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An efficient solution algorithm for sinc-Galerkin method has been presented for obtaining numerical solution of PDEs with
Dirichlet-type boundary conditions by usingMapleComputerAlgebra System.Themethod is based onWhittaker cardinal function
and uses approximating basis functions and their appropriate derivatives. In this work, PDEs have been converted to algebraic
equation systems with new accurate explicit approximations of inner products without the need to calculate any numeric integrals.
The solution of this system of algebraic equations has been reduced to the solution of a matrix equation system via Maple. The
accuracy of the solutions has been compared with the exact solutions of the test problem. Computational results indicate that the
technique presented in this study is valid for linear partial differential equations with various types of boundary conditions.

1. Introduction

Sinc methods for differential equations were originally intro-
duced by Stenger in [1–3]. The sinc functions were first ana-
lyzed in [4, 5] and a detailed research of the method for two-
point boundary-value problems can be found in [6, 7]. In [8],
parabolic and hyperbolic problems are presented in detail.
To solve a problem arising from chemical reactor theory, the
properties of the sinc-Galerkin method are used to reduce
the computation of nonlinear two-point boundary-value
problems to some algebraic equations in [9]. A computer
algorithm for sincmethod to solve numerically the linear and
nonlinear ODEs and their simulations has been presented
in [7, 10], respectively. The full sinc-Galerkin method is
developed for a family of complex-valued partial differential
equations with time-dependent boundary conditions [9]. A
study of the performance of the Galerkin method using sinc
basis functions for solving Bratu’s problem is presented in
[11]. In [12] a numerical algorithm has been presented for
recovering the unknown function and obtaining a solution to
the inverse ill-posed problem.Theyhave presented aGalerkin
method with the sinc basis functions in both space and time
domains for solving the direct problem. A sinc-collocation
method has been developed for solving linear systems of

integrodifferential equations of Fredholm and Volterra type
with homogeneous boundary conditions in [13].

2. Sinc-Approximation Formula for PDEs

We use the sinc-Galerkin method as mentioned in [1] to
derive an approximate solution of the following:

𝑢
𝑡
− 𝑢

𝑥𝑥
= 𝐹 (𝑥, 𝑡) ,

𝑢 (0, 𝑡) = 𝑢 (1, 𝑡) = 0, 0 < 𝑥 < 1,

𝑢 (𝑥, 0) = 𝑓 (𝑥) , 𝑡 > 0.

(1)

For the equation given above, the sinc-Galerkin scheme can
be developed in both space and time directions as follows.

In general, approximations can be constructed for infi-
nite, semi-infinite, and infinite intervals and both spatial and
time spaces will be introduced. Define the function

𝜙 (𝑧) = ln( 𝑧

1 − 𝑧

) (2)

which is a conformal mapping from 𝐷
𝐸
, the eye-shaped

domain in the 𝑧-plane, onto the infinite strip,𝐷
𝑆
, where

𝐷
𝐸
= {𝑧 = 𝑥 + 𝑖𝑦 :

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

arg( 𝑧

1 − 𝑧

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

< 𝑑 ≤

𝜋

2

} . (3)
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A more general form of sinc basis according to intervals can
be given as follows:

𝑆 (𝑚, ℎ
𝑥
) ∘ 𝜙 (𝑥)=Sinc(

𝜙 (𝑥) − 𝑚ℎ
𝑥

ℎ
𝑥

) , 𝑚= −𝑁
𝑥
, . . . , 𝑁

𝑥
,

𝑆 (𝑘, ℎ
𝑡
) ∘ 𝛾 (𝑡) = Sinc(

𝛾 (𝑡) − 𝑘ℎ
𝑡

ℎ
𝑡

) , 𝑘 = −𝑁
𝑡
, . . . , 𝑁

𝑡
,

(4)

where

Sinc (𝑧) =
{

{

{

sin (𝜋𝑧)
𝜋𝑧

, 𝑧 ̸= 0

1, 𝑧 = 0,

Sinc (𝑘, ℎ) (𝑧)

= Sinc(𝑧 − 𝑘ℎ
ℎ

)

=

{

{

{

sin (𝜋 ((𝑧 − 𝑘ℎ) /ℎ))
𝜋 ((𝑧 − 𝑘ℎ) /ℎ)

, 𝑧 ̸= 𝑘ℎ

1, 𝑧 = 𝑘ℎ,

𝑘 = 0,∓1,∓2, ∓3, . . .

(5)

and the conformal maps for both directions

𝜙 (𝑥) = ln( 𝑥

𝑙 − 𝑥

) , 𝑥 ∈ (0, 𝑙) ,

𝛾 (𝑡) = ln (𝑡) , 𝑡 ∈ (0,∞)

(6)

are used to define the basis functions on the intervals (0, 𝑙)
and (0,∞), respectively. ℎ

𝑥
, ℎ

𝑡
> 0 represents the mesh sizes

in the space direction and the time direction, respectively.The
sinc nodes 𝑥

𝑖
and 𝑡

𝑗
are chosen so that 𝑥

𝑖
= 𝜙

−1
(𝑖ℎ

𝑥
), 𝑡

𝑗
=

𝛾
−1
(𝑗ℎ

𝑡
).

Here the function 𝑥 = 𝜙−1(𝑥) = 𝑒𝑥/(1 + 𝑒𝑥) is an inverse
mapping of 𝜙 = 𝜙(𝑥). We may define the range of 𝜙−1 on the
real line as

Γ
1
= {𝜙

−1
(𝑢) ∈ 𝐷

𝐸
: −∞ < 𝑢 < ∞} . (7)

For the evenly spaced nodes {𝑘ℎ}∞
𝑘=−∞

on the real line, the
image which corresponds to these nodes is denoted by

𝑥
𝑘
= 𝜙

−1
(𝑘ℎ) =

𝑒
𝑘ℎ

1 + 𝑒
𝑘ℎ
, (8)

where 0 < 𝑥
𝑘
< 1, for all k.

The sinc basis functions in (4) do not have a derivative
when 𝑥 tends to 0 or 1. We modify the sinc basis functions as

𝑆 (𝑚, ℎ
𝑥
) ∘ 𝜙 (𝑥)

𝜙
󸀠
(𝑥)

=

Sinc ((𝜙 (𝑥) − 𝑚ℎ
𝑥
) /ℎ

𝑥
)

𝜙
󸀠
(𝑥)

, (9)

where

1

𝜙
󸀠
(𝑥)

= 𝑥 (1 − 𝑥) . (10)

Table 1: Conformal mappings and nodes for several subintervals of
𝑅.

(𝑎, 𝑏) 𝜙 (𝑧) 𝑧
𝑘

𝑎 𝑏 ln(𝑧 − 𝑎
𝑏 − 𝑧

)

𝑎 + 𝑏𝑒
𝑘ℎ

1 + 𝑒
𝑘ℎ

0 1 ln( 𝑧

1 − 𝑧

)

𝑒
𝑘ℎ

1 + 𝑒
𝑘ℎ

0 ∞ ln (𝑧) 𝑒
𝑘ℎ

0 ∞ ln (sinh(𝑧)) ln (𝑒𝑘ℎ + √𝑒2𝑘ℎ + 1)
−∞ ∞ 𝑧 𝑘ℎ

−∞ ∞ sinh−1(𝑧) 𝑘ℎ

For the temporal space, we construct an approximation by
defining the function

𝑤 = 𝛾 (𝑟) = ln (𝑟) (11)

which is a conformal mapping from 𝐷
𝑊
, the wedge-shaped

domain in the r-plane, onto the infinite strip,𝐷
𝑆
, where

𝐷
𝑊
= {𝑟 = 𝑡 + 𝑖𝑠 :

󵄨
󵄨
󵄨
󵄨
arg (𝑟)󵄨󵄨󵄨

󵄨
< 𝑑 <

𝜋

2

} , (12)

derived from composite translated functions

𝑆 (𝑘, ℎ
𝑡
) ∘ 𝛾 (𝑡) = Sinc(

𝛾 (𝑡) − 𝑘ℎ
𝑡

ℎ
𝑡

) , 𝑘 = −𝑁
𝑡
, . . . , 𝑁

𝑡
,

(13)

for 𝑟 ∈ 𝐷
𝑊
.

Here 𝑤 = 𝛾(𝑟) and 𝛾−1(𝑤) = 𝑟 = 𝑒𝑤. We may define 𝛾−1
on the real line as

Γ
2
= {𝛾

−1
(𝑢) ∈ 𝐷

𝑤
: −∞ < 𝑢 < ∞} . (14)

For the evenly spaced nodes {𝑘ℎ}∞
𝑘=−∞

on the real line, the
image which corresponds to these nodes is denoted by

𝑡
𝑘
= 𝛾

−1
(𝑘ℎ) = 𝑒

𝑘ℎ
, (15)

where 0 < 𝑡
𝑘
< ∞, for all k.

A list of conformalmappingsmay be found inTable 1 [14].

Definition 1. Let 𝐵(𝐷
𝐸
) be the class of functions 𝐹 that are

analytic in𝐷
𝐸
and satisfy

∫

𝜓(𝐿+𝑢)

|𝐹 (𝑧)| 𝑑𝑧 󳨀→ 0, as 𝑢 = ∓∞, (16)

where

𝐿 = {𝑖𝑦 :
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨
< 𝑑 ≤

𝜋

2

} (17)

and on the boundary of𝐷
𝐸
satisfy

𝑇 (𝐹) = ∫

𝜕𝐷𝐸

|𝐹 (𝑧) 𝑑𝑧| < ∞. (18)

The proof of the following theorems can be found in [1].
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Theorem 2. Let Γ be (0, 1), 𝐹 ∈ 𝐵(𝐷
𝐸
), and then for ℎ > 0

sufficiently small

∫

Γ

𝐹 (𝑧) 𝑑𝑧 − ℎ

∞

∑

𝑗=−∞

𝐹 (𝑧
𝑗
)

𝜙
󸀠
(𝑧

𝑗
)

=

𝑖

2

∫

𝜕𝐷

𝐹 (𝑧) 𝑘 (𝜙, ℎ) (𝑧)

sin (𝜋𝜙 (𝑧) /ℎ)
𝑑𝑧≡𝐼

𝐹
,

(19)

where
󵄨
󵄨
󵄨
󵄨
𝑘 (𝜙, ℎ)

󵄨
󵄨
󵄨
󵄨𝑧∈𝜕𝐷

=

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
[(𝑖𝜋𝜙(𝑧)/ℎ) sgn (Im𝜙(𝑧))]󵄨󵄨

󵄨
󵄨
󵄨𝑧∈𝜕𝐷

= 𝑒
−𝜋𝑑/ℎ

. (20)

For the sinc-Galerkin method, the infinite quadrature
rule must be truncated to a finite sum; the following theorem
indicates the conditions under which exponential conver-
gence results.

Theorem 3. If there exist positive constants 𝛼, 𝛽, and 𝐶 such
that

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐹 (𝑥)

𝜙
󸀠
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶{

𝑒
−𝛼|𝜙(𝑥)|

, 𝑥 ∈ 𝜓 (−∞,∞)

𝑒
−𝛽|𝜙(𝑥)|

, 𝑥 ∈ 𝜓 (0,∞) ,

(21)

then the error bound for the quadrature rule (19) is
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

Γ

𝐹 (𝑥) 𝑑𝑥 − ℎ

𝑁

∑

𝑗=−𝑁

𝐹 (𝑥
𝑗
)

𝜙
󸀠
(𝑥

𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶(

𝑒
−𝛼𝑁ℎ

𝛼

+

𝑒
−𝛽𝑁ℎ

𝛽

) +
󵄨
󵄨
󵄨
󵄨
𝐼
𝐹

󵄨
󵄨
󵄨
󵄨
.

(22)

The infinite sum in (19) is truncated with the use of (20) to
arrive at (22).

Making the selections

ℎ = √
𝜋𝑑

𝛼𝑁

,

𝑁 ≡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝛼𝑁

𝛽

+ 1

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

,

(23)

where ‖ ⋅ ‖ is integer part of statement,

∫

Γ

𝐹 (𝑥) 𝑑𝑥 = ℎ

𝑁

∑

𝑗=−𝑁

𝐹 (𝑥
𝑗
)

𝜙
󸀠
(𝑥

𝑗
)

+ 𝑂(𝑒
−(𝜋𝛼𝑑𝑁)

1/2

) . (24)

Theorems 2 and 3 can be used to approximate the
integrals that arise in the formulation of the discrete systems
corresponding to two-point BVPs.

3. Discrete Solutions Scheme for
Two-Point BVPs

In ordinary differential equations

𝐿𝑢 = 𝑓 (25)

on Γ
1
, sinc solution is assumed as an approximate solution 𝑢

𝑚

in the form of series with𝑚 = 2𝑁 + 1 terms

𝑢
𝑚
(𝑧) =

𝑁

∑

𝑗=−𝑁

𝑐
𝑗
𝑆 (𝑗, ℎ) ∘ 𝜙 (𝑧) . (26)

The coefficients {𝑐
𝑗
}
𝑁

𝑗=−𝑁
are determined by orthogonalizing

the residual 𝐿𝑢 − 𝑓 with respect to the sinc basis functions
{𝑆
𝑘
}
𝑁

𝑘=−𝑁
where 𝑆

𝑘
(𝑧) = 𝑆(𝑘, ℎ) ∘ 𝜙(𝑧). An inner product for

two continuous functions such as 𝑓
1
and 𝑓

2
can be given by

the following formula

⟨𝑓
1
, 𝑓

2
⟩ = ∫

Γ

𝑓
1
𝑓
2
𝑤𝑑𝑧, (27)

where 𝑤 is the weight function and is chosen depending
on boundary conditions. If we implement the above inner
product rule in orthogonalization, this yields the discrete
sinc-Galerkin system:

∫

Γ

(𝐿𝑢
𝑚
− 𝑓) (𝑧) 𝑆 (𝑘, ℎ) ∘ 𝜙 (𝑧) ⋅ 𝑤 (𝑧) 𝑑𝑧=0,

− 𝑁 ≤ 𝑘 ≤ 𝑁.

(28)

Now, we are going to derive discrete sinc-Galerkin system for
PDEs. Assume 𝑢

𝑚𝑧 ,𝑚𝑡
is the approximate solution of (1).Then,

the discrete system takes the following form:

𝑢
𝑚𝑧 ,𝑚𝑡

(𝑧, 𝑡) =

𝑁

∑

𝑗=−𝑁

𝑁

∑

𝑘=−𝑁

𝑐
𝑗𝑘
𝑆 (𝑗, ℎ) ∘ 𝜙 (𝑧) ⋅ 𝑆 (𝑘, ℎ) ∘ 𝛾 (𝑡) .

(29)

The coefficients {𝑐
𝑗𝑘
}
𝑁

𝑗,𝑘=−𝑁
are determined by orthogonaliz-

ing the residual 𝐿𝑢
𝑚𝑧 ,𝑚𝑡

− 𝑓 with respect to the sinc basis
functions {𝑆

𝑘
𝑆
ℎ
}
𝑁

𝑘,ℎ=−𝑁
where 𝑆

𝑗
𝑆
ℎ
(𝑧, 𝑡) = 𝑆(𝑗, ℎ)∘𝜙(𝑧)𝑆(𝑘, ℎ)∘

𝛾(𝑡) for −𝑁 ≤ 𝑗, 𝑘 ≤ 𝑁. In this case the inner product takes
the following form:

⟨𝑓
1
, 𝑓

2
⟩ = ∫

Γ𝑡

∫

Γ𝑧

𝑓
1
(𝑧, 𝑡) 𝑓

2
(𝑧, 𝑡) 𝑤 (𝑧, 𝑡) 𝑑𝑧 𝑑𝑡. (30)

The choice of the weight function 𝑤(𝑧, 𝑡) in the double
integrand depends on the boundary conditions, the domain,
and the partial differential equation. Therefore, the discrete
Galerkin system is

∫

Γ𝑡

∫

Γ𝑧

(𝐿𝑢
𝑚𝑧𝑚𝑡

− 𝑓) (𝑧, 𝑡) ⋅ 𝑆 (𝑗, ℎ) ∘ 𝜙 (𝑧) ⋅ 𝑆 (𝑘, ℎ) ∘ 𝛾 (𝑡)

⋅ 𝑤 (𝑧, 𝑡) 𝑑𝑧 𝑑𝑡 = 0.

(31)

4. Matrix Representation of the Derivatives of
Sinc Basis Functions at Nodal Points

The sinc-Galerkin method actually requires the evaluated
derivatives of sinc basis functions at the sinc nodes, 𝑧 = 𝑧

𝑗
.

The rth derivative of 𝑆
𝑘
(𝑧) = 𝑆(𝑘, ℎ) ∘ 𝜙(𝑧) with respect to 𝜙,

evaluated at the nodal point 𝑧
𝑗
, is denoted by

1

ℎ
𝑟
𝛿
(𝑟)

𝑝𝑗
=

𝑑
𝑟

𝑑𝜙
𝑟
(𝑆 (𝑝, ℎ) ∘ 𝜙 (𝑧))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑧=𝑧𝑗

. (32)
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restart:

with(linalg):

with(LinearAlgebra):

N:=16:

d:=Pi/2:

h:=0.75/sqrt(N);

s:=.5/sqrt(N);

SIZE:=2∗N+1;

delta0:=(i,j)->piecewise(j=i,1,j<>i,0):

delta1:=(i,j)->piecewise(i=j,0,i<>j,((-1)∧(i-j))/(i-j)):

delta2:=(i,j)->piecewise(i=j,(-Pi∧2)/3,i<>j,-2∗(-1)∧(i-j)/(i-j)∧2):

I 0:=Matrix(SIZE,delta0):

I 1:=Matrix(SIZE,delta1):

I 2:=Matrix(SIZE,delta2):

xk:=1/2+1/2∗tanh(k∗h/2);

xk func:=unapply(xk,k);

phi:=unapply(log((x)/(1-x)),x);

Dphi:=unapply(simplify(diff(phi(x),x)),x);

g:=unapply(simplify(1/diff(phi(x),x)),x);

Dg:=unapply(diff(g(x),x),x);

gk:=unapply(subs(x=xk,g(x)),k);

Dgk:=unapply(subs(x=xk,Dg(x)),k);

g Div Dphi:=unapply(g(x)/Dphi(x),x);

g Div Dphi k:=unapply(subs(x=xk,g Div Dphi(x)),k);

#Temporal Spaces;

tl:=exp(l∗s);

tl func:=unapply(tl,l);

gamm:=unapply(log(t),t);

Dgam:=unapply(diff(gamm(t),t),t);

g gamm:=unapply(1/diff(gamm(t),t),t);

g gamm l:=unapply(subs(t=tl,g gamm(t)),l);

gamm Div Dgam:=unapply(g gamm(t)/Dgam(t),t);

gamm Div Dgam:= t-> t∧2;

gamm Div Dgam l:=unapply(subs(t=tl,gamm Div Dgam(t)),l);

GenerateDiagonalAm := proc( x )

local i:=1:

local A:=Matrix(SIZE):

for i from 1 by 1 to SIZE

do

A[i,i]:=evalf(x(-N+i-1)):

end do:

return A;

end proc;

B:= -2∗h∗MatrixMatrixMultiply(I 0,GenerateDiagonalAm(gk))+

MatrixMatrixMultiply(I 1,GenerateDiagonalAm(Dgk))+1/h∗I 2:

DD:=h∗GenerateDiagonalAm(g Div Dphi k):

C:=MatrixMatrixMultiply(GenerateDiagonalAm(g gamm l),s∗(I 0-I 1)):

E:=s∗GenerateDiagonalAm(gamm Div Dgam l):

Fkl:=unapply((Pi∧2-4)∗sin(Pi∗xk func(k-N-1))∗exp(-tl func(l-N-1)),k,l);

F:=evalf(Matrix(SIZE,Fkl)):

V:=Matrix(SIZE,v):

EQN SYS:=evalf(

MatrixMatrixMultiply(

MatrixMatrixMultiