵄩
󵄩𝑟

) 𝑑𝑠

≤
󵄩
󵄩
󵄩
󵄩
𝜙 (0)

󵄩
󵄩
󵄩
󵄩𝑟

+

(1 + ‖𝑥‖)

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑀
4
(𝑠) 𝑑𝑠

≤
󵄩
󵄩
󵄩
󵄩
𝜙 (0)

󵄩
󵄩
󵄩
󵄩𝑟

+ 𝑚𝑙
∗

1
+

(1 + ‖𝑥‖)

Γ (𝛼)

×(∫

𝑡

0

(𝑡 − 𝑠)
(𝛼−1)/(1−𝑝)

𝑑𝑠)

1−𝑝

(∫

𝑡

0

𝑀
1/𝑝

4
(𝑠) 𝑑𝑠)

𝑝

≤
󵄩
󵄩
󵄩
󵄩
𝜙 (0)

󵄩
󵄩
󵄩
󵄩𝑟

+ 𝑚𝑙
∗

1
+

𝑐 (1 + 𝛿) (
󵄩
󵄩
󵄩
󵄩
𝑀
4

󵄩
󵄩
󵄩
󵄩1/𝑝

)

Γ (𝛼)

𝑇
𝛼−𝑝

.

(28)

Step 3 (𝐹 maps bounded sets into equicontinuous sets in
PC(𝐼, 𝑋)). The proof of this step is similar to the proof of
compactness of 𝐹

2
in Step 3 of Theorem 8.

As a consequence of Steps 1–3 together with PC-type
Arzela-Ascoli theorem (Fečken et al. [24], Theorem 2.11), the
map 𝐹 : PC(𝐼, 𝑋) → PC(𝐼, 𝑋) is completely continuous.

Step 4 (A priori bounds). Now, we prove that the set

𝐸(𝐹) = {𝑥 ∈ PC(𝐼, 𝑋) | 𝑥 = 𝜆𝐹𝑥, for some 𝜆 ∈ (0, 1)}

is bounded.

We observe that for 𝑡 ∈ [0, 𝑇] and 𝑥 ∈ 𝐸(𝐹), 𝑥(𝑡) =

𝜆𝐹𝑥(𝑡) and

‖𝑥 (𝑡)‖
𝑋

≤ ‖𝐹𝑥 (𝑡)‖
𝑋

≤
󵄩
󵄩
󵄩
󵄩
𝜙 (0)

󵄩
󵄩
󵄩
󵄩𝑟

+ ∑

0<𝑡𝑘<𝑡

󵄩
󵄩
󵄩
󵄩
𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))

󵄩
󵄩
󵄩
󵄩𝑋

+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1󵄩

󵄩
󵄩
󵄩
𝑓(𝑠, 𝑥

𝑠
)
󵄩
󵄩
󵄩
󵄩𝑋

𝑑𝑠

≤
󵄩
󵄩
󵄩
󵄩
𝜙 (0)

󵄩
󵄩
󵄩
󵄩𝑟

+ 𝑚𝑙
∗

1

+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑀
4
(𝑠) (1 +

󵄩
󵄩
󵄩
󵄩
𝑥
𝑠

󵄩
󵄩
󵄩
󵄩
) 𝑑𝑠

≤
󵄩
󵄩
󵄩
󵄩
𝜙 (0)

󵄩
󵄩
󵄩
󵄩𝑟

+ 𝑚𝑙
∗

1
+

(1 + ‖𝑥‖)

Γ (𝛼)
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× (∫

𝑡

0

(𝑡 − 𝑠)
(𝛼−1)/(1−𝑝)

𝑑𝑠)

1−𝑝

(∫

𝑡

0

𝑀
1/𝑝

4
(𝑠) 𝑑𝑠)

𝑝

≤
󵄩
󵄩
󵄩
󵄩
𝜙 (0)

󵄩
󵄩
󵄩
󵄩𝑟

+ 𝑚𝑙
∗

1
+

𝑐 (1 + ‖𝑥‖) (
󵄩
󵄩
󵄩
󵄩
𝑀
4

󵄩
󵄩
󵄩
󵄩1/𝑝

)

Γ (𝛼)

𝑇
𝛼−𝑝

,

(29)

and hence

‖𝑥‖ ≤

󵄩
󵄩
󵄩
󵄩
𝜙 (0)

󵄩
󵄩
󵄩
󵄩𝑟

+ 𝑚𝑙
∗

1
+ (𝑐 (

󵄩
󵄩
󵄩
󵄩
𝑀
4

󵄩
󵄩
󵄩
󵄩1/𝑝

) /Γ (𝛼)) 𝑇
𝛼−𝑝

1 − (𝑐 (
󵄩
󵄩
󵄩
󵄩
𝑀
4

󵄩
󵄩
󵄩
󵄩1/𝑝

) /Γ (𝛼)) 𝑇
𝛼−𝑝

. (30)

This shows that 𝐸(𝐹) is bounded.
As a consequence of Schaefer’s fixed point theorem, the

problem (21) has at least one solution in PC([−𝑟, 𝑇], 𝑋).

Theorem 15. If 𝑓 is bounded and Lipschitz, in particular,
‖𝑓(𝑡, 𝜙)−𝑓(𝑡, 𝜓)‖

𝑋
≤ 𝐿
∗

2
(𝑡) ‖𝜙−𝜓‖

𝑟
, for all (𝑡, 𝜙), (𝑡, 𝜓) ∈ 𝐼×C

and 𝐿
∗

2
∈ 𝐿
1/𝑝

([0, 𝑇],R+), then problem (21) has a unique
solution in PC([−𝑟, 𝑇], 𝑋), provided that

𝛾
∗

2
= 𝑚𝑙
2
+

𝑐
󵄩
󵄩
󵄩
󵄩
𝐿
∗

2

󵄩
󵄩
󵄩
󵄩1/𝑝

𝑇
𝛼−𝑝

Γ (𝛼 + 1)

< 1, (31)

where 𝑐 = ((1 − 𝑝)/(𝛼 − 𝑝))
1−𝑝.

Further, we consider the following more general Caputo
fractional differential equation

𝐶

𝐷
𝛼

𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥
𝑡
) , 𝑡 ∈ [0, 𝑇] , 𝑡 ̸= 𝑡

𝑘
,

Δ𝑥 (𝑡) |
𝑡=𝑡𝑘

= 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
)) , 𝑘 = 1, 2, . . . , 𝑚,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝑟, 0] ,

(32)

where 𝑓 : 𝐼 × 𝑋 × C → 𝑋 and C = 𝐶([−𝑟, 0], 𝑋) with
norm ‖𝑥‖

𝑟
= sup{‖𝑥(𝑡)‖

𝑋
: 𝑡 ∈ [−𝑟, 0]}, 𝐼

𝑘
∈ 𝐶(𝑋,𝑋), (𝑘 =

1, 2, . . . , 𝑚), and 𝑋 is a separable real Banach space with the
norm ‖ ⋅ ‖

𝑋
. Here, our tools will be Banach and Schaefer fixed

point theorems.

Definition 16. A solution of fractional differential equation
(32) is a piecewise continuous function 𝑥 ∈ PC([−𝑟, 𝑇], 𝑋)

which satisfies (32).

Consider the initial value problem (32) on 𝐼 × C × 𝑋 for
some fixed 𝑇 > 0 and assume that there exist 𝑝 ∈ (0, 𝛼),
𝑀
5
,𝑀
6
, 𝐿
3
, 𝐿
4

∈ 𝐿
1/𝑝

([0, 𝑇],R+) such that the following
assumptions are satisfied:

(A.7) 𝑓 ∈ 𝐶(𝐼 × 𝑋 × C, 𝑋),
(A.8) 𝑓 bounded, in particular, ‖𝑓(𝑡, 𝑥, 𝜙)‖

𝑋
≤ 𝑀
5
(𝑡) for

all (𝑡, 𝑥, 𝜙) ∈ 𝐼 × 𝑋 × C,
(A.9) 𝑓 is Lipschitz, in particular, ‖𝑓(𝑡, 𝑥, 𝜙) −

𝑓(𝑡, 𝑦, 𝜓)‖
𝑋

≤ 𝐿
3
(𝑡)‖𝑥 − 𝑦‖

𝑋
+ 𝐿
4
(𝑡)‖𝜙 − 𝜓‖

𝑟

for all (𝑡, 𝑥, 𝜙), (𝑡, 𝑦, 𝜓) ∈ 𝐼 × 𝑋 × C,
(A.8
󸀠) ‖𝑓(𝑡, 𝑥, 𝜙)‖

𝑋
≤ 𝑀
6
(𝑡)(1 + ‖𝑥‖

𝑋
+ ‖𝜙‖
𝑟
).

Lemma 17 (Fečken et al. [24], Lemma 2). The initial value
problem (32) is equivalent to the following nonlinear integral
equation

𝑥 (𝑡) = 𝜙 (0) +

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠, 𝑥 (𝑠) , 𝑥
𝑠
) 𝑑𝑠,

𝑡 ∈ [0, 𝑡
1
]

= 𝜙 (0) + 𝐼
1
(𝑥 (𝑡
−

1
))

+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠, 𝑥 (𝑠) , 𝑥
𝑠
) 𝑑𝑠, 𝑡 ∈ (𝑡

1
, 𝑡
2
]

= 𝜙 (0) +

2

∑

𝑘=1

𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))

+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠, 𝑥 (𝑠) , 𝑥
𝑠
) 𝑑𝑠, 𝑡 ∈ (𝑡

2
, 𝑡
3
]

= 𝜙 (0) +

𝑚

∑

𝑘=1

𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))

+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠, 𝑥 (𝑠) , 𝑥
𝑠
) 𝑑𝑠, 𝑡 ∈ (𝑡

𝑚
, 𝑇]

= 𝜙 (𝑡) , 𝑡 ∈ [−𝑟, 0] .

(33)

In other words, every solution of the integral equation (33)
is also solution of our original initial value problem (32) and
conversely.

Theorem 18. Under the assumptions (A.3), (A.7), (A.8), and
(A.9), the problem (32) has a unique solution, provided that

𝛾
3
= 𝑚𝑙
2
+

𝑐 (
󵄩
󵄩
󵄩
󵄩
𝐿
3

󵄩
󵄩
󵄩
󵄩1/𝑝

+
󵄩
󵄩
󵄩
󵄩
𝐿
4

󵄩
󵄩
󵄩
󵄩1/𝑝

) 𝑇
𝛼−𝑝

Γ (𝛼)

< 1.
(34)

Proof. The proof is similar to the proof of Theorem 13.

Theorem 19. Under the assumptions (A.3
󸀠

), and (A.8
󸀠

), the
problem (32) has at least one solution in PC([−𝑟, 𝑇], 𝑋).

Proof. The proof is similar to the proof of Theorem 14.

Theorem 20. If 𝑓 is bounded and Lipschitz, in particular,
‖𝑓(𝑡, 𝑥, 𝜙) −𝑓(𝑡, 𝑦, 𝜓)‖

𝑋
≤ 𝐿
∗

3
(𝑡)‖𝑥 −𝑦‖

𝑋
+𝐿
∗

4
(𝑡)‖𝜙 −𝜓‖

𝑟
, for

all (𝑡, 𝑥, 𝜙), (𝑡, 𝑦, 𝜓) ∈ 𝐼×𝑋×C and 𝐿
∗

3
, 𝐿
∗

4
∈ 𝐿
1/𝑝

([0, 𝑇],R+),
then the problem (32) has a unique solution in PC([−𝑟, 𝑇], 𝑋),
provided that

𝛾
∗

3
= 𝑚𝑙
2
+

𝑐 (
󵄩
󵄩
󵄩
󵄩
𝐿
∗

3

󵄩
󵄩
󵄩
󵄩1/𝑝

+
󵄩
󵄩
󵄩
󵄩
𝐿
∗

2

󵄩
󵄩
󵄩
󵄩1/𝑝

) 𝑇
𝛼−𝑝

Γ (𝛼 + 1)

< 1,
(35)

where 𝑐 = ((1 − 𝑝)/(𝛼 − 𝑝))
1−𝑝.
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4. Examples

Example 21 (fractional impulsive logistic equation). Con-
sider the following class of fractional logistic equations in
banach space 𝑋 with norm ‖ ⋅ ‖

𝑋
:

𝐶

𝐷
𝛼

𝑥 (𝑡) = 𝑥 (𝑡) (𝑎 (𝑡) − 𝑏 (𝑡) 𝑥 (𝑡)) , 𝑡 ∈ [0, 𝑇] , 𝑡 ̸= 𝑡
𝑘
,

Δ𝑥 (𝑡) |
𝑡=𝑡𝑘

= 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
)) , 𝑘 = 1, 2, . . . , 𝑚,

𝑥 (0) = 𝑥
0
,

(36)

where 𝑎(𝑡) ∈ [𝑎
∗
, 𝑎
∗

] and 𝑏(𝑡) ∈ [𝑏
∗
, 𝑏
∗

] with 𝑎
∗
, 𝑏
∗

> 0.

Lemma 22 (Fečken et al. [24], Lemma 2). The initial value
problem (36) is equivalent to the nonlinear integral equation

𝑥 (𝑡) = 𝑥
0
+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

(𝑥 (𝑠) (𝑎 (𝑠) − 𝑏 (𝑠) 𝑥 (𝑠))) 𝑑𝑠,

𝑡 ∈ [0, 𝑡
1
]

= 𝑥
0
+ 𝐼
1
(𝑥 (𝑡
−

1
)) +

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑥 (𝑠) 𝑎 (𝑠) 𝑑𝑠

−

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑏 (𝑠) 𝑥
2

(𝑠) 𝑑𝑠, 𝑡 ∈ (𝑡
1
, 𝑡
2
]

= 𝑥
0
+

2

∑

𝑘=1

𝐼
𝑘
(𝑥 (𝑡
−

𝑘
)) +

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑥 (𝑠) 𝑎 (𝑠) 𝑑𝑠

−

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑏 (𝑠) 𝑥
2

(𝑠) 𝑑𝑠,

𝑡 ∈ (𝑡
2
, 𝑡
3
]

= 𝑥
0
+

𝑚

∑

𝑘=1

𝐼
𝑘
(𝑥 (𝑡
−

𝑘
)) +

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑥 (𝑠) 𝑎 (𝑠) 𝑑𝑠

−

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑏 (𝑠) 𝑥
2

(𝑠) 𝑑𝑠, 𝑡 ∈ [𝑡
𝑚
, 𝑇] .

(37)

In other words, every solution of the integral equation (37) is
also solution of our original initial value problem (36) and
conversely.

We can easily see that for the problem (36), our functions
are 𝑓
1
(𝑡, 𝑥) = 𝑎(𝑡)𝑥 and 𝑓

2
(𝑡, 𝑥) = −𝑏(𝑡)𝑥

2. It is not difficult
to deduce that

󵄩
󵄩
󵄩
󵄩
𝑓
1
(𝑡, 𝑥)

󵄩
󵄩
󵄩
󵄩𝑋

≤ 𝑎
∗

‖𝑥‖
𝑋

+ 𝑚𝑙
1
,

󵄩
󵄩
󵄩
󵄩
𝑓
1
(𝑡, 𝑥) − 𝑓

1
(𝑡, 𝑦)

󵄩
󵄩
󵄩
󵄩𝑋

≤ 𝑎
∗󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩𝑋

.

(38)

Also ‖𝑓
2
(𝑡, 𝑥)‖

𝑋
≤ 𝑏
∗

‖𝑥‖
2. From the integral representa-

tion of problem (36), we get

‖𝑥 (𝑡)‖
𝑋

≤
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩𝑋

+ 𝑚𝑙
1
+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑎
∗

‖𝑥 (𝑠)‖
𝑋
𝑑𝑠.

(39)

Using Gronwall’s inequality (Diethelm, Lemma 6.19 [10,
31]), we get

‖𝑥 (𝑡)‖
𝑋

≤ (
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩𝑋

+ 𝑚𝑙
1
) exp(

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑎
∗

𝑑𝑠)

≤ (
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩𝑋

+ 𝑚𝑙
1
) exp(

𝑎
∗

Γ (𝛼 + 1)

) .

(40)

Thus 𝑥 is bounded which implies that all the assumptions of
Theorem 8 are satisfied, and hence there exists a solution of
the problem (36).

We give some more examples which are inspired by [24].

Example 23. Consider the following Caputo impulsive delay
fractional differential equations

𝐶

𝐷
𝛼

𝑥 (𝑡) =

𝑒
−𝜈𝑡 󵄩󵄩

󵄩
󵄩
𝑥
𝑡

󵄩
󵄩
󵄩
󵄩

(1 + 𝑒
𝑡
) (1 +

󵄩
󵄩
󵄩
󵄩
𝑥
𝑡

󵄩
󵄩
󵄩
󵄩
)

, 𝑡 ∈ [0, 1] , 𝑡 ̸= 𝑡
1
, 𝜈 > 0,

Δ𝑥 (𝑡) |
𝑡=𝑡1

=

1

2

,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝑟, 0] .

(41)

Set 𝐶
1

= 𝐶([−𝑟, 0],R+), 𝑓(𝑡, 𝜙) = 𝑒
−𝜈𝑡

𝜙/((1 + 𝑒
𝑡

)(1 +

𝜙)), (𝑡, 𝜙) ∈ [0, 1] × 𝐶
1
.

