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The characteristics of fluid flow and heat transfer over a stretching vertical sheet immersed in a nanofluid are investigated
numerically in this paper. Three different types of nanoparticles, namely, copper Cu, alumina Al

2
O
3
, and titania TiO

2
, are

considered, using water as the base fluid. It is found that nanofluid with titania nanoparticles has better enhancement on the heat
transfer rate compared to copper and alumina nanoparticles. For a particular nanoparticle, increasing the nanoparticle fraction is
to reduce the skin friction coefficient and the heat transfer rate at the surface.

1. Introduction

Nanofluids are defined as dilute suspensions of particles
with at least one critical dimension smaller than around
100 nm and are also known as two-phase fluid [1]. Nanofluids
are produced by dispersing nanometer-scale solid particles
into base liquids with low thermal conductivity such as
water, ethylene glycol (EG), and oils [2]. Nanofluids can be
Newtonian or non-Newtonian fluids. The term “nanofluids”
was first introduced by Choi [3]. There are mainly two
techniques used to produce nanofluids which are the single-
step and the two-step methods (see Akoh et al. [4] and
Eastman et al. [5]). Both of these methods have advantages
and disadvantages as discussed by Wang and Mujumdar
[2]. The materials with sizes of nanometers possess unique
physical and chemical properties [6].They can flow smoothly
through microchannels without clogging them because they
are small enough to behave similar to liquid molecules [7].
This fact has attracted many researchers such as Abu-Nada
and Oztop [6], Tiwari and Das [8], El Bécaye Mäıga et al.
[9], Polidori et al. [10], Talebi et al. [11], Akbari et al. [12], and
Shahi et al. [13] to investigate the heat transfer characteristics

of nanofluids in cavities, and they found that the presence
of the nanoparticles in the fluids increases appreciably the
effective thermal conductivity of the fluid and consequently
enhances the heat transfer characteristics.The recent book by
Das et al. [14] and themore recent review paper by Kakaç and
Pramuanjaroenkij [15] present an excellent collection of the
work done on nanofluids.

Motivated by the above investigations, the present paper
considers the problem of mixed convection boundary layer
flow adjacent to a stretching vertical sheet immersed in a
nanofluid, using the nanofluidmodel proposed by Tiwari and
Das [8], whichwas also used by several authors (cf. Abu-Nada
and Oztop [6], Talebi et al. [11], Abu-Nada [16], Ahmad et
al. [17], Rohni et al. [18], Bachok et al. [19–23], Yacob et al.
[24, 25], and Muthtamilselvan et al. [26]). As mentioned by
El Bécaye Mäıga et al. [9], the study of boundary layer flow
is important because the reduction of the thermal boundary
layer thickness due to the presence of particles and their
random motion within the base fluid may have important
contributions to such heat transfer improvement as well. It
should be pointed out that there is only a very little work
done on boundary layer flow of nanofluids, as can be seen in
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the recent papers byNield andKuznetsov [27] andKuznetsov
and Nield [28].

It is worth mentioning that nanofluids, with nanosized
particles, appear to have a very high thermal conductivity and
may be able to meet the rising demand as an efficient heat
transfer agent. Scientists and engineers have started showing
interest in the study of heat transfer characteristics of these
nanofluids. However, a clear picture about the heat transfer
through these nanofluids is yet to emerge. Taking into
account the rising demands of modern technology, including
chemical production, power stations, and microelectronics,
there is a need to develop new types of fluids that will bemore
effective in terms of heat exchange performance [26].

2. Problem Formulation

Consider a steady mixed convection flow of a nanofluid
adjacent to a stretching vertical sheet with a linear velocity
𝑢
𝑤
(𝑥) = 𝑎𝑥, where 𝑎 is a constant and 𝑥 is the coordinate

measured along the stretching sheet in the vertical direction.
The flow takes place at 𝑦 ≥ 0, where 𝑦 is the coordinate
measured normal to the stretching sheet. It is assumed that
the temperature at the stretching surface is 𝑇

𝑤
(𝑥) = 𝑇

∞
+ 𝑏𝑥,

where 𝑏 is a constant and 𝑇
∞

is the constant temperature of
the ambient fluid.

The basic equations of continuity, momentum, and
energy for nanofluids can be obtained, written in Cartesian
coordinates 𝑥 and 𝑦 as (see Oztop and Abu-Nada [29])
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subject to the boundary conditions

𝑢 = 𝑢
𝑤
(𝑥) , V = 0, 𝑇 = 𝑇

𝑤
(𝑥) at 𝑦 = 0,

𝑢 󳨀→ 0, 𝑇 󳨀→ 𝑇
∞

as 𝑦 󳨀→ ∞.

