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We study the convergence behavior of regularized regression based on reproducing kernel Banach spaces (RKBSs). The convex
inequality of uniform convex Banach spaces is used to show the robustness of the optimal solution with respect to the distributions.
The learning rates are derived in terms of the covering number and 𝐾-functional.

1. Introduction

Recently, there is an increasing research interest in learning
with abstract functional spaces, and considerable work has
been done in [1–3] and so on.

Let (B, ‖ ⋅ ‖B) be a normed vector space consisting of
real functions on a compact distance space (𝑋, 𝑑(⋅, ⋅)), and
let 𝑀 > 0 be a given positive number. Let 𝑧 = {𝑧

𝑖
}
𝑚

𝑖=1
=

{(𝑥
𝑖
, 𝑦
𝑖
)}
𝑚

𝑖=1
∈ 𝑍

𝑚
= (𝑋 × [−𝑀,𝑀])

𝑚 be a finite set of sam-
ples drawn independently and identically (i.i.d.) according to
a distribution 𝜌(𝑥, 𝑦) on 𝑍. Then, the regularized learning
scheme associating with a given hypothesis space B and the
least square loss is

𝑓
𝑧
:= argmin

𝑓∈B
(
1

𝑚

𝑚

∑

𝑖=1

(𝑦
𝑖
− 𝑓 (𝑥

𝑖
))
2
+
𝜆

𝑞

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

𝑞

B
) , (1)

where 𝑞 ≥ 1 is a given real number. The unknown
Borel probability distribution 𝜌(𝑥, 𝑦) can be decomposed
into 𝜌(𝑦 | 𝑥) and 𝜌

𝑋
(𝑥), where 𝜌(𝑦 | 𝑥) is the conditional

probability of𝜌 at𝑥 ∈ 𝑋 and𝜌
𝑋
(𝑥) is themarginal probability

on𝑋.
The regression function corresponding to the least square

loss is

𝑓
𝜌 (𝑥) = ∫

[−𝑀,𝑀]

𝑦𝑑𝜌 (𝑦 | 𝑥) , (2)

which satisfies

𝑓
𝜌 (𝑥) := argmin

𝑓

E
𝜌
(𝑓) = argmin

𝑓

∫
𝑍

(𝑦 − 𝑓 (𝑥))
2
𝑑𝜌. (3)

When the hypothesis spaces B in (1) are reproducing
kernel Banach spaces, we call it the RKBSs based on reg-
ularized regression learning defined by [4, 5] recently. The
represented theorem related closely to regularized learning
is studied in case that B is an RKBS, and the discussions
are extended to the generalized semi-inner-product RKBSs
in [6].

In the present paper, we will provide an investigation
on the learning rates of scheme (1) when B is an RKBS
with uniform convexity. The paper is organized as follows. In
Section 2, we show the main results of the present paper. The
robustness is studied in Section 3, and the sample errors are
bounded in Section 4.The approximation error boils down to
a 𝐾-functional. The learning rates are bounded in Section 5.

For a given real number 𝑝 ≥ 1, we denote by 𝐿𝑝(𝜌
𝑋
) the

class of 𝜌
𝑋
-measurable functions 𝑓 satisfying ‖𝑓‖

𝐿
𝑝
(𝜌𝑋)

=

(∫
𝑋
|𝑓(𝑥)|

𝑝
𝑑𝜌

𝑋
) < +∞.

We say 𝐴 = 𝑂(𝐵) if there is a constant 𝐶 > 0 such
that 𝐴/𝐵 ≤ 𝐶. We say 𝐴 ∼ 𝐵 if both 𝐴 = 𝑂(𝐵) and 𝐵 =

𝑂(𝐴).



2 Abstract and Applied Analysis

2. Notions and Results

To state the results of the present paper, we first introduce
some notions as follows.

2.1.The RKBSs. We denote by B the Banach space with dual
space B∗ and norm ‖ ⋅ ‖B. For 𝑓 ∈ B and 𝑓

∗
∈ B∗, we

write ⟨𝑓, 𝑓∗⟩B = 𝑓
∗
(𝑓).

A reproducing kernel Banach space (RKBS) on 𝑋 is a
reflexive Banach space of real functions on 𝑋 whose dual
space B∗ is isometric to a Banach space B# of functions
on 𝑋, and the point evaluations are continuous functions
on both B and B#. It was shown by Theorem 2 of [4]
that if 𝐵 is an RKBS on 𝑋, then, there exists uniquely a
function 𝐾 : 𝑋 × 𝑋 → R called the reproducing kernel
of B satisfying the following:

(i) 𝐾(𝑥, ⋅) ∈ B,𝐾(⋅, 𝑥) ∈ B∗, 𝑥 ∈ 𝑋;
(ii) 𝑓(𝑥) = ⟨𝑓,𝐾(⋅, 𝑥)⟩B, 𝑓∗(𝑥) = ⟨𝐾(𝑥, ⋅), 𝑓

∗
⟩B, 𝑓∗ ∈

B∗, 𝑥 ∈ 𝑋.
(iii) The linear span of {𝐾(𝑥, ⋅) : 𝑥 ∈ 𝑋} is dense in B,

namely,

span {𝐾 (𝑥, ⋅) : 𝑥 ∈ 𝑋} = B. (4)

(iv) The linear span of {𝐾(⋅, 𝑥) : 𝑥 ∈ 𝑋} is dense in B∗,
namely,

span {𝐾 (⋅, 𝑥) : 𝑥 ∈ 𝑋} = B
∗
. (5)

(v) For all 𝑥, 𝑦 ∈ 𝑋 there holds 𝐾(𝑥, 𝑦) = ⟨𝐾(𝑥, ⋅),

𝐾(⋅, 𝑦)⟩B.

When B is an RKHS, 𝐾 is indeed the reproducing kernel in
the usual sense (see [7]).

Since B is a reflective Banach space, we have

⟨𝑓, 𝑓
∗
⟩B ≤

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩B

×
󵄩󵄩󵄩󵄩𝑓

∗󵄩󵄩󵄩󵄩B∗
, 𝑓 ∈ B, 𝑓

∗
∈ B

∗
, (6)

󵄩󵄩󵄩󵄩𝑓
∗󵄩󵄩󵄩󵄩B∗

= sup
‖𝑓‖B≤1

⟨𝑓, 𝑓
∗
⟩B. (7)

A way of producing reproducing kernel spaces in 𝐿
𝑝

spaces by the idempotent integral operators was provided in
[8]. In the present paper, we provide a method to construct
RKBSs by orthogonal function series.

Example 1. Let 𝑋 = [𝑎, 𝑏] be a given closed interval and
let, {𝜑

𝑘
(𝑥)}

+∞

𝑘=0
be a sequence of continuous functions on [𝑎,

𝑏] satisfying the following:

(i) 𝜑
𝑘
∈ 𝐿

𝑝
(𝜌) for 𝑘 = 0, 1, 2, . . .;

(ii) 𝜑
𝑘
and 𝜑

𝑙
are orthonormal (in 𝐿

2
(𝜌)) when 𝑙 ̸= 𝑘;

(iii) span({𝜑
𝑘
(𝑥)}

+∞

𝑘=0
) is dense in 𝐿

𝑝
(𝜌) for 1 < 𝑝 < +∞.

Let {𝜆
𝑙
}
+∞

𝑙=0
be a given positive real number sequence

satisfying ∑
+∞

𝑙=0
𝜆
𝑙
≤ 1. Define

𝐾(𝑥, 𝑦) =

∞

∑

𝑙=0

𝜆
𝑙
𝜑
𝑙 (𝑥) 𝜑𝑙 (𝑦) , 𝑥, 𝑦 ∈ 𝑋, (8)

and the functional classB(𝑝)

𝐾
on 𝑋 by

B
(𝑝)

𝐾
=

{{

{{

{

𝑓 ∈ 𝐶 (𝑋) :
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩B
(𝑝)

𝐾

=(

∞

∑

𝑙=0

󵄨󵄨󵄨󵄨𝑎𝑙 (𝑓)
󵄨󵄨󵄨󵄨

𝑝
󸀠

𝜆
𝑙

)

1/𝑝
󸀠

<+∞

}}

}}

}

,

(9)

where 𝑎
𝑘
(𝑓) = ∫

[𝑎,𝑏]
𝑓(𝑦)𝜑

𝑘
(𝑦)𝑑𝜌(𝑦), 𝑘 ∈ 𝑁. We define the

space B
(𝑝
󸀠
)

𝐾
for 𝑝󸀠 = 𝑝/(𝑝 − 1) in an analogous way.

We have the following proposition.

Proposition 2. Define a bivariate operation on B
(𝑝)

𝐾
and

B
(𝑝
󸀠
)

𝐾
by

⟨𝑓, 𝑔⟩ =

∞

∑

𝑙=0

𝑎
𝑙
(𝑓) 𝑎

𝑙
(𝑔)

𝜆
𝑙

, 𝑓 ∈ B
(𝑝)

𝐾
, 𝑔 ∈ B

(𝑝
󸀠
)

𝐾
. (10)

Then, B(𝑝)

𝐾
is a reproducing kernel Banach space with repro-

ducing kernel 𝐾(𝑥, 𝑦).

Proof. Let 𝑙𝑝
𝐾
= {𝑎 = {𝑎

𝑘
}
+∞

𝑘=0
: ‖𝑎‖

𝑙
𝑝

𝐾

= (∑
∞

𝑙=0
(|𝑎

𝑙
|
𝑝
/𝜆
𝑙
))
1/𝑝

<

+∞} and 𝑙𝑝
󸀠

𝐾
be defined in an analogous way. Then, both 𝑙𝑝

𝐾

and 𝑙𝑝
󸀠

𝐾
are Banach spaces and (𝑙𝑝

𝐾
)
∗
= 𝑙

𝑝
󸀠

𝐾
and (𝑙𝑝

󸀠

𝐾
)
∗
= 𝑙

𝑝

𝐾
.

By (9) we knowB
(𝑝)

𝐾
and 𝑙𝑝

󸀠

𝐾
are isometric isomorphisms.

Therefore,B(𝑝)

𝐾
are Banach spaces.

Since 𝑎
𝑙
(𝐾(⋅, 𝑦)) = 𝜆

𝑙
𝜑
𝑙
(𝑦), we have for 𝑓 ∈ B

(𝑝)

𝐾
that

⟨𝑓,𝐾 (⋅, 𝑦)⟩ =

∞

∑

𝑙=0

𝑎
𝑙
(𝑓) 𝑎

𝑙
(𝐾 (⋅, 𝑦))

𝜆
𝑙

=

∞

∑

𝑙=0

𝑎
𝑙
(𝑓) 𝜑

𝑙
(𝑦) = 𝑓 (𝑦) .

(11)

By the same way, we have for any 𝑔 ∈ B
(𝑝
󸀠
)

𝐾
that ⟨𝐾(𝑥, ⋅),

𝑔⟩ = 𝑔(𝑥); that is, the reproducing property holds.

2.2. The Uniform Convexity. In this subsection, we focus
on some notions in convex analysis and Banach geometry
theory.

Let 𝐹(𝑓) : B → R be a convex function. Then,

𝜕𝐹 (𝑓) = {𝜉 ∈ B
∗
: 𝐹 (𝑓

󸀠
) − 𝐹 (𝑓)

≥ ⟨𝑓
󸀠
− 𝑓, 𝜉⟩B, ∀𝑓

󸀠
∈ B} ̸= 𝜙.

(12)

We call 𝜕𝐹(𝑓) the subdifferential of 𝐹(𝑓) at 𝑓 ∈ B. If 𝜉 ∈

𝜕𝐹(𝑓), then, we call 𝜉 a subgradient of 𝐹 at 𝑓.
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Awell-known result is that 𝑓
0
is a minimal value point of

a convex function 𝐹(𝑓) on B if and only if 0 ∈ 𝜕𝐹(𝑓
0
) (see

[9]).
A Banach space B is called 𝑞-uniform convex if there

are constants 𝑞 > 0, 𝑐 > 0 such that the modulus defined
by

𝛿B (𝜀)

= inf (1 −
󵄩󵄩󵄩󵄩𝑓 + 𝑔

󵄩󵄩󵄩󵄩B

2
:
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩B

=
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩B

= 1,
󵄩󵄩󵄩󵄩𝑓 − 𝑔

󵄩󵄩󵄩󵄩B
= 𝜀) ,

𝜀 ∈ (0, 2]

(13)

satisfies 𝛿B(𝜀) ≥ 𝑐𝜀
𝑞
. In particular, any Hilbert spaces are 2-

uniform convex Banach spaces.
Define 𝐽

𝑞
(𝑓)B = 𝜕((1/𝑞)‖𝑓‖

𝑞

B
). Then, by (28) in

Corollary 1 of [10] we know B is 𝑞-uniform convex if and
only if there is a positive constant 𝑐

𝑞
> 0 such that for all 𝑓,

𝑔 ∈ B and all 𝑗
𝑞
(𝑓) ∈ 𝐽

𝑞
(𝑓)B there holds

1

𝑞
(
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

𝑞

B
−
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

𝑞

B
) ≥ ⟨𝑗

𝑞
(𝑔) , 𝑓 − 𝑔⟩B + 𝑐

𝑞

󵄩󵄩󵄩󵄩𝑓 − 𝑔
󵄩󵄩󵄩󵄩

𝑞

B
,

∀𝑓, 𝑔 ∈ B.

(14)

In [11–14] we know that, for a given 1 < 𝑝 < +∞, the
space 𝑙

𝑝
, the Lebesgue spaces 𝐿

𝑝
and the Sobolev space𝑊𝑚

𝑝

are max{2, 𝑝}-uniform convex. Also, let B(𝑝)

𝐾
and B

(𝑝
󸀠
)

𝐾
be

defined as in Section 2.1.Then, by the fact thatB(𝑝)

𝐾
and 𝑙𝑝

󸀠

𝐾
are

isometric isomorphisms, we knowB
(𝑝)

𝐾
is 2-uniform convex

if 𝑝 > 2 and 𝑝󸀠-uniform convex if 1 < 𝑝 ≤ 2. Therefore, we
knowB

(𝑝)

𝐾
is a 𝑞-uniform convex Banach space, where 𝑞 is 2

if 𝑝 > 2 and its value is 𝑝/(𝑝 − 1) if 1 < 𝑝 ≤ 2.

2.3. Main Results. Let 𝑆 be a distance space and 𝜂 > 0. The
covering number N(𝑆, 𝜂) is defined to be the minimal pos-
itive integer number 𝑙 such that there exists 𝑙 disk in 𝑆 with
radius 𝜂 covering 𝑆.

We say a compact subset 𝐸 in a distance space (B, ‖ ⋅ ‖B)

has logarithmic complexity exponent 𝑠 ≥ 0 if there is a
constant 𝑐

𝑠
> 0 such that the closed ball of radius 𝑅 centered

at origin, that is,B
𝑅
= {𝑓 ∈ 𝐸 : ‖𝑓‖B ≤ 𝑅}, satisfies

logN (B
𝑅
, 𝜂) ≤ 𝑐

𝑠
(
𝑅

𝜂
)

𝑠

, ∀𝜂 > 0. (15)

Now we are in a position to present the main results of
this paper.

Theorem 3. LetB be an RKBS with 𝑞-uniform convexity and
a reproducing kernel𝐾(⋅, 𝑥) which is uniform continuous on𝑋
in terms of the norm ‖ ⋅ ‖B∗ , that is, ‖𝐾(⋅, 𝑥)‖B∗ . ‖𝐾(⋅, 𝑥)‖B∗
is a uniform continuous function on𝑋, and there is a constant
𝑘 > 0 such that ‖𝐾(⋅, 𝑥)‖B∗ ≤ 𝑘 holds for all 𝑥 ∈ 𝑋. Let 𝑓

𝑧

be the unique minimizer of scheme (1). If 𝑓
𝜌
∈ 𝐿

2
(𝜌
𝑋
), then for

any 𝜖 > 0 there holds

Prob
𝑧∈𝑍
𝑚 (

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑧
− 𝑓

𝜌

󵄩󵄩󵄩󵄩󵄩𝐿2(𝜌𝑋)
≤ 𝑘𝜖 + √𝐷

𝑞
(𝑓

𝜌
,
𝜆

𝑞
))

≥ 1 − 2N(B
1
,

𝜆𝑐
𝑞
𝜖
𝑞−1

8 𝛾
𝑞

)

× exp(−
𝑚𝜆

2
𝑐
2

𝑞
𝜖
2(𝑞−1)

32 𝑘2𝛾2
𝑞

) ,

(16)

where

𝐷
𝑞
(𝑓
𝜌
, 𝜆) = inf

𝑓∈B
(
󵄩󵄩󵄩󵄩󵄩
𝑓 − 𝑓

𝜌

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝜌𝑋)

+ 𝜆
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

𝑞

B
) (17)

is a 𝐾-functional, 𝛾
𝑞
:= 𝑀 + 𝑘(𝑞 𝐷

𝑞
(𝑓
𝜌
, 𝜆/𝑞)/𝜆)

1/𝑞 and

B
1
= {𝑓 (𝑥) : 𝑓 ∈ B,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩B

≤ 1} . (18)

The covering number involved in (16) has been studied
widely (see [15–19]). In this paper, we assume N(B

𝑅
, 𝜂) has

the logarithmic complexity.

Theorem4. Under the conditions ofTheorem 3, if𝑓
𝜌
∈ 𝐿

2
(𝜌
𝑋
)

and (B, ‖ ⋅ ‖B) has logarithmic complexity with exponent 𝑠 ≥
0, then for any 𝛿 ∈ (0, 1), with confidence 1 − 𝛿, there holds

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑧
− 𝑓

𝜌

󵄩󵄩󵄩󵄩󵄩𝐿2(𝜌𝑋)

≤ 𝑘[

[

(

64𝛾
2

𝑞
log (2/𝛿)
𝑚𝜆2𝑐2

𝑞

)

1/2(𝑞−1)

+(

8
2+𝑠
𝛾
2+𝑠

𝑞
𝑐
𝑠

𝑚𝜆2+𝑠𝑐2+𝑠
𝑞

)

1/(2+𝑠)(𝑞−1)

]

]

+ √𝐷
𝑞
(𝑓

𝜌
,
𝜆

𝑞
) ,

(19)

where 𝑐
𝑠
is defined in (15).

We now give some remarks onTheorems 3 and 4.

(i) In Theorem 3, we require that the kernel 𝐾(𝑥, 𝑦) is
uniform continuous and uniform bounded on 𝑋. In
fact, a large class of real bivariate functions satis-
fies these conditions. For example, if the function
sequence {𝜑

𝑙
(𝑥)}

+∞

𝑙=0
defined in Example 1 is uni-

formly bounded, that is, |𝜑
𝑙
(𝑥)| ≤ 1 holds for all 𝑙 and

all 𝑥 ∈ [𝑎, 𝑏], then, kernel 𝐾(𝑥, 𝑦) is continuous on
[𝑎, 𝑏] × [𝑎, 𝑏] which turns out that𝐾(𝑥, 𝑦) is uniform
continuous on [𝑎, 𝑏] × [𝑎, 𝑏]. Therefore, |𝐾(𝑥, 𝑦)| ≤
∑
+∞

𝑙=0
𝜆
𝑙
≤ 1 shows that𝐾(𝑥, 𝑦) is uniform continuous

and bounded with norm ‖ ⋅ ‖
𝐿
𝑝
(𝜌)
.

(ii) By the definition of 𝛾
𝑞
, we know that if 𝐷

𝑞
(𝑓
𝜌
, 𝜆) =

𝑂(𝜆
𝛽
), 0 < 𝛽 ≤ 1, then, 𝛾

𝑞
= 𝑀 + 𝑂(𝑞𝜆

𝛽−1
)
1/𝑞

. It is
bounded if 𝛽 = 1.
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(iii) If B is a reproducing kernel Hilbert space, then, 𝑞 =
2, 𝑐

𝑞
= 1. Moreover, if 𝐷

𝑞
(𝑓
𝜌
, 𝜆) = 𝑂(𝜆

𝛽
), 0 < 𝛽 ≤

1, then, we have by (19) that

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑧
− 𝑓

𝜌

󵄩󵄩󵄩󵄩󵄩𝐿2(𝜌𝑋)

= 𝑂[(
log (2/𝛿)
𝑚𝜆3−𝛽

)

1/2

+ (
1

𝑚𝜆(2+𝑠)(3−𝛽)/2
)

1/(2+𝑠)

+ 𝜆
𝛽/2
] .

(20)

(iv) We can show a way of bounding the decay rates
of 𝐷

𝑞
(𝑓
𝜌
, 𝜆) for 1 < 𝑝 ≤ 2. Let 𝑓 ∈ 𝐿

𝑝
(𝜌). Then,

we have the following Fourier expansion:

𝑓 (𝑥) ∼

∞

∑

𝑙=0

𝑎
𝑙
(𝑓) 𝜑

𝑙 (𝑥) . (21)

Define an operator sequence by

𝑉
𝑛
(𝑓, 𝑥) =

𝑛

∑

𝑙=0

𝜆
𝑙
𝑎
𝑙
(𝑓) 𝜑

𝑙 (𝑥) , 𝑥 ∈ 𝑋. (22)

Then, for a given positive integer 𝑛 we have
𝑎
𝑙
(𝑉
𝑛
(𝑓)) = 𝜆

𝑙
𝑎
𝑙
(𝑓) and

󵄩󵄩󵄩󵄩𝑉𝑛 (𝑓)
󵄩󵄩󵄩󵄩B
(𝑝)

𝐾

= (

∞

∑

𝑙=0

󵄨󵄨󵄨󵄨𝑎𝑙 (𝑉𝑛 (𝑓))
󵄨󵄨󵄨󵄨

𝑝
󸀠

𝜆
𝑙

)

1/𝑝
󸀠

= (

𝑛

∑

𝑙=0

𝜆
𝑝
󸀠
−1

𝑙

󵄨󵄨󵄨󵄨𝑎𝑙 (𝑓)
󵄨󵄨󵄨󵄨

𝑝
󸀠

)

1/𝑝
󸀠

≤ (max
0≤𝑙≤𝑛

𝜆
1−(1/𝑝

󸀠
)

𝑙
)(

+∞

∑

𝑙=0

󵄨󵄨󵄨󵄨𝑎𝑙 (𝑓)
󵄨󵄨󵄨󵄨

𝑝
󸀠

)

1/𝑝
󸀠

≤ (max
0≤𝑙≤𝑛

𝜆
1−(1/𝑝

󸀠
)

𝑙
)
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(𝜌)

,

(23)

where we have used the generalized Bessel inequality
(see [20]):

(

+∞

∑

𝑙=0

󵄨󵄨󵄨󵄨𝑎𝑙 (𝑓)
󵄨󵄨󵄨󵄨

𝑝
󸀠

)

1/𝑝
󸀠

≤
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(𝜌)

. (24)

Also,

⟨𝑉
𝑛
(𝑓) , 𝐾 (⋅, 𝑦)⟩ =

∞

∑

𝑙=0

𝑎
𝑙
(𝑉
𝑛
(𝑓)) 𝑎

𝑙
(𝐾 (⋅, 𝑦))

𝜆
𝑙

=

𝑛

∑

𝑙=0

𝜆
𝑙
𝑎
𝑙
(𝑓) 𝜑

𝑙
(𝑦) = 𝑉

𝑛
(𝑓, 𝑦) .

