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The previously developed new perturbation-iteration algorithm has been applied to differential equation systems for the first time.
The iteration algorithm for systems is developed first. The algorithm is tested for a single equation, coupled two equations, and
coupled three equations. Solutions are compared with those of variational iteration method and numerical solutions, and a good
agreement is found. The method can be applied to differential equation systems with success.

1. Introduction

Perturbation methods are classical methods which have
been used over a century to obtain approximate analytical
solutions.Themethod has been successfully applied to differ-
ential equations, integro differential equations, and algebraic
equations. Many different perturbation techniques such as
the method of multiple scales, the method of averaging, the
renormalizationmethod, the Lindstedt-Poincaremethod, the
method ofmatched asymptotic expansions, and their variants
were developed [1, 2].

The major limitation of the perturbation methods is
the requirement of a small parameter. Sometimes the small
parameter may also be artificially introduced into the equa-
tions.The solutions therefore have a limited range of validity.
Although the solutions are valid for weakly nonlinear prob-
lems, they are not admissible usually for strongly nonlinear
problems.

Several techniques have been proposed in the literature
recently to obtain admissible solutions which do not require
small parameter assumption. While a complete review of
the attempts is beyond the scope of this work, linearized
perturbation method, parameter expanding method, new
time transformations as modifications of Lindstedt-Poincare
method, and iteration methods can be mentioned as exam-
ples [3–14].

Recently, a class of alternative perturbation-iteration
algorithms has been proposed. The fundamentals of the
algorithms were outlined for the first-order differential equa-
tions by Pakdemirli et al. [15]. Several iteration algorithms
can be derived by taking different number of terms in the
perturbation expansions and different order of correction
terms in the Taylor series expansions. The perturbation
iteration algorithm is called PIA(𝑛, 𝑚) where 𝑛 represents
the correction terms in the perturbation expansion and 𝑚

represents the highest order derivative term in the Taylor
series. This new method has been successfully implemented
to Bratu-Type equations [16]. Solutions obtained by this new
method and those obtained by variational iteration method
(VIM) were contrasted, and it is shown that while PIA(1, 1)
algorithmusually produces identical resultswithVIM, higher
order algorithms PIA(𝑛, 𝑚) produce better results. The new
perturbation-iteration technique was applied to nonlinear
heat transfer equations by Aksoy et al. [17] very recently.
One of the main advantages is that the new method does not
require initial assumptions or transformation of the equations
to another form. Actually, the techniques were developed first
for algebraic equations [18–20] and then adopted to ordinary
differential equations [15–17].

In this study, the iteration algorithms for single equations
are generalized to arbitrary number of first-order coupled
equations. An application of the algorithm to a single
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equation which is a degenerate case is treated first. Then,
coupled systems with two and three equations are solved.
Solutions are contrasted with available other approximate
solutions or numerical solutions. It is found that the method
can be effectively applied to differential equation systems as
well.

2. Perturbation-Iteration Algorithm PIA(1, 𝑚)

In this section, a perturbation-iteration algorithm PIA(1, 𝑚)
is constructed by taking one correction term in the perturba-
tion expansion and correction terms of𝑚th-order derivatives
in the Taylor series expansion:

Consider the following system of first-order differential
equations.

𝐹𝑘 (�̇�𝑘, 𝑢𝑗, 𝜀, 𝑡) = 0, 𝑘 = 1, 2, . . . , 𝐾, 𝑗 = 1, 2, . . . , 𝐾, (1)

where 𝐾 represents the number of differential equations in
the system and the number of dependent variables.𝐾 = 1 for
a single equation. In the open form, the system of equations
is

𝐹1 = 𝐹1 (�̇�1, 𝑢1, 𝑢2, . . . 𝑢𝐾, 𝜀, 𝑡) = 0,

𝐹2 = 𝐹2 (�̇�2, 𝑢1, 𝑢2, . . . 𝑢𝐾, 𝜀, 𝑡) = 0,

...

𝐹𝐾 = 𝐹𝐾 (�̇�𝐾, 𝑢1, 𝑢2, . . . 𝑢𝐾, 𝜀, 𝑡) = 0.

(2)

Assume an approximate solution of the system

𝑢𝑘,𝑛+1 = 𝑢𝑘,𝑛 + 𝜀𝑢
𝑐

𝑘,𝑛 (3)

with one correction term in the perturbation expansion. The
subscript 𝑛 represents the 𝑛th iteration over this approximate
solution.The system can be approximatedwith a Taylor series
expansion in the neighborhood of 𝜀 = 0 as

𝐹𝑘 =

𝑀

∑

𝑚=0

1

𝑚!

[(

𝑑

𝑑𝜀

)

𝑚

𝐹𝑘]

𝜀=0

𝜀
𝑚
, 𝑘 = 1, 2, . . . , 𝐾, (4)

where

𝑑

𝑑𝜀

=

𝜕�̇�𝑘,𝑛+1

𝜕𝜀

𝜕

𝜕�̇�𝑘,𝑛+1

+

𝐾

∑

𝑗=1

(

𝜕𝑢𝑗,𝑛+1

𝜕𝜀

𝜕

𝜕𝑢𝑗,𝑛+1

) +

𝜕

𝜕𝜀

(5)

is defined for the 𝑛 + 1th iterative equation

𝐹𝑘 (�̇�𝑘,𝑛+1, 𝑢𝑗,𝑛+1, 𝜀, 𝑡) = 0. (6)

Substituting (5) into (4), one obtains an iteration equation

𝐹𝑘 =

𝑀

∑

𝑚=0

1

𝑚!

[

[

(�̇�
𝑐

𝑘,𝑛

𝜕

𝜕�̇�𝑘,𝑛+1

+

𝐾

∑

𝑗=1

𝑢
𝑐

𝑗,𝑛

𝜕

𝜕𝑢𝑗,𝑛+1

+

𝜕

𝜕𝜀

)

𝑚

𝐹𝑘
]

]𝜀=0

× 𝜀
𝑚

= 0, 𝑘 = 1, 2 . . . 𝐾

(7)

which is a first-order differential equation and can be solved
for the correction terms 𝑢

𝑐

𝑘,𝑛
. Then, using (3), the 𝑛 + 1th

iteration solution can be found. Iterations are terminated after
a successful approximation is obtained.

Note that for amore general algorithm, 𝑛 correction terms
instead of one can be taken in expansion (3) which would
then be a PIA(𝑛, 𝑚) algorithm. The algorithm can also be
generalized to a differential equation system having arbitrary
order of derivatives.

3. Applications

Applications of the theory developed will be outlined in this
section. A first-order single equation and coupled systems
with two and three equations will be treated.

Example 1. The following first-order differential equation
arising in the cooling problem of a lumped system [21]

(1 + 𝜀𝑢)

𝑑𝑢

𝑑𝑡

+ 𝑢 = 0, 𝑢 (0) = 1 (8)

will be treated with PIA(1, 1) and PIA(1, 2) algorithms. The
specific heat is assumed to be a linear function of temperature
and the equation is cast into nondimensional formas outlined
in [21].

(i) PIA(1, 1) Algorithm. For the equation considered, taking
𝑀 = 1 and𝐾 = 1, (7) reduces to

�̇�
𝑐

1,𝑛
+ 𝑢
𝑐

1,𝑛
= −

�̇�1,𝑛 + 𝑢1,𝑛

𝜀

− 𝑢1,𝑛�̇�1,𝑛
(9)

which is the determining iteration equation for the perturba-
tion correction term. Assuming an initial solution, using then
(9) and (3), successive iteration functions can be determined.

An initial trial function

𝑢1,0 = 𝑒
−𝑡 (10)

which satisfies the boundary condition is selected. Substitut-
ing this trial function into (9), solving for the correction term,
and using (3), one has

𝑢1,1 = (1 + 𝜀) 𝑒
−𝑡

− 𝜀𝑒
−2𝑡

. (11)
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The successive iterations are

𝑢1,2 = (1 + 𝜀 +

𝜀
2

2

+

𝜀
3

6

) 𝑒
−𝑡

− 𝜀 (1 + 2𝜀 + 𝜀
2
) 𝑒
−2𝑡

+

3

2

𝜀
2
(1 + 𝜀) 𝑒

−3𝑡
−

2

3

𝜀
3
𝑒
−4𝑡

,

𝑢1,3 =

𝑒
−𝑡

840

(840 + 840𝜀 + 420𝜀
2
+ 140𝜀

3

+35𝜀
4
+ 21𝜀
5
+ 7𝜀
6
+ 𝜀
7
)