(5)

Here, 𝑢 and V are the velocity components along the 𝑥 and
𝑦 axes, respectively, 𝑝 is the fluid pressure, 𝛽 is the thermal
expansion coefficient (with subscripts 𝑓 and 𝑠 standing for
fluid and solid, respectively), 𝑔 is the gravitational accelera-
tion, 𝜌nf is the effective density of the nanofluid,, 𝛼nf is the
effective thermal diffusivity of the nanofluid and 𝜇nf is the

dynamic viscosity of the nanofluid, which are given by (see
Oztop and Abu-Nada [29])

𝜌nf = (1 − 𝜙) 𝜌𝑓 + 𝜙 𝜌𝑠,
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(6)

where 𝜙 is the nanoparticle fraction, 𝜌
𝑓
is the density of the

fluid, 𝜌
𝑠
is the density of the solid, 𝜇

𝑓
is the dynamic viscosity

of the fluid, 𝑘nf is the effective thermal conductivity of the
nanofluid, and (𝜌𝐶

𝑝
)nf is the heat capacity of the nanofluid,

which are given by (see Oztop and Abu-Nada [29])
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(7)

The use of the effective thermal conductivity of the nanofluid
𝑘nf is approximated by the Maxwell-Garnetts model and
is restricted to spherical nanoparticles, where it does not
account for other shapes of nanoparticles. This model is
found to be appropriate for studying heat transfer enhance-
ment using nanofluids (Abu-Nada [16]).

We look for a similarity solution of (1)–(4) with the
boundary conditions (5) by introducing the following trans-
formation:
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where the stream function 𝜓 is defined in the usual way as
𝑢 = 𝜕𝜓/𝜕𝑦 and V = −𝜕𝜓/𝜕𝑥. Equation (1) is automatically
satisfied, and (2) and (4), respectively, reduce to the following
nonlinear ordinary differential equations:
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subject to the boundary conditions

𝑓 (0) = 0, 𝑓
󸀠
(0) = 1, 𝜃 (0) = 1,

𝑓
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(𝜂) 󳨀→ 0, 𝜃 (𝜂) 󳨀→ 0 as 𝜂 󳨀→ ∞,

(10)
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Table 1: Surface temperature gradient 𝜃󸀠(0) for 𝜆 = 0, 𝜙 = 0, and 𝜙 = 0.1.

𝜙 = 0 𝜙 = 0.1

Pr Grubka and Bobba [30] Ishak et al. [31] Present results Present results
Cu Al2O3 TiO2

0.72 −0.8086 — −0.8086 −0.6146 −0.6590 −0.6724

1 −1.0000 −1.0000 −1.0000 −0.7765 −0.8228 −0.8392

3 −1.9237 −1.9237 −1.9237 −1.5703 −1.6175 −1.6479

7 — −3.0722 −3.0723 −2.5593 −2.6057 −2.6535

10 −3.7207 −3.7207 −3.7207 −3.1171 −3.1634 −3.2211

Table 2: Thermophysical properties of fluid and nanoparticles.

Physical
properties

Fluid phase
(water) Cu Al2O3 TiO2

𝐶
𝑝
(J/kgK) 4179 385 765 686.2

𝜌 (KG/m3) 997.1 8933 3970 4250

𝑘 (W/mK) 0.613 400 40 8.9538

𝛼 × 10
7 (m2/s) 1.47 1163.1 131.7 30.7

𝛽 × 10
− 5 (1/K) 21 1.67 0.85 0.9

where primes denote differentiation with respect to 𝜂, Pr =
]
𝑓
/𝛼
𝑓
is the Prandtl number, and 𝜆 is the buoyancy or mixed

convection parameter, which is defined as
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The pressure p can now be determined from (3) and is

given by
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The physical quantities of interest are the skin friction
coefficient 𝐶

𝑓
and the Nusselt number Nu, which are defined
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Using variables in (8), we obtain
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3. Results and Discussion

The nonlinear ordinary differential equations (9) subject to
the boundary conditions (10) were solved numerically by
means of an implicit finite-difference scheme known as the
Keller-box method as described in the book by Cebeci and
Bradshaw [32]. We have considered three different types of
nanoparticles, namely, copper (Cu), alumina (Al

2
O
3
), and

titania (TiO
2
) with water as the base fluid. Following Abu-

Nada [16], we considered the range of nanoparticle fraction
as 0 ≤ 𝜙 ≤ 0.2. The Prandtl number of the base fluid (water)
is kept constant at 7. It is worth mentioning that the present
study reduces to the classical viscous fluid when 𝜙 = 0.
Therefore, in order to validate the present numerical method
used, we have compared our results with those obtained by
Grubka and Bobba [30] and Ishak et al. [31] for different
values of Pr when 𝜙 = 0 as shown in Table 1.The comparisons
are found to be in a very good agreement.The thermophysical
properties of fluid and nanoparticles are listed in Table 2.

Figure 1 shows the temperature distribution for the fluid
with nanoparticle Al

2
O
3
when 𝜆 = 1. It can be seen that the

thermal boundary layer thickness increases as the nanopar-
ticle fraction 𝜙 is increased and consequently decreases the
surface temperature gradient. This observation is consistent
with the surface temperature gradient −𝜃󸀠(0) illustrated in
Figure 2.The velocity distribution for Cu nanoparticles when
𝜆 = 1 is presented in Figure 3. It can be seen that the velocity
boundary layer thickness decreases with 𝜙, which in turn
increases the velocity gradient at the surface.

Figure 4 displays the variation of the skin friction coef-
ficient 𝑓󸀠󸀠(0) for different types of nanoparticles when 𝜙 =

0.1, while the respective surface temperature gradient that
represents the heat transfer rate at the surface is presented
in Figure 5. We note that the values of 𝑓󸀠󸀠(0) obtained
are quite similar for TiO

2
and Al

2
O
3
. It is in agreement

with the velocity gradient displayed in Figure 6. Further,
from Table 2 and Figure 4, we observe that the nanoparticle
with higher density (i.e., Cu) has the lowest skin friction
coefficient. The thermal boundary layer thickness as shown
in Figure 7 decreases with a decrease in thermal conductivity
𝑘 (or low thermal diffusivity 𝛼nf), which in turn gives rise
to the Nusselt number −𝜃󸀠(0) as illustrated in Figure 5.
Furthermore, the values of 𝑓󸀠󸀠(0) and −𝜃󸀠(0) increase as the
buoyancy parameter𝜆 is increased.Note that the entire values
of −𝜃󸀠(0) are always positive; that is, the heat is transferred
from the hot sheet to the cold fluid. From Figures 1, 3, 6, and
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Figure 1: Temperature profiles 𝜃(𝜂) for different values of 𝜙 when
Pr = 7 and 𝜆 = 1 using Al
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Figure 2: Variation of −𝜃󸀠(0) with 𝜆 for different values of 𝜙 when
Pr = 7 using Al

2
O
3
nanoparticle.

7, it is observed that the velocity and temperature profiles
satisfy the far field boundary conditions (10) asymptotically,
thus supporting the validity of the numerical results obtained.

The variations of 𝑓󸀠󸀠(0) and −𝜃󸀠(0) with 𝜙 for different
types of nanoparticles when 𝜆 = 2 are depicted in Figures
8 and 9, respectively. It is clear that both of them decrease
with increasing values of 𝜙. We notice that the effect of
nanoparticle fraction on the skin friction coefficient is more
pronounced for Cu. A decrease in thermal conductivity is
to enhance the heat transfer rate at the surface as shown
in Figures 5 and 9. Conversely, the opposite behaviors are
observed for the effect of nanoparticle fraction𝜙.The thermal
conductivity ratiowith𝜙 for different types of nanoparticles is
presented in Figure 10. As expected, the thermal conductivity
ratio increases with 𝜙, which follows from the relationship
given by (7). However, it decreases with decreasing value of
thermal conductivity of the nanoparticles.

4. Conclusions

The problem of steady two-dimensional laminar flow adja-
cent to a stretching vertical sheet immersed in a nanofluid
was studied numerically. The governing partial differential
equations were transformed into a system of nonlinear ordi-
nary differential equations using a similarity transformation,
before being solved numerically by the Keller-box method. It
was found that nanofluid with TiO

2
nanoparticles which has

lower thermal conductivity has better heat transfer capability
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Figure 3:Velocity profiles𝑓󸀠(𝜂) for different values of𝜙whenPr = 7
and 𝜆 = 1 using Cu nanoparticle.
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Figure 4: Variation of 𝑓󸀠󸀠(0) with 𝜆 for different types of nanopar-
ticles when Pr = 7 and 𝜙 = 0.1.
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Figure 10: Variation of thermal conductivity ratio with 𝜙 for
different types of nanoparticles when Pr = 7 and 𝜆 = 1.

compared to Al
2
O
3
-water and Cu-water nanofluids. For a

particular nanoparticle, increasing nanoparticle fraction is to
reduce the skin friction coefficient and the heat transfer rate
at the surface.
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