(25)

By (25) and (23) we know 𝑉
𝑛
(𝑓) ∈ B

(𝑝)

𝐾
holds for all

positive integers 𝑛 and, in this case,

𝐷
𝑞
(𝑓
𝜌
, 𝜆) ≤

󵄩󵄩󵄩󵄩󵄩
𝑉
𝑛
(𝑓
𝜌
) − 𝑓

𝜌

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝜌𝑋)

+ 𝜆
󵄩󵄩󵄩󵄩󵄩
𝑉
𝑛
(𝑓
𝜌
)
󵄩󵄩󵄩󵄩󵄩

𝑞

B
(𝑝)

𝐾

≤
󵄩󵄩󵄩󵄩󵄩
𝑉
𝑛
(𝑓
𝜌
) − 𝑓

𝜌

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝜌𝑋)

+ 𝜆(max
0≤𝑙≤𝑛

𝜆
1−(1/𝑝

󸀠
)

𝑙
)

𝑞

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(𝜌)

.

(26)

One can choose suitable 𝑛 such that it depends upon
the sample number 𝑚 and obtain the decay rates
when 𝑚 → +∞. There are many choices for the
type of operator (22). For example, the Bernstein-
Durrmeyer operators (see, e.g., [21–23]) and the de
la Vallée-Poussin sum operators are such types (see
[24]). This method was first provided by [25] and was
extended in [26, 27].

(v) We know from [19] that the RKHSs with logarith-
mic complexity with exponent 𝑠 ≥ 0 exist. By
Corollary 4.1 and Theorem 2.1 of [16] we know that
if 𝜆

𝑙
satisfy 𝜆

𝑙
∼ 1/(1 + 𝑙)

𝛼
, 𝛼 > 1, then, the covering

number of B(2)

𝐾
may attain the decay of complexity

exponent. In a recent paper (see [28]), Guntuboyina
and Sen showed that the set of all convex functions
defined on [𝑎, 𝑏]

𝑑 that are uniform bounded has
the logarithmic complexity exponent 𝑑/2 in the 𝐿

𝑝
-

metric.

3. Robustness

Robustness is a quantitative description of the solutions on
the distributions.

Define the 𝜌-control integral regularized model corre-
sponding to (1) by

𝑓
(𝜌)

:= argmin
𝑓∈B

(E
𝜌
(𝑓) +

𝜆

𝑞

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

𝑞

B
) , (27)

where E
𝜌
(𝑓) is defined in (3). Then, 𝑓(𝜌) is influenced by

the distributions 𝜌. For any bounded 𝜌-measurable function
𝑓(𝑥, 𝑦) on 𝑍, we define the empirical measure 𝛾

𝑧
(𝑥, 𝑦) as

follows:

𝐸
𝛾𝑧
[𝑓 (𝑥, 𝑦)] = ∫

𝑍

𝑓 (𝑥, 𝑦) 𝑑𝛾
𝑧
=
1

𝑚

𝑚

∑

𝑖=1

𝑓 (𝑥
𝑖
, 𝑦
𝑖
) . (28)

Then, 𝑓
𝑧
= 𝑓

(𝛾𝑧). We give the following theorem.

Theorem 5. LetB be an RKBS with 𝑞-uniform convexity and
the reproducing kernel 𝐾(𝑥, 𝑦), and let 𝑓(𝜌) and 𝑓(𝛾) be the
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solutions of scheme (27) with respect to distributions 𝜌 and
𝛾, respectively. Then,
󵄩󵄩󵄩󵄩󵄩
𝑓
(𝜌)
− 𝑓

(𝛾)󵄩󵄩󵄩󵄩󵄩B

≤ (
2

𝜆𝑐
𝑞

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫
𝑍

(𝑦 − 𝑓
(𝜌)
(𝑥))𝐾 (⋅, 𝑥) 𝑑𝜌

−∫
𝑍

(𝑦 − 𝑓
(𝜌)
(𝑥))𝐾 (⋅, 𝑥) 𝑑𝛾

󵄩󵄩󵄩󵄩󵄩󵄩󵄩B∗
)

1/(𝑞−1)

,

(29)

where 𝑐
𝑞
is the constant defined in (14).

Theorem 5 shows how 𝜌 influences the unique solution
𝑓
(𝜌).
To proveTheorem 5, we need the following lemmas.

Lemma 6. Under the conditions of Theorem 5, there holds

𝜕E
𝜌
(𝑓
0
) = {−2∫

𝑍

(𝑦 − 𝑓
0 (𝑥))𝐾 (⋅, 𝑥) 𝑑𝜌} , 𝑓

0
∈ B,

(30)

where the point ⋅ in 𝐾(⋅, 𝑥)means 𝐾(⋅, 𝑥) ∈ B for any 𝑥 ∈ 𝑋.

Proof. We restate the following statement.
Let (B, ‖ ⋅ ‖B) be a Banach space, 𝐹(𝑓) : B → R

⋃{∓∞} be a real function. We say 𝐹 is Gateaux differentiable
at 𝑓

0
∈ B if there is an 𝜉 ∈ B∗ such that for any 𝑔 ∈ B there

holds

lim
𝑡→0

𝐹 (𝑓
0
+ 𝑡𝑔) − 𝐹 (𝑓

0
)

𝑡
= ⟨𝑔, 𝜉⟩B,

(31)

and write 𝐹󸀠
𝐺
(𝑓
0
) = 𝜉. By [29] we know that if 𝐹 is convex on

B and is Gateaux differentiable at 𝑓
0
∈ B, then, 𝜕𝐹(𝑓

0
) =

{𝐹
󸀠

𝐺
(𝑓
0
)}.

By equality

𝑥
2
− 𝑦

2
= 2𝑦 (𝑥 − 𝑦) + (𝑥 − 𝑦)

2
, 𝑥, 𝑦 ∈ R, (32)

we have for any 𝑔(𝑥) = ⟨𝑔,𝐾(⋅, 𝑥)⟩B ∈ B that

lim
𝑡→0

E
𝜌
(𝑓
0
+ 𝑡𝑔) −E

𝜌
(𝑓
0
)

𝑡

= lim
𝑡→0

∫
𝑍
(𝑦 − 𝑓

0 (𝑥) − 𝑡𝑔 (𝑥))
2
𝑑𝜌 − ∫

𝑍
(𝑦 − 𝑓

0 (𝑥))
2
𝑑𝜌

𝑡

= lim
𝑡→0

−2𝑡 ∫
𝑍
(𝑦 − 𝑓

0 (𝑥)) 𝑔 (𝑥) 𝑑𝜌 + 𝑡
2
∫
𝑍
𝑔(𝑥)

2
𝑑𝜌

𝑡

= −2∫
𝑍

(𝑦 − 𝑓
0 (𝑥)) 𝑔 (𝑥) 𝑑𝜌

= ⟨𝑔, −2∫
𝑍

(𝑦 − 𝑓
0 (𝑥))𝐾 (⋅, 𝑥) 𝑑𝜌⟩

B

.

(33)

Since E
𝜌
(𝑓) is a convex function on B, we know (30) holds.

Lemma 7. Take 𝐽
𝑞
(𝑓) = 𝜕((1/𝑞)‖𝑓‖

𝑞

B
). Then, under the con-

ditions of Theorem 5, there hold the following.

(i) There exists uniquely a minimizer 𝑓(𝜌) of the problem
(27) and

󵄩󵄩󵄩󵄩󵄩
𝑓
(𝜌)󵄩󵄩󵄩󵄩󵄩B

≤ (

𝑞𝐷
𝑞
(𝑓
𝜌
, 𝜆/𝑞)

𝜆
)

1/𝑞

. (34)

(ii) There is a 𝑗
𝑞
(𝑓
(𝜌)
) ∈ 𝐽

𝑞
(𝑓
(𝜌)
) such that

𝜆𝑗
𝑞
(𝑓

(𝜌)
) = 2∫

𝑍

(𝑦 − 𝑓
(𝜌)
(𝑥))𝐾 (⋅, 𝑥) 𝑑𝜌. (35)

Proof. The uniqueness of the minimizer can be obtained by
the fact that (27) is a strict convex optimization problem. By
the definition of 𝑓(𝜌), we have

𝜆

𝑞

󵄩󵄩󵄩󵄩󵄩
𝑓
(𝜌)󵄩󵄩󵄩󵄩󵄩

𝑞

B
≤
𝜆

𝑞

󵄩󵄩󵄩󵄩󵄩
𝑓
(𝜌)󵄩󵄩󵄩󵄩󵄩

𝑞

B
+E

𝜌
(𝑓

(𝜌)
) −E

𝜌
(𝑓
𝜌
)

= 𝐷
𝑞
(𝑓

𝜌
,
𝜆

𝑞
) .

(36)

We then have (34).

Proof of (35). Since 𝑓(𝜌) is the unique solution of (27), we
have

0 ∈ 𝜕
𝑓
(E

𝜌
(𝑓) +

𝜆

𝑞

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

𝑞

B
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑓=𝑓(𝜌)
. (37)

Notice that both E
𝜌
(𝑓) and ‖𝑓‖𝑞

B
are convex functions

about 𝑓 on B. We have

𝜕
𝑓
(E

𝜌
(𝑓) +

𝜆

𝑞

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

𝑞

B
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑓=𝑓(𝜌)

= 𝜕
𝑓
(E

𝜌
(𝑓))

󵄨󵄨󵄨󵄨󵄨𝑓=𝑓(𝜌)
+ 𝜕

𝑓
(
𝜆

𝑞

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

𝑞

B
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑓=𝑓(𝜌)
.

(38)

By (30), we know that (37) leads to

0 ∈ {−2∫
𝑍

(𝑦 − 𝑓
(𝜌)
(𝑥))𝐾 (⋅, 𝑥) 𝑑𝜌} + 𝜆𝐽𝑞 (𝑓

(𝜌)
) . (39)

Therefore, there is 𝑗
𝑞
(𝑓
(𝜌)
) ∈ 𝐽

𝑞
(𝑓
(𝜌)
) such that (35) holds.

Lemma 8. Let B be an RKBS satisfying the conditions of
Theorem 3. Then,

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝑘

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩B
, 𝑥 ∈ 𝑋, 𝑓 ∈ B. (40)

Proof. The reproducing property and (16) give
󵄨󵄨󵄨󵄨𝑓 (𝑥)

󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨⟨𝑓,𝐾 (⋅, 𝑥)⟩

B

󵄨󵄨󵄨󵄨 ≤
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩B

× ‖𝐾 (⋅, 𝑥)‖B∗ . (41)

Then, the fact ‖𝐾(⋅, 𝑥)‖B∗ ≤ 𝑘 gives (40).



6 Abstract and Applied Analysis

Lemma 9. Let 𝐾(𝑥, 𝑦) be the reproducing kernel of B, and
𝐾(⋅, 𝑥) is uniform continuous about 𝑥 on 𝑋 in norm ‖ ⋅ ‖B∗ ,
𝑅 > 0 be a given real number. Then, the ball B

𝑅
= {𝑓 ∈ B :

‖𝑓‖B ≤ 𝑅} is a compact subset of 𝐶(𝑋).

Proof. Since 𝑋 is a compact distance space, so is 𝑋 × 𝑋.
Since𝐾(⋅, 𝑥) is uniform continuous about 𝑥 in norm ‖ ⋅ ‖B∗ ,
we know that for any 𝜖 > 0 there is a 𝛿 > 0 such that for
all 𝑥, 𝑥󸀠 ∈ 𝑋 with 𝑑(𝑥, 𝑥

󸀠
) < 𝛿, we have

󵄩󵄩󵄩󵄩󵄩
𝐾(⋅, 𝑥) − 𝐾(⋅, 𝑥

󸀠
)
󵄩󵄩󵄩󵄩󵄩B∗

< 𝜖 (42)

and for any 𝑓 ∈ B
𝑅
holds

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑥) − 𝑓 (𝑥

󸀠
)
󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
⟨𝑓,𝐾 (⋅, 𝑥)⟩

B
− ⟨𝑓,𝐾 (⋅, 𝑥

󸀠
)⟩

B

󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
⟨𝑓,𝐾 (⋅, 𝑥) − 𝐾 (⋅, 𝑥

󸀠
)⟩

B

󵄨󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩B

×
󵄩󵄩󵄩󵄩󵄩
𝐾 (⋅, 𝑥) − 𝐾 (⋅, 𝑥

󸀠
)
󵄩󵄩󵄩󵄩󵄩B∗

≤ 𝑅𝜖.

(43)

By (43), we know that B
𝑅
is a closed, bounded, and

equicontinuous set. Therefore, B
𝑅

is a compact set of
𝐶(𝑋).

Proof of Theorem 5. By the definition of 𝜕E
𝛾
(𝑓
(𝜌)
) and (30)

we know

E
𝛾
(𝑓

(𝛾)
) −E

𝛾
(𝑓

(𝜌)
)

≥ ⟨𝑓
(𝛾)
− 𝑓

(𝜌)
, −2∫

𝑍

(𝑦 − 𝑓
(𝜌)
(𝑥))𝐾 (⋅, 𝑥) 𝑑𝛾⟩

B

.

(44)

Also, by (44) and the definitions of 𝑓(𝜌) and 𝑓(𝛾) we have

0 ≥ (∫
𝑍

(𝑦 − 𝑓
(𝛾)
(𝑥))

2

𝑑𝛾 +
𝜆

𝑞

󵄩󵄩󵄩󵄩󵄩
𝑓
(𝛾)󵄩󵄩󵄩󵄩󵄩

𝑞

B
)

− (∫
𝑍

(𝑦 − 𝑓
(𝜌)
(𝑥))

2

𝑑𝛾 +
𝜆

𝑞

󵄩󵄩󵄩󵄩󵄩
𝑓
(𝜌)󵄩󵄩󵄩󵄩󵄩

𝑞

B
)

= E
𝛾
(𝑓

(𝛾)
) −E

𝛾
(𝑓

(𝜌)
) +

𝜆

𝑞
(
󵄩󵄩󵄩󵄩󵄩
𝑓
(𝛾)󵄩󵄩󵄩󵄩󵄩

𝑞

B
−
󵄩󵄩󵄩󵄩󵄩
𝑓
(𝜌)󵄩󵄩󵄩󵄩󵄩

𝑞

B
)

≥ 2⟨𝑓
(𝛾)
− 𝑓

(𝜌)
, − ∫

𝑍

(𝑦 − 𝑓
(𝜌)
(𝑥))𝐾 (⋅, 𝑥) 𝑑𝛾⟩

B

+
𝜆

𝑞
(
󵄩󵄩󵄩󵄩󵄩
𝑓
(𝛾)󵄩󵄩󵄩󵄩󵄩

𝑞

B
−
󵄩󵄩󵄩󵄩󵄩
𝑓
(𝜌)󵄩󵄩󵄩󵄩󵄩

𝑞

B
) .

(45)

Since B is 𝑞-uniform convex, we have by (14) and the
definition of 𝑗

𝑞
(𝑓
(𝜌)
) that

1

𝑞
(
󵄩󵄩󵄩󵄩󵄩
𝑓
(𝛾)󵄩󵄩󵄩󵄩󵄩

𝑞

B
−
󵄩󵄩󵄩󵄩󵄩
𝑓
(𝜌)󵄩󵄩󵄩󵄩󵄩

𝑞

B
) ≥ ⟨𝑓

(𝛾)
− 𝑓

(𝜌)
, 𝑗
𝑞
(𝑓

(𝜌)
)⟩

B

+ 𝑐
𝑞

󵄩󵄩󵄩󵄩󵄩
𝑓
(𝛾)
− 𝑓

(𝜌)󵄩󵄩󵄩󵄩󵄩

𝑞

B
.

(46)

Combining (46) with (45), we have

0 ≥ (∫
𝑍

(𝑦 − 𝑓
(𝛾)
(𝑥))

2

𝑑𝛾 +
𝜆

𝑞

󵄩󵄩󵄩󵄩󵄩
𝑓
(𝛾)󵄩󵄩󵄩󵄩󵄩

𝑞

B
)

− (∫
𝑍

(𝑦 − 𝑓
(𝜌)
(𝑥))

2

𝑑𝛾 +
𝜆

𝑞

󵄩󵄩󵄩󵄩󵄩
𝑓
(𝜌)󵄩󵄩󵄩󵄩󵄩

𝑞

B
)

≥ 2⟨𝑓
(𝜌)
− 𝑓

(𝛾)
, ∫
𝑍

(𝑦 − 𝑓
(𝜌)
(𝑥))𝐾 (⋅, 𝑥) 𝑑𝛾⟩

B

+ 𝜆⟨𝑓
(𝛾)
− 𝑓

(𝜌)
, 𝑗
𝑞
(𝑓

(𝜌)
)⟩

B

+ 𝜆𝑐
𝑞

󵄩󵄩󵄩󵄩󵄩
𝑓
(𝛾)
− 𝑓

(𝜌)󵄩󵄩󵄩󵄩󵄩

𝑞

B

(35)

= 2⟨𝑓
(𝜌)
− 𝑓

(𝛾)
, ∫
𝑍

(𝑦 − 𝑓
(𝜌)
(𝑥))𝐾 (⋅, 𝑥) 𝑑𝛾⟩

B

− 2⟨𝑓
(𝜌)
− 𝑓

(𝛾)
, ∫
𝑍

(𝑦 − 𝑓
(𝜌)
(𝑥))𝐾 (⋅, 𝑥) 𝑑𝜌⟩

B

+ 𝜆𝑐
𝑞

󵄩󵄩󵄩󵄩󵄩
𝑓
(𝛾)
− 𝑓

(𝜌)󵄩󵄩󵄩󵄩󵄩

𝑞

B

= 2⟨∫
𝑍

(𝑦 − 𝑓
(𝜌)
(𝑥))𝐾 (⋅, 𝑥) 𝑑𝛾

−∫
𝑍

(𝑦 − 𝑓
(𝜌)
(𝑥))𝐾 (⋅, 𝑥) 𝑑𝜌, 𝑓

(𝜌)
− 𝑓

(𝛾)
⟩

B

+ 𝜆𝑐
𝑞

󵄩󵄩󵄩󵄩󵄩
𝑓
(𝛾)
− 𝑓

(𝜌)󵄩󵄩󵄩󵄩󵄩

𝑞

B
.

(47)

It follows that

𝜆𝑐
𝑞

󵄩󵄩󵄩󵄩󵄩
𝑓
(𝛾)
− 𝑓

(𝜌)󵄩󵄩󵄩󵄩󵄩

𝑞

B

≤ 2⟨𝑓
(𝛾)
− 𝑓

(𝜌)
, ∫
𝑍

(𝑦 − 𝑓
(𝜌)
(𝑥))𝐾 (⋅, 𝑥) 𝑑𝛾

−∫
𝑍

(𝑦 − 𝑓
(𝜌)
(𝑥))𝐾 (⋅, 𝑥) 𝑑𝜌⟩

B

≤ 2
󵄩󵄩󵄩󵄩󵄩
𝑓
(𝛾)
− 𝑓

(𝜌)󵄩󵄩󵄩󵄩󵄩B

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫
𝑍

(𝑦 − 𝑓
(𝜌)
(𝑥))𝐾 (⋅, 𝑥) 𝑑𝜌

−∫
𝑍

(𝑦 − 𝑓
(𝜌)
(𝑥))𝐾 (⋅, 𝑥) 𝑑𝛾

󵄩󵄩󵄩󵄩󵄩󵄩󵄩B∗
.

(48)

We then have (29).

4. Sample Error

We give the following sample error bounds.
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Theorem 10. Let B be an RKBS satisfying the conditions of
Theorem 3. 𝑓(𝜌) is the solution of scheme (27) with respect to 𝜌
and 𝑓

𝑧
is the solution of (1). Then, for all 𝜖 > 0 there hold

Prob
𝑧∈𝑍
𝑚 {
󵄩󵄩󵄩󵄩󵄩
𝑓
(𝜌)
− 𝑓

𝑧

󵄩󵄩󵄩󵄩󵄩B
≤ 𝜖}

≥ 1 − 2N(F,

𝜆𝑐
𝑞
𝜖
𝑞−1

8
) exp(−

𝑚𝜆
2
𝑐
2

𝑞
𝜖
2(𝑞−1)

32𝛾2
𝑞

) ,

(49)

where

F = {ℎ (𝑧) 𝑓 (𝑥) : 𝑓 ∈ B,
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩B

≤ 1, ‖ℎ‖𝐶(𝑍) ≤ 𝛾𝑞} . (50)

To showTheorem 10, we first give a lemma.

Lemma 11 (see [15]). Let F be a family of functions from a
probability space 𝑍 toR and 𝑑(⋅, ⋅) a distance on F. Let U ⊂

𝑍 be of full measure and constants 𝐵, 𝐿 > 0 such that

(i) |𝜉(𝑧)| ≤ 𝐵 for all 𝜉 ∈ F and all 𝑧 ∈ U,

(ii) |𝐿
𝑧
(𝜉
1
)−𝐿

𝑧
(𝜉
2
)| ≤ 𝐿𝑑(𝜉

1
, 𝜉
2
) for all 𝜉

1
, 𝜉
2
∈ F and all

𝑧 ∈ U𝑚, where

𝐿
𝑧 (𝜉) = ∫

𝑍

𝜉 (𝑧) −
1

𝑚

𝑚

∑

𝑖=1

𝜉 (𝑧
𝑖
) . (51)

Then, for all 𝜖 > 0,

Prob
𝑧∈𝑍
𝑚 {sup

𝜉∈F

󵄨󵄨󵄨󵄨𝐿𝑧 (𝜉)
󵄨󵄨󵄨󵄨 ≤ 𝜖} ≥ 1 −N(F,

𝜖

2𝐿
)

× 2 exp(−𝑚𝜖
2

8𝐵2
) .

(52)

Proof of Theorem 10. Take 𝛾 = 𝛾
𝑧
into (29). Then,

󵄩󵄩󵄩󵄩󵄩
𝑓
(𝜌)
− 𝑓

𝑧

󵄩󵄩󵄩󵄩󵄩B

≤ (
2

𝜆𝑐
𝑞

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫
𝑍

(𝑦 − 𝑓
(𝜌)
(𝑥))𝐾 (⋅, 𝑥) 𝑑𝜌

−
1

𝑚

𝑚

∑

𝑖=1

(𝑦
𝑖
− 𝑓

(𝜌)
(𝑥
𝑖
))𝐾 (⋅, 𝑥

𝑖
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩B∗

)

1/(𝑞−1)

.

(53)

By (7) and the reproducing property, we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫
𝑍

(𝑦 − 𝑓
(𝜌)
(𝑥))𝐾 (⋅, 𝑥) 𝑑𝜌

−
1

𝑚

𝑚

∑

𝑖=1

(𝑦
𝑖
− 𝑓

(𝜌)
(𝑥
𝑖
))𝐾 (⋅, 𝑥

𝑖
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩B∗

= sup
‖𝑓‖B≤1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨𝑓, ∫
𝑍

(𝑦 − 𝑓
(𝜌)
(𝑥))𝐾 (⋅, 𝑥) 𝑑𝜌

−
1

𝑚

𝑚

∑

𝑖=1

(𝑦
𝑖
− 𝑓

(𝜌)
(𝑥
𝑖
))𝐾 (⋅, 𝑥

𝑖
)⟩

B

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= sup
‖𝑓‖B≤1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝑍

(𝑦 − 𝑓
(𝜌)
(𝑥)) ⟨𝑓,𝐾 (⋅, 𝑥)⟩

B
𝑑𝜌

−
1

𝑚

𝑚

∑

𝑖=1

(𝑦
𝑖
− 𝑓

(𝜌)
(𝑥
𝑖
)) ⟨𝑓,𝐾 (⋅, 𝑥

𝑖
)⟩

B

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= sup
‖𝑓‖B≤1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝑍

(𝑦 − 𝑓
(𝜌)
(𝑥)) 𝑓 (𝑥) 𝑑𝜌

−
1

𝑚

𝑚

∑

𝑖=1

(𝑦
𝑖
− 𝑓

(𝜌)
(𝑥
𝑖
)) 𝑓 (𝑥

𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(54)

Since

󵄨󵄨󵄨󵄨󵄨
(𝑦 − 𝑓

(𝜌)
(𝑥))

󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝜌)
(𝑥)

󵄨󵄨󵄨󵄨󵄨

≤ 𝑀 + 𝑘(

𝑞𝐷
𝑞
(𝑓
𝜌
, 𝜆/𝑞)

𝜆
)

1/𝑞 (55)

and (40), we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫
𝑍

(𝑦 − 𝑓
(𝜌)
(𝑥))𝐾 (⋅, 𝑥) 𝑑𝜌

−
1

𝑚

𝑚

∑

𝑖=1

(𝑦
𝑖
− 𝑓

(𝜌)
(𝑥
𝑖
))𝐾 (⋅, 𝑥

𝑖
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩B∗

≤ sup
𝑓∈F

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝑍

𝑓 (𝑧) 𝑑𝜌 −
1

𝑚

𝑚

∑

𝑖=1

𝑓 (𝑧
𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(56)

Define

𝐿
𝑧
(𝑓) = ∫

𝑍

𝑓 (𝑧) 𝑑𝜌 −
1

𝑚

𝑚

∑

𝑖=1

𝑓 (𝑧
𝑖
) . (57)
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Then,
󵄨󵄨󵄨󵄨𝐿𝑧 (𝑓1) − 𝐿𝑧 (𝑓2)

󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑍

(𝑓
1 (𝑧) − 𝑓2 (𝑧)) 𝑑𝜌

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
1

𝑚

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑓1 (𝑧𝑖) − 𝑓2 (𝑧𝑖)
󵄨󵄨󵄨󵄨

≤ 2
󵄩󵄩󵄩󵄩𝑓1 − 𝑓2

󵄩󵄩󵄩󵄩𝐶(𝑍)
.

(58)

By (52), we have for all 𝜖 > 0 that

Prob
𝑧∈𝑍
𝑚 {sup

𝑓∈F

󵄨󵄨󵄨󵄨𝐿𝑧 (𝑓)
󵄨󵄨󵄨󵄨 ≥ 𝜖} ≤ 2N(F,

𝜖

4
) exp(−𝑚𝜖

2

8𝛾2
𝑞

) .

(59)

By (53), (56), and (59), we know

𝜆𝑐
𝑞

2

󵄩󵄩󵄩󵄩󵄩
𝑓
(𝜌)
− 𝑓

𝑧

󵄩󵄩󵄩󵄩󵄩

𝑞−1

B
≤ sup
𝑓∈F

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝑍

𝑓 (𝑧) 𝑑𝜌 −
1

𝑚

𝑚

∑

𝑖=1

𝑓 (𝑧
𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, (60)

which gives

{𝑧 ∈ 𝑍
𝑚
:

𝜆𝑐
𝑞

2

󵄩󵄩󵄩󵄩󵄩
𝑓
(𝜌)
− 𝑓

𝑧

󵄩󵄩󵄩󵄩󵄩

𝑞−1

B
≥ 𝜖}

⊂ {𝑧 ∈ 𝑍
𝑚
: sup
𝑓∈F

󵄨󵄨󵄨󵄨𝐿𝑧 (𝑓)
󵄨󵄨󵄨󵄨 ≥ 𝜖} .

(61)

It follows that

Prob
𝑧∈𝑍
𝑚 {

𝜆𝑐
𝑞

2

󵄩󵄩󵄩󵄩󵄩
𝑓
(𝜌)
− 𝑓

𝑧

󵄩󵄩󵄩󵄩󵄩

𝑞−1

B
≥ 𝜖}

≤ Prob
𝑧∈𝑍
𝑚 {sup

𝑓∈F

󵄨󵄨󵄨󵄨𝐿𝑧 (𝑓)
󵄨󵄨󵄨󵄨 ≥ 𝜖}

≤ 2N(F,
𝜖

4
) exp(−𝑚𝜖

2

8𝛾2
𝑞

) .

(62)

That is,

Prob
𝑧∈𝑍
𝑚 {
󵄩󵄩󵄩󵄩󵄩
𝑓
(𝜌)
− 𝑓

𝑧

󵄩󵄩󵄩󵄩󵄩B
≥ 𝜖}

≤ 2N(F,

𝜆𝑐
𝑞
𝜖
𝑞−1

8
) exp(−

𝑚𝜆
2
𝑐
2

𝑞
𝜖
2(𝑞−1)

32𝛾2
𝑞

) .

(63)

We then have (49).

5. Learning Rates

Proof of Theorem 3. We know from [30] that for any 𝑓 ∈

𝐿
2
(𝜌
𝑋
) there holds

󵄩󵄩󵄩󵄩󵄩
𝑓 − 𝑓

𝜌

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝜌𝑋)

= E
𝜌
(𝑓) −E

𝜌
(𝑓
𝜌
) . (64)

Since 𝑋 is a compact set, we have by (40) that ‖𝑓‖
𝐿
2
(𝜌𝑋)

≤

𝑘‖𝑓‖B. Therefore,
󵄩󵄩󵄩󵄩󵄩
𝑓
𝑧
− 𝑓

𝜌

󵄩󵄩󵄩󵄩󵄩𝐿2(𝜌𝑋)

≤
󵄩󵄩󵄩󵄩󵄩
𝑓
𝑧
− 𝑓

(𝜌)󵄩󵄩󵄩󵄩󵄩𝐿2(𝜌𝑋)
+ √E

𝜌
(𝑓(𝜌)) +

𝜆

𝑞

󵄩󵄩󵄩󵄩𝑓
(𝜌)󵄩󵄩󵄩󵄩

𝑞

B
−E

𝜌
(𝑓
𝜌
)

≤ 𝑘
󵄩󵄩󵄩󵄩󵄩
𝑓
𝑧
− 𝑓

(𝜌)󵄩󵄩󵄩󵄩󵄩B
+ √ inf

𝑓∈B
(
󵄩󵄩󵄩󵄩󵄩
𝑓 − 𝑓

𝜌

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝜌𝑋)

+
𝜆

𝑞

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

𝑞

B
)

= 𝑘
󵄩󵄩󵄩󵄩󵄩
𝑓
𝑧
− 𝑓

(𝜌)󵄩󵄩󵄩󵄩󵄩B
+ √𝐷

𝑞
(𝑓

𝜌
,
𝜆

𝑞
).

(65)

By (65) we have

1

𝑘
(
󵄩󵄩󵄩󵄩󵄩
𝑓
𝑧
− 𝑓

𝜌

󵄩󵄩󵄩󵄩󵄩𝐿2(𝜌𝑋)
− √𝐷

𝑞
(𝑓

𝜌
,
𝜆

𝑞
)) ≤

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑧
− 𝑓

(𝜌)󵄩󵄩󵄩󵄩󵄩B
, (66)

which gives for any ℎ > 0 that

{𝑧 ∈ 𝑍
𝑚
:
1

𝑘
(
󵄩󵄩󵄩󵄩󵄩
𝑓
𝑧
− 𝑓

𝜌

󵄩󵄩󵄩󵄩󵄩𝐿2(𝜌𝑋)
− √𝐷

𝑞
(𝑓

𝜌
,
𝜆

𝑞
)) > ℎ}

⊂ {𝑧 ∈ 𝑍
𝑚
:
󵄩󵄩󵄩󵄩󵄩
𝑓
𝑧
− 𝑓

(𝜌)󵄩󵄩󵄩󵄩󵄩B
> ℎ} .

(67)

By (49) and above inequality we have

Prob
𝑧∈𝑍
𝑚 {

1

𝑘
(
󵄩󵄩󵄩󵄩󵄩
𝑓
𝑧
− 𝑓

𝜌

󵄩󵄩󵄩󵄩󵄩𝐿2(𝜌𝑋)
− √𝐷

𝑞
(𝑓

𝜌
,
𝜆

𝑞
)) > ℎ}

≤ Prob
𝑧∈𝑍
𝑚 {
󵄩󵄩󵄩󵄩󵄩
𝑓
𝑧
− 𝑓

(𝜌)󵄩󵄩󵄩󵄩󵄩B
> ℎ}

≤ 2N(F,

𝜆𝑐
𝑞
ℎ
𝑞−1

8
) exp(−

𝑚𝜆
2
𝑐
2

𝑞
ℎ
2(𝑞−1)

32𝛾2
𝑞

)

(68)

or

Prob
𝑧∈𝑍
𝑚 {

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑧
− 𝑓

𝜌

󵄩󵄩󵄩󵄩󵄩𝐿2(𝜌𝑋)
≤ 𝑘ℎ + √𝐷

𝑞
(𝑓

𝜌
,
𝜆

𝑞
)}

≥ 1 − 2N(F,

𝜆𝑐
𝑞
ℎ
𝑞−1

8
) × exp(−

𝑚𝜆
2
𝑐
2

𝑞
ℎ
2(𝑞−1)

32𝛾2
𝑞

) .

(69)

Since F ⊂ B
1
, we know

N(F,

𝜆𝑐
𝑞
ℎ
𝑞−1

8
) ≤ N(B

1
,

𝜆𝑐
𝑞
ℎ
𝑞−1

8
) . (70)

By (69) and above inequality we have (16).

To showTheorem 4, we need two lemmas.
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Lemma 12 (see [31]). Let 𝑐
1
> 0, 𝑐

2
> 0 and 𝑢 > 𝑡 > 0. Then,

the equation

𝑥
𝑢
− 𝑐

1
𝑥
𝑡
− 𝑐

2
= 0 (71)

has a unique positive zero 𝑥∗. In addition,

𝑥
∗
≤ max {(2𝑐

1
)
1/(𝑢−𝑡)

, (2𝑐
2
)
1/𝑢
} . (72)

Proof of Theorem 4. Since (B, ‖ ⋅ ‖B) has logarithmic com-
plexity exponent 𝑠 ≥ 0, we have by (15) a constant 𝑐

𝑠
> 0 such

that

logN(B
1
,

𝜆𝑐
𝑞
ℎ
𝑞−1

8
) ≤ 𝑐

𝑠
(

8𝛾
𝑞

𝜆𝑐
𝑞
𝜖𝑞−1

)

𝑠

. (73)

Then, by (16) we have

Prob
𝑧∈𝑍
𝑚 {

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑧
− 𝑓

𝜌

󵄩󵄩󵄩󵄩󵄩𝐿2(𝜌𝑋)
≤ 𝑘𝜖 + √𝐷

𝑞
(𝑓
𝜌
, 𝜆)}

≥ 1 − 2 exp(𝑐
𝑠
(

8𝛾
𝑞

𝜆𝑐
𝑞
𝜖𝑞−1

)

𝑠

−

𝑚𝜆
2
𝑐
2

𝑞
𝜖
2(𝑞−1)

32𝛾2
𝑞

) .

(74)

Take

2 exp(𝑐
𝑠
(

8𝛾
𝑞

𝜆𝑐
𝑞
𝜖𝑞−1

)

𝑠

−

𝑚𝜆
2
𝑐
2

𝑞
𝜖
2(𝑞−1)

32𝛾2
𝑞

) = 𝛿. (75)

Then,

𝜖
(2+𝑠)(𝑞−1)

−

32𝛾
2

𝑞
log (2/𝛿)
𝑚𝜆2𝑐2

𝑞

𝜖
𝑠(𝑞−1)

−

32𝛾
2

𝑞
𝑐
𝑠

𝑚𝜆2𝑐2
𝑞

× (

8𝛾
𝑞

𝜆𝑐
𝑞

)

𝑠

= 0.

(76)

By Lemma 12, we know that the unique solution 𝜖
∗ of

(75) satisfies

𝜖
∗
≤ max

{

{

{

(

64𝛾
2

𝑞
log (2/𝛿)
𝑚𝜆2𝑐2

𝑞

)

1/2(𝑞−1)

,

(

64𝛾
2

𝑞
𝑐
𝑠

𝑚𝜆2𝑐2
𝑞

× (

8𝛾
𝑞

𝜆𝑐
𝑞

)

𝑠

)

1/(2+𝑠)(𝑞−1)

}

}

}

≤ (

64𝛾
2

𝑞
log (2/𝛿)
𝑚𝜆2𝑐2

𝑞

)

1/2(𝑞−1)

+ (

8
2+𝑠
𝛾
2+𝑠

𝑞
𝑐
𝑠

𝑚𝜆2+𝑠𝑐2+𝑠
𝑞

)

1/(2+𝑠)(𝑞−1)

.

(77)

By (74) and (77), we have (19).
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