Let 𝜙
1
, 𝜙
2
∈ 𝐶
1
and let 𝑡 ∈ [0, 1]. Then, we have

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝜙

1
) − 𝑓 (𝑡, 𝜙

2
)
󵄨
󵄨
󵄨
󵄨
=

𝑒
−𝜈𝑡

1 + 𝑒
𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜙
1

1 + 𝜙
1

−

𝜙
2

1 + 𝜙
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

𝑒
−𝜈𝑡󵄩󵄩

󵄩
󵄩
𝜙
1
− 𝜙
2

󵄩
󵄩
󵄩
󵄩𝑟

(1 + 𝑒
𝑡
) (1 + 𝜙

1
) (1 + 𝜙

2
)

≤

𝑒
−𝜈𝑡󵄩󵄩

󵄩
󵄩
𝜙
1
− 𝜙
2

󵄩
󵄩
󵄩
󵄩𝑟

(1 + 𝑒
𝑡
)

≤ 𝐿
∗

(𝑡)
󵄩
󵄩
󵄩
󵄩
𝜙
1
− 𝜙
2

󵄩
󵄩
󵄩
󵄩𝑟

,

(42)

where 𝐿
∗

(𝑡) = 𝑒
−𝜈𝑡

/2.
Again, for all 𝜙 ∈ 𝐶

1
and each 𝑡 ∈ [0, 𝑇],

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝜙)

󵄨
󵄨
󵄨
󵄨
=

𝑒
−𝜈𝑡

1 + 𝑒
𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜙

1 + 𝜙

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

𝑒
−𝜈𝑡

(1 + 𝑒
𝑡
)

< 𝑚
1
(𝑡) ,

(43)

where 𝑚
1
(𝑡) = 𝑒

−𝜈𝑡

/2.
For 𝑡 ∈ [0, 1] and some 𝑝 ∈ (0, 𝛼), 𝐿

∗

(𝑡) = 𝑚
1
(𝑡) =

𝑒
−𝜈𝑡

/2 ∈ 𝐿
1/𝑝

([0, 1],R+) with 𝑀
∗

1
= ‖𝑒

−𝜈𝑡

/10‖
1/𝑝

, we
can arrive at the inequality 1/4 + 𝑐𝑀

∗

1
/Γ(𝛼) < 1. We

can see that all the assumptions of Theorem 13 are satis-
fied, and hence the problem (41) has a unique solution in
[0, 1].
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Example 24. Consider the following Caputo impulsive delay
fractional differential equation

𝐶

𝐷
𝛼

𝑥 (𝑡) =

󵄩
󵄩
󵄩
󵄩
𝑥
𝑡

󵄩
󵄩
󵄩
󵄩

(1 + 𝑒
𝑡
) (1 +

󵄩
󵄩
󵄩
󵄩
𝑥
𝑡

󵄩
󵄩
󵄩
󵄩
)

, 𝑡 ∈ [0, 1] , 𝑡 ̸= 𝑡
1
, 𝜈 > 0,

Δ𝑥 (𝑡) |
𝑡=𝑡1

=

1

2

,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝑟, 0] .

(44)

Set 𝐶
2

= 𝐶([0, 1],R+), 𝑓(𝑡, 𝜙) = 𝜙/((1 + 𝑒
𝑡

)(1 +

𝜙)), (𝑡, 𝜙) ∈ [−𝑟, 0] × 𝐶
2
.

Again, for all 𝜙 ∈ 𝐶
2
and each 𝑡 ∈ [0, 𝑇],

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝜙)

󵄨
󵄨
󵄨
󵄨
=

𝑒
−𝑡

1 + 𝑒
𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜙

1 + 𝜙

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

𝑒
−𝑡

(1 + 𝑒
𝑡
)

< 𝑚
2
(𝑡) (1 +

󵄩
󵄩
󵄩
󵄩
𝜙
󵄩
󵄩
󵄩
󵄩
) ,

(45)

where 𝑚
2
(𝑡) = 𝑒

−𝑡

/4.
For 𝑡 ∈ [0, 1] and some 𝑝 ∈ (0, 𝛼), 𝑚

2
(𝑡) = 𝑒

−𝑡

/4 ∈

𝐿
1/𝑝

([0, 1],R+) with 𝑀
∗

2
= ‖𝑒

−𝑡

/4‖
1/𝑝

, we can arrive at
the inequality 1/4 + 𝑐𝑀/Γ(𝛼) < 1. We can see that all
the assumptions of Theorem 14 are satisfied, and hence the
problem (44) has a solution in [0, 1].
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