−

𝑒
−2𝑡

36

𝜀(6 + 6𝜀 + 3𝜀
2
+ 𝜀
3
)

2

+

𝑒
−3𝑡

4

𝜀
2
(1 + 𝜀)

2
(6 + 6𝜀 + 3𝜀

2
+ 𝜀
3
)

−

𝑒
−4𝑡

3

𝜀
3
(8 + 20𝜀 + 21𝜀

2
+ 12𝜀
3
+ 3𝜀
4
)

+

5𝑒
−5𝑡

72

𝜀
4
(39 + 93𝜀 + 87𝜀

2
+ 29𝜀
3
)

−

43𝑒
−6𝑡

20

𝜀
5
(1 + 𝜀)

2
+

7𝑒
−7𝑡

6

𝜀
6
(1 + 𝜀) −

16𝑒
−8𝑡

63

𝜀
7
.

(12)

These results are the same with the results of the variational
iteration method given in [21].
(ii) PIA(1, 2) Algorithm. A higher iteration algorithm can be
constructed by taking𝑀 = 2. For this choice, (7) reduces to

(1 + 𝜀𝑢1,𝑛) �̇�
𝑐

1,𝑛
+ (1 + 𝜀�̇�1,𝑛) 𝑢

𝑐

1,𝑛
= −

�̇�1,𝑛 + 𝑢1,𝑛

𝜀

− 𝑢1,𝑛�̇�1,𝑛.

(13)

Taking the same initial trial function as given in (10), the
successive iterations are

𝑢1,1 = 𝑒
−𝑡

+

2𝜀 (𝑒
𝑡
− 1) + 𝜀

2
(𝑒
𝑡
− 𝑒
−𝑡
)

2(𝑒
𝑡
+ 𝜀)
2

,

𝑢1,2 = 𝑒
−𝑡

+

2𝜀 (𝑒
𝑡
− 1) + 𝜀

2
(𝑒
𝑡
− 𝑒
−𝑡
)

2(𝑒
𝑡
+ 𝜀)
2

+

𝜀
3

24(𝑒
𝑡
+ 𝜀)
5
𝑒
−𝑡
(−1 + 𝑒

𝑡
)

2

× (−16𝑒
2𝑡

+ 4𝑒
3𝑡

− 15𝑒
𝑡
𝜀 − 10𝑒

2𝑡
𝜀

+𝑒
3𝑡
𝜀 − 3𝜀

2
− 6𝑒
𝑡
𝜀
2
− 3𝑒
2𝑡
𝜀
2
) .

(14)

In (13), during the iterations, the resulting equation comes
out to be a variable coefficient system. For obtaining the last
iteration, due to complexity, 𝑢1,0 is taken instead of 𝑢1,1 in the
coefficients of the left-hand side. The third iteration result is
not given here for brevity.

Table 1: Comparison of percentage errors of PIA(1, 2) with PIA(1, 1)
and VIM for 𝜀 = 1.

t % error for PIA(1,2) % error for PIA(1,1) and VIM
𝑢
1

𝑢
2

𝑢
3

𝑢
1

𝑢
2

𝑢
3

0 0.00 0.00 0.00 0.00 0.00 0.00
1 1.77 0.19 0.02 5.87 1.71 3.15
2 0.29 0.26 0.04 9.38 5.88 1.53
3 3.98 0.30 0.00 19.11 2.66 0.63
4 6.31 0.00 0.03 23.55 0.08 0.99
5 7.36 0.21 0.03 25.34 1.12 0.97
6 7.78 0.30 0.03 26.02 1.61 0.93
7 7.94 0.34 0.02 26.28 1.79 0.92
% mean
error 4.55 0.20 0.02 17.86 2.58 1.40

The error in Table 1 is defined as

% error =





numerical solution − approximate solution



numerical solution

× 100.

(15)

As can be seen from Table 1, PIA(1, 2) performs better than
VIM and PIA(1, 1).

Example 2. Two coupled stiff systemwill now be considered.
Solutionswill be obtained by PIA(1, 1) algorithm.The coupled
system is [22]

�̇�1 = −1002𝑢1 + 1000𝑢
2

2
,

�̇�2 = 𝑢1 − 𝑢2 − 𝑢
2

2
,

(16)

with the initial conditions

𝑢1 (0) = 1, 𝑢2 (0) = 1, (17)

for which exact solutions are available as

𝑢1 = 𝑒
−2𝑡

, 𝑢2 = 𝑒
−𝑡
. (18)

An artificial perturbation parameter is inserted as follows:

𝐹1 = �̇�1,𝑛+1 + 1002𝑢1,𝑛+1 − 𝜀1000𝑢
2

2,𝑛+1
= 0,

𝐹2 = �̇�2,𝑛+1 + 𝑢2,𝑛+1 − 𝑢1,𝑛+1 + 𝜀𝑢
2

2,𝑛+1
= 0.

(19)

For (19), (7) reduces to

𝜀�̇�
𝑐

1,𝑛
+ 1002𝜀𝑢

𝑐

1,𝑛
= −�̇�1,𝑛 − 1002𝑢1,𝑛 + 𝜀1000𝑢

2

2,𝑛
,

𝜀�̇�
𝑐

2,𝑛
+ 𝜀𝑢
𝑐

2,𝑛
= −�̇�2,𝑛 − 𝑢2,𝑛 − 𝜀𝑢

2

2,𝑛
+ 𝑢1,𝑛+1.

(20)

If the initial trial functions are taken as

𝑢1,0 = 1,

𝑢2,0 = 1,

(21)
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Figure 1: Comparison of iterations (𝑛 = 4, 5, 6) of PIA(1, 1) and
numerical solutions for 𝑢1.

the successive iterations are

𝑢1,1 =

500

501

+

𝑒
−1002𝑡

501

,

𝑢2,1 = −

1

501

−

𝑒
−1002𝑡

501501

+

1003𝑒
−𝑡

1001

,

𝑢1,2 =

500

125751501

−

500𝑒
−2004𝑡

126003129753501

+

2006000𝑒
−1003𝑡

502002501

+

1006009𝑒
−2𝑡

1002001

−

2006000𝑒
−𝑡

502002501

+ 𝑒
−1002𝑡

(−

1007012008

251503253001

+

2000𝑡

251252001

) ,

𝑢2,2 = −

1

125751501

+

𝑒
−2004𝑡

252132136759503

−

1003𝑒
−1003𝑡

251252001

+ 𝑒
−1002𝑡

(

335670670

83918252084667

−

2000𝑡

251503253001

)

+ 𝑒
−𝑡

(

504264776770742984

504264776776764003

+

2006𝑡

502002501

) .

(22)

These results are identical with the results of the variational
iteration method given in [22].

Example 3. The problem of spreading of a nonfatal disease in
a population which is assumed to have constant size over the
period of the epidemic is considered in [23]. The following
system determines the progress of the disease:

�̇�1 = −𝛽𝑢1𝑢2,

�̇�2 = 𝛽𝑢1𝑢2 − 𝛾𝑢2,

�̇�3 = 𝛾𝑢2,

𝑢1 (0) = 20, 𝑢2 (0) = 15, 𝑢3 (0) = 10.

(23)
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Figure 2: Comparison of iterations (𝑛 = 4, 5, 6) of PIA(1, 1) and
numerical solutions for 𝑢2.
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Figure 3: Comparison of iterations (𝑛 = 4, 5, 6) of PIA(1, 1) and
numerical solutions for 𝑢3.

The system is solved using PIA(1, 1). Perturbation parameter
is artificially introduced as

𝐹1 = �̇�1,𝑛+1 + 𝛽𝜀𝑢1,𝑛+1𝑢2,𝑛+1 = 0,

𝐹2 = �̇�2,𝑛+1 − 𝛽𝜀𝑢1,𝑛+1𝑢2,𝑛+1 + 𝛾𝜀𝑢2,𝑛+1 = 0,

𝐹3 = �̇�3,𝑛+1 − 𝛾𝜀𝑢2,𝑛+1 = 0.

(24)

For the previous equations, (7) reduces to

�̇�1,𝑛 + 𝜀�̇�
𝑐

1,𝑛
+ 𝛽𝜀𝑢1,𝑛𝑢2,𝑛 = 0,

�̇�2,𝑛 + 𝜀�̇�
𝑐

2,𝑛
+ 𝜀 (𝛾 − 𝛽𝑢1,𝑛) 𝑢2,𝑛 = 0,

�̇�3,𝑛 + 𝜀�̇�
𝑐

3,𝑛
− 𝛾𝜀𝑢2,𝑛 = 0.

(25)

The initial trial functions are

𝑢1,0 = 20,

𝑢2,0 = 15,

𝑢3,0 = 10.

(26)
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The following iteration results are obtained for 𝛽 = 1/100 and
𝛾 = 1/50:

𝑢1,1 = 20 − 3𝑡,

𝑢2,1 = 15 + 2.7𝑡,

𝑢3,1 = 10 + 0.3𝑡,

𝑢1,2 = 20 − 3𝑡 − 0.045𝑡
2
+ 0.027𝑡

3
,

𝑢2,2 = 15 + 2.7𝑡 + 0.018𝑡
2
− 0.027𝑡

3
,

𝑢3,2 = 10 + 0.3𝑡 + 0.027𝑡
2
,

𝑢1,3 = 20 − 3𝑡 −

9

2

× 10
−2
𝑡
2
+

561

2

× 10
−4
𝑡
3

−

621

8

× 10
−5
𝑡
4
−

15309

5

× 10
−7
𝑡
5

−

567

2

× 10
−8
𝑡
6
+

729

7

× 10
−8
𝑡
7
,

𝑢2,3 = 15 + 27 × 10
−2
𝑡 +

9

5

× 10
−2
𝑡
2

− 2817 × 10
−5
𝑡
3
−

513

8

× 10
−5
𝑡
4
+

15309

5

× 10
−7
𝑡
5
+

567

2

× 10
−8
𝑡
6
−

729

7

× 10
−8
𝑡
7
,

𝑢3,3 = 10 + 3 × 10
−1
𝑡 + 27 × 10

−3
𝑡
2

+

3

25

× 10
−3
𝑡
3
−

27

2

× 10
−5
𝑡
4
,

𝑢1,4 = 20 − 3𝑡 −

9

2

× 10
−2
𝑡
2
+

561

2

× 10
−4
𝑡
3

−

6363

8

× 10
−6
𝑡
4
−

126603

4

× 10
−8
𝑡
5
−

97641

2

× 10
−9
𝑡
6
+

9913563

28

× 10
−11

𝑡
7

+

112714011

112

× 10
−13

𝑡
8
−

1398332889

56

× 10
−15

𝑡
9

−

13180077

2

× 10
−16

𝑡
10

+

943578963

7

× 10
−18

𝑡
11

+

334611

125

× 10
−15

𝑡
12

−

25187679

52

× 10
−18

𝑡
13

+

59049

14

× 10
−18

𝑡
14

+

177147

245

× 10
−18

𝑡
15
,

𝑢2,4 = 15 +

27

10

𝑡 +

9

500

𝑡
2
− 2817 × 10

−5
𝑡
3

−

26181

4

× 10
−7
𝑡
4
+

127629

4

× 10
−8
𝑡
5

+

447381

4

× 10
−10

𝑡
6
−

9936243

28

× 10
−11

𝑡
7

−

102798011

112

× 10
−13

𝑡
8
+

1398332889

56

× 10
−15

𝑡
9

+

13180077

2

× 10
−16

𝑡
10

−

943578963

7

× 10
−18

𝑡
11

−

334611

125

× 10
−15

𝑡
12

+

25187679

52

× 10
−18

𝑡
13

+

59049

14

× 10
−18

𝑡
14

−

177147

245

× 10
−18

𝑡
15
,

𝑢3,4 = 10 +

3

10

𝑡 +

27

1000

𝑡
2
+

3

25000

𝑡
3
−

2817

2

× 10
−7
𝑡
4

−

513

5

× 10
−8
𝑡
5
+

5103

5

× 10
−9
𝑡
6

+ 81 × 10
−10

𝑡
7
−

729

28

× 10
−10

𝑡
8
.

(27)

The previous solutions are the same as those obtained from
variational iteration method [23].

Functions 𝑢1−3 are plotted in Figures 1, 2, and 3. The
higher iterations, that is, 𝑛 = 4, 5, 6, calculated by symbolic
programs are compared with the numerical solutions. As
the number of iterations increase, the approximate analytical
solutions converge to the numerical solutions.

4. Concluding Remarks

The newly developed perturbation-iteration algorithm is
applied to systems of equations for the first time.The theory is
developed first and then applied to three different problems.
Based on this study and on the previous work [17], one can
conclude that while PIA(1, 1) algorithm produces compatible
results with the VIM method, PIA(1, 2) produces better
results than the PIA(1, 1) and the VIM.
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