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The Toeplitz Procrustes problems are the least squares problems for the matrix equation 𝐴𝑋 = 𝐵 over some Toeplitz matrix sets.
In this paper the necessary and sufficient conditions are obtained about the existence and uniqueness for the solutions of the
Toeplitz Procrustes problemswhen the unknownmatrices are constrained to the general, the triangular, and the symmetric Toeplitz
matrices, respectively. The algorithms are designed and the numerical examples show that these algorithms are feasible.

1. Introduction

Consider the constrained least-squares optimization prob-
lems:

min
𝑋∈𝑃

‖𝐴𝑋 − 𝐵‖𝐹, (1)

where𝐴, 𝐵 ∈ 𝑅
𝑛×𝑛,𝑃 ⊆ 𝑅

𝑛×𝑛, and ‖ ⋅ ‖
𝐹
denotes the Frobenius

norm

‖𝐴‖𝐹 =
√tr (𝐴𝑇𝐴) = (

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1

𝑎
2

𝑖𝑗
)

1/2

. (2)

These problems have been investigated by a series of
literatures. For instance, when 𝑃 = 𝑅

𝑛×𝑛, then 𝑋 = 𝐴
+
𝐵 is

a solution (refer to [1]), while the symmetric matrix solution
case and orthogonal matrix solution case are analyzed in
[2] and [3] respectively. And the symmetric positive (semi-
) definite least squares problem is discussed by Higham [4].

In this paper, the followingToeplitz least-squares problem
are analyzed:

min ‖𝐴𝑋 − 𝐵‖
2

𝐹
,

s.t. 𝑋 ∈ T,
(3)

where 𝐴, 𝐵 ∈ 𝑅
𝑛×𝑛 and T ⊂ 𝑅

𝑛×𝑛 are the set of Toeplitz
matrices, and a matrix 𝑇 is called a Toeplitz matrix if its

entries satisfy 𝑇(𝑖, 𝑗) = 𝑇(𝑖 + 𝑘, 𝑗 + 𝑘), for all 𝑖, 𝑗, and 𝑘 with
0 ⩽ 𝑖 + 𝑘 ⩽ 𝑛 − 1, 0 ⩽ 𝑗 + 𝑘 ⩽ 𝑛 − 1,

𝑇 = (

(

𝛼
0

𝛼
1
𝛼
2

⋅ ⋅ ⋅ 𝛼
𝑛−1

𝛼
−1

𝛼
0
𝛼
1

...
... d d d 𝛼

2

d d 𝛼
1

𝛼
−(𝑛−1)

⋅ ⋅ ⋅ 𝛼
−1

𝛼
0

)

)

. (4)

In this work, we discuss problem (3) in details. In
Section 2, the general Toeplitz problem is discussed, and in
Section 3, the triangular Toeplitz problem and the symmetric
Toeplitz problem are discussed, while in Section 4, we give
algorithms and numerical examples.

We give some definition and lemmas first.

Definition 1 (see [5]). Matrix𝐺
𝑛×𝑚

is called {1} inversematrix
of𝐴
𝑚×𝑛

when𝐴𝐺𝐴 = 𝐴, and it can be denoted by𝐴− or𝐴{1}.

Lemma 2 (see [5]). Let 𝐴 ∈ 𝐶
𝑚×𝑛

𝑟
; if there exist nonsingular

matrices 𝑃 ∈ 𝐶
𝑛×𝑛 and 𝑅 ∈ 𝐶

𝑚×𝑚 such that

𝑅𝐴𝑃 = [
𝐼
𝑟
0

0 0] , (5)
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then the sufficient and necessary condition of 𝐺 ∈ 𝐴{1} is

𝐺 = 𝑃[
𝐼
𝑟
𝑈

𝑉 W]𝑅, (6)

where 𝑈 ∈ 𝐶
𝑟×(𝑚−𝑟),𝑉 ∈ 𝐶

(𝑛−𝑟)×𝑟, and 𝑊 ∈ 𝐶
(𝑛−𝑟)×(𝑚−𝑟).

Remark 3. When 𝑈 = 0, 𝑉 = 0, and𝑊 = 0, 𝐺 is denoted by
𝐴
−

∗
.

Lemma 4 (see [6]). A finite dimensional linear subspace of a
normed linear space contains at least one point of minimum
distance from a fixed point.

Lemma 5 (see [7]). Let 𝑓 : 𝑅
𝑛

→ 𝑅 be a convex function
continuously differentiable, and then any local minimum point
is also a global minimum point. And 𝑥∗ is a solution of problem
min𝑓(𝑥) if and only if 𝑥∗ satisfies ∇𝑓(𝑥∗) = 0, where ∇means
the gradient of function 𝑓.

Lemma 6 (see [7]). The quadratic function 𝑓(𝑥) =

(1/2)𝑋
𝑇
𝑄𝑋 + 𝑞

𝑇
𝑋 + 𝐶 is convex if and only if 𝑄 is positive

semidefinite.

2. The General Toeplitz Problem

We transformproblem (3) into the following equivalent form:

𝐹 ≡
1

2
‖𝐴𝑋 − 𝐵‖

2

𝐹
= min,

𝑋 =

(𝑛−1)

∑

𝑝=−(𝑛−1)

𝛼
𝑝
𝐺
𝑝
,

(7)

where 𝛼
𝑝
∈ 𝑅, 𝐺

𝑝
∈ 𝑅
𝑛×𝑛 are defined as

(𝐺
𝑝
)
𝑖𝑗
= {

1 if 𝑗 = 𝑖 + 𝑝,

0 otherwise,
𝑝 = − (𝑛 − 1) , . . . , (𝑛 − 1) .

(8)

The objective function 𝐹 can be rewritten as

𝐹 =
1

2
tr [(𝐴𝑋 − 𝐵)

𝑇
(𝐴𝑋 − 𝐵)]

=
1

2
tr (𝑋𝑇𝐴𝑇𝐴𝑋) + [− tr (𝐵𝑇𝐴𝑋) + 1

2
tr (𝐵𝑇𝐵)]

= 𝐹
1
+ 𝐹
2
.

(9)

The first term of the right side in (9) can be expressed as

𝐹
1
=
1

2
tr (𝑋𝑇𝐴𝑇𝐴𝑋)

=
1

2
tr((

(𝑛−1)

∑

𝑙=−(𝑛−1)

𝛼
𝑙
𝐺
𝑙
)

𝑇

𝐴
𝑇
𝐴(

(𝑛−1)

∑

𝑘=−(𝑛−1)

𝛼
𝑘
𝐺
𝑘
))

=
1

2

(𝑛−1)

∑

𝑙, 𝑘=−(𝑛−1)

tr (𝐺𝑇
𝑙
𝐴
𝑇
𝐴𝐺
𝑘
) 𝛼
𝑙
𝛼
𝑘

=
1

2

(𝑛−1)

∑

𝑙, 𝑘=−(𝑛−1)

tr (𝐺𝑇
𝑙
𝐴
𝑇
𝐴𝐺
𝑘
) + tr (𝐺𝑇

𝑘
𝐴
𝑇
𝐴𝐺
𝑙
)

2
𝛼
𝑙
𝛼
𝑘

=
1

2
𝑦
𝑇
𝐶𝑦,

(10)

where

𝑦
𝑇
= (𝛼
−(𝑛−1)

, 𝛼
−(𝑛−2)

, . . . , 𝛼
0
, . . . , 𝛼

(𝑛−1)
) ,

𝐶 = (𝐶
𝑙𝑘
)
(2𝑛−1)×(2𝑛−1)

,

𝐶
𝑙𝑘
=
1

2
(tr (𝐺𝑇

𝑙
𝐴
𝑇
𝐴𝐺
𝑘
) + tr (𝐺𝑇

𝑘
𝐴
𝑇
𝐴𝐺
𝑙
)) ,

𝑙, 𝑘 = − (𝑛 − 1) , . . . , (𝑛 − 1) .

(11)

Also the second term of the right side in (9) can be expressed
as

𝐹
2
= − tr (𝐵𝑇𝐴𝑋) + 1

2
tr (𝐵𝑇𝐵)

= −

(𝑛−1)

∑

𝑙=−(𝑛−1)

tr (𝐵𝑇𝐴𝐺
𝑙
) 𝛼
𝑙
+
1

2
tr (𝐵𝑇𝐵)

= −𝑏
𝑇
𝑦 +

1

2
tr (𝐵𝑇𝐵) ,

(12)

where 𝑏
𝑇

= (tr(𝐵𝑇𝐴𝐺
−(𝑛−1)

), tr(𝐵𝑇𝐴𝐺
−(𝑛−2)

), . . .,
tr(𝐵𝑇𝐴𝐺

(𝑛−1)
).

It thus yields that

𝐹 =
1

2
𝑦
𝑇
𝐶𝑦 − 𝑏

𝑇
𝑦 +

1

2
tr (𝐵𝑇𝐵) . (13)

Taking partial derivative on 𝐹 about 𝛼
𝑙
gives

𝜕𝐹

𝜕𝛼
𝑙

=
𝜕𝐹
1

𝜕𝛼
𝑙

+
𝜕𝐹
2

𝜕𝛼
𝑙

= (𝐶
𝑙,−(𝑛−1)

, 𝐶
𝑙,−(𝑛−2)

, . . . , 𝐶
𝑙,(𝑛−1)

) 𝑦 − tr (𝐵𝑇𝐴𝐺
(𝑙)
)

= 𝐶
𝑇

𝑙
𝑦 − 𝑏
𝑙
, 𝑙 = − (𝑛 − 1) , . . . , (𝑛 − 1) .

(14)



Journal of Applied Mathematics 3

By the first order necessary condition,
𝜕𝐹

𝜕𝛼
−(𝑛−1)

= 0,

...
𝜕𝐹

𝜕𝛼
(𝑛−1)

= 0,

(15)

we obtain
𝐶𝑦 = 𝑏. (16)

Therefore the following theorem holds.

Theorem 7. The solution of problem (3) exists, and its general
form can be expressed as

𝑋 =

(𝑛−1)

∑

𝑙=−(𝑛−1)

𝛼
𝑙
𝐺
𝑙
, (17)

where (𝛼
−(𝑛−1)

, 𝛼
−(𝑛−2)

, . . . , 𝛼
0
, . . . , 𝛼

(𝑛−1)
)
𝑇
= 𝑦 = 𝐶

−
𝑏 + (𝐼 −

𝐶
−
𝐶)𝑧, for all 𝑧 ∈ 𝑅

𝑛
, 𝐶
− means {1} inverse of 𝐶.

Proof. Let T = {𝑇 ∈ 𝑅
𝑛×𝑛

| 𝑇 = 𝐴∑
(𝑛−1)

𝑝=−(𝑛−1)
𝛼
𝑝
𝐺
𝑝
}, where

𝛼
𝑝
∈ 𝑅, and then the subspace T is a normed linear space

under Frobenius norm. It follows from Lemma 4 that there
exists at least onematrix𝑇 inT such that ‖𝐴𝑋 − 𝐵‖

2

𝐹
= min.

So, by the definition of 𝑇, there exists at least one scalar
𝛼
𝑇
= (𝛼
−(𝑛−1)

, 𝛼
−(𝑛−2)

, . . . , 𝛼
0
, . . . , 𝛼

(𝑛−1)
) constituting matrix

𝑇, which means we can rewrite 𝑇 as 𝑇 = 𝐴𝑋, where 𝑋 ∈ T.
Therefore the solution of problem (3) exists.

It is apparent from (13) that the objective function 𝐹 is a
quadratic function. Besides, by the following discussion, 𝐹 is
also a convex function. Since 𝐴𝑇𝐴 is positive semi-definite,
it follows that, for any 𝑋 ∈ 𝑅

𝑛×𝑛, the expression of 𝐹
1
in (10)

holds

𝐹
1
=
1

2
𝑦
𝑇
𝐶𝑦 =

1

2
tr (𝑋𝑇𝐴𝑇𝐴𝑋) ⩾ 0. (18)

In other words, 𝐶 is a positive semidefinite matrix. Then
according to Lemma 6, 𝐹 is a convex function. Since 𝐹 is
continuously differentiable, we then get that any solution of
(16) is also a solution of (7) by Lemma 5. Clearly, the solution
of linear system of (16) is

𝑦 = 𝐶
−
𝑏 + (𝐼 − 𝐶

−
𝐶) 𝑧, ∀𝑧 ∈ 𝑅

2𝑛−1 (19)
(see [5]). The required solution 𝑋 of problem (7) is then
given by 𝑋 = ∑

(𝑛−1)

𝑙=−(𝑛−1)
𝛼
𝑙
𝐺
𝑙
, where 𝑦 = (𝛼

−(𝑛−1)
, 𝛼
−(𝑛−2)

,

. . . , 𝛼
0
, . . . , 𝛼

(𝑛−1)
)
𝑇. The theorem follows by the equivalence

of problem (3) and problem (7).

Theorem 8. Problem (3) has a unique solution if and only if𝐶
has full rank. In this case, the unique solution is

𝑋 =

(𝑛−1)

∑

𝑙=−(𝑛−1)

𝛼
𝑙
𝐺
𝑙
, (20)

where (𝛼
−(𝑛−1)

, 𝛼
−(𝑛−2)

, . . . , 𝛼
0
, . . . , 𝛼

(𝑛−1)
)
𝑇
= 𝑦 = 𝐶

−1
𝑏.

Proof (necessity). If 𝐶 has full rank, then the linear system of
(16) has a unique solution 𝑦 = 𝐶

−1
𝑏; therefore the solution𝑋

of problem (7) is determined uniquely, so is problem (3).
Sufficiency follows from the conversely procedure of

necessity.

Corollary 9. If A has full rank in column, then the solution of
problem (3) is unique.

3. The Triangular Toeplitz Problem and
the Symmetric Toeplitz Problem

In this section,we discuss the triangular Toeplitz problemand
symmetric Toeplitz problem.

3.1. The Triangular Toeplitz Problem. By the upper triangular
Toeplitz problem, as the definition of [6], we mean the
minimization problem

min ‖𝐴𝑋 − 𝐵‖
2

𝐹

s.t. 𝑋 ∈ T
𝑢
,

(21)

where 𝐴, 𝐵 ∈ 𝑅
𝑚×𝑛,T

𝑢
are the subspace of upper triangular

Toeplitz matrices, with elements of the general form

𝑋 = (

(

𝛼
1
𝛼
2
𝛼
3
⋅ ⋅ ⋅ 𝛼
𝑛

0 𝛼
1
𝛼
2

...
... d d d 𝛼

3

d d 𝛼
2

0 ⋅ ⋅ ⋅ 0 𝛼
1

)

)

. (22)

We transform problem (21) into the following problem

𝐹 ≡
1

2
‖𝐴𝑋 − 𝐵‖

2

𝐹
= min,

𝑋 =

𝑛

∑

𝑝=1

𝛼
𝑝
𝐻
𝑝
,

(23)

where

(𝐻
𝑝
)
𝑖𝑗
= {

1 if 𝑗 = 𝑖 + 𝑝 − 1,

0 otherwise,
𝑝 = 1, . . . , 𝑛. (24)

The proof procedure is similar to that in problem (7). In this
case, the related function𝐹, the unknown 𝑦, the linear system
of equations, and the matrix 𝐶 as well as the scalar 𝑏 can be
expressed as

𝐹 =
1

2
𝑦
𝑇
𝐶
𝑢
𝑦 − 𝑏
𝑇

𝑢
𝑦 +

1

2
tr (𝐵𝑇𝐵) ,

𝐶
𝑢
𝑦 = 𝑏
𝑢
, 𝑦
𝑇
= (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
) , 𝐶

𝑢
= (𝐶
𝑙𝑘
)
𝑛×𝑛

,

𝐶
𝑙𝑘
=
1

2
(tr (𝐻𝑇

𝑙
𝐴
𝑇
𝐴𝐻
𝑘
) + tr (𝐻𝑇

𝑘
𝐴
𝑇
𝐴𝐻
𝑙
)) ,

𝑙, 𝑘 = 1, 2, . . . , 𝑛,

𝑏
𝑢
= (tr (𝐵𝑇𝐴𝐻

1
) , tr (𝐵𝑇𝐴𝐻

2
) , . . . , tr (𝐵𝑇𝐴𝐻

𝑛
)) .

(25)
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Therefore we obtain a conclusion on upper triangular
Toeplitz problem as follows.

Theorem 10. The solution of problem (21) exists, and its gen-
eral form can be expressed as

𝑋 =

𝑛

∑

𝑙=1

𝛼
𝑙
𝐻
𝑙
, (26)

where (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
)
𝑇
= 𝑦
𝑢
= 𝐶
−

𝑢
𝑏
𝑢
+ (𝐼 − 𝐶

−

𝑢
𝐶
𝑢
)𝑧, for all

𝑧 ∈ 𝑅
𝑛, 𝐶−
𝑢
means {1} inverse of 𝐶

𝑢
.

Theorem 11. Problem (21) has a unique solution if and only if
𝐶
𝑢
has full rank. In this case, the unique solution is

𝑋 =

𝑛

∑

𝑙=1

𝛼
𝑙
𝐻
𝑙
, (27)

where (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
)
𝑇
= 𝐶
−1

𝑢
𝑏
𝑢
.

Corollary 12. If A has full rank in column, then the solution
of problem (21) is unique.

Similarly, we can solve the lower triangular Toeplitz
problem.

3.2.The Symmetric Toeplitz Problem. The symmetric Toeplitz
problem is the following minimization problem:

min ‖𝐴𝑋 − 𝐵‖
2

𝐹

s.t. 𝑋 ∈ T
𝑠
,

(28)

where 𝐴, 𝐵 ∈ 𝑅
𝑚×𝑛, T

𝑠
are the subspace of symmetric

Toeplitz matrices, with elements of the general form:

𝑋 = (

(

𝛼
1
𝛼
2
𝛼
3
⋅ ⋅ ⋅ 𝛼
𝑛

𝛼
2
𝛼
1
𝛼
2

...
𝛼
3
𝛼
2

d d 𝛼
3

... d d 𝛼
2

𝛼
𝑛
⋅ ⋅ ⋅ 𝛼
3
𝛼
2
𝛼
1

)

)

. (29)

We consider the following objective function:

𝐹 ≡
1

2
‖𝐴𝑋 − 𝐵‖

2

𝐹
= min,

𝑋 =

𝑛

∑

𝑝=1

𝛼
𝑝
𝑄
𝑝
,

(30)

where

(𝑄
𝑝
)
𝑖𝑗
= {

1 if 𝑗 − 𝑖
 = 𝑝 − 1,

0 otherwise,
𝑝 = 1, . . . , 𝑛. (31)

In this case, the related function 𝐹, the unknown 𝑦, the
linear system of equations, and the matrix 𝐶 as well as the
scalar 𝑏 can be expressed as

𝐹 =
1

2
𝑦
𝑇
𝐶
𝑠
𝑦 − 𝑏
𝑇

𝑠
𝑦 +

1

2
tr (𝐵𝑇𝐵) ,

𝐶
𝑠
𝑦 = 𝑏
𝑠
, 𝑦
𝑇
= (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
) , 𝐶

𝑠
= (𝐶
𝑙𝑘
)
𝑛×𝑛

,

𝐶
𝑙𝑘
=
1

2
(tr (𝑄𝑇

𝑙
𝐴
𝑇
𝐴𝑄
𝑘
) + tr (𝑄𝑇

𝑘
𝐴
𝑇
𝐴𝑄
𝑙
)) ,

𝑙, 𝑘 = 1, 2, . . . , 𝑛,

𝑏
𝑠
= (tr (𝐵𝑇𝐴𝑄

1
) , tr (𝐵𝑇𝐴𝑄

2
) , . . . , tr (𝐵𝑇𝐴𝑄

𝑛
)) .

(32)

Therefore we obtain a conclusion about the symmetric
Toeplitz problem.

Theorem 13. The solution of problem (28) exists, and its
general form can be expressed as

𝑋 =

𝑛

∑

𝑙=1

𝛼
𝑙
𝑄
𝑙
, (33)

where (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
)
𝑇
= 𝑦 = 𝐶

−

𝑠
𝑏
𝑠
+(𝐼−𝐶

−

𝑠
𝐶
𝑠
)𝑧, for all 𝑧 ∈ 𝑅

𝑛,
and 𝐶

−

𝑠
means {1} inverse of 𝐶

𝑠
.

Theorem 14. Problem (28) has a unique solution if and only if
𝐶
𝑠
has full rank. In this case, the unique solution is

𝑋 =

𝑛

∑

𝑙=1

𝛼
𝑙
𝑄
𝑙
, (34)

where (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
)
𝑇
= 𝑦 = 𝐶

−1

𝑠
𝑏
𝑠
.

Corollary 15. If A has full rank in column, then the solution
of problem (28) is unique.

4. Computation and Examples

The derivation of general Toeplitz problem leads to the
following computational algorithm.

Algorithm 16.

(1) Generate matrices 𝐺
𝑖
(𝑖 = −(𝑛 − 1), . . . , (𝑛 − 1))

according to the definition in (7).
(2) Compute the matrix 𝐶 and scalar 𝑏 by formula (11)

and (12).
(3) If 𝐶 is of full rank, then solving the linear system of

(16) directly, to obtain the solution 𝑦 = 𝐶
−1
𝑏; else

calculate 𝐶−, forming 𝑦 = 𝐶
−
𝑏 + (𝐼 − 𝐶

−
𝐶)𝑧, for all

𝑧 ∈ 𝑅
𝑛. In general, let 𝑈, 𝑉 and𝑊 in Lemma 2 equal

to 0, we can obtain one of {1} inverse of 𝐶, that is 𝐶−
∗
.

(4) Compute 𝑋 from 𝑋 = ∑
(𝑛−1)

𝑙=−(𝑛−1)
𝛼
𝑙
𝐺
𝑙
, where (𝛼

−(𝑛−1)
,

. . . , 𝛼
(𝑛−1)

) = 𝑦
𝑇.

The algorithms for other special Toeplitz problems can be
designed similarly.

We mention that, in the beginning of this paper, solu-
tions for that two instances are actually obtained based
on Algorithm 16. We can give another example of Toeplitz
problem with matrix 𝐴 of full rank in column as follows.
According to Corollaries 9, 12, and 15, the solution is unique.
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Example 17. Consider the following

𝐴 = (

−2 2 0 −1

1 0 0 2

2 2 1 3

2 −2 −1 −1

−1 −1 2 1

),

𝐵 = (

0 −2 −3 2

1 −2 −3 1

0 0 −3 −3

2 0 2 2

3 2 0 −3

).

(35)

Using the algorithms mentioned above, computing the
Toeplitz problems by Matlab, we obtain the following results.

The general Toeplitz matrix solution is

𝑋
∗
= (

−0.40791 −0.83796 0.080264 −0.041414

−0.55794 −0.40791 −0.83796 0.080264

0.62335 −0.55794 −0.40791 −0.83796

0.30656 0.62335 −0.55794 −0.40791

) .

(36)

The upper triangular Toeplitz matrix solution is

𝑋
𝑢
= (

−0.37531 −0.76827 −0.069704 −0.079890

0.0 −0.37531 −0.76827 −0.069704

0.0 0.0 −0.37531 −0.76827

0.0 0.0 0.0 −0.37531

) ,

(37)

and the symmetric Toeplitz matrix solution is

𝑋
𝑠
= (

−0.46064 −0.64477 0.35659 0.27712

−0.64477 −0.46064 −0.64477 0.35659

0.35659 −0.64477 −0.46064 −0.64477

0.27712 0.35659 −0.64477 −0.46064

) .

(38)

5. Conclusions

Wehave discussed the Toeplitz Procrustes problem including
the general, triangular, and symmetric cases. After transform-
ing the origin problem into a quadric form, we gain the
general or unique solution with facility, by solving the linear
system of equations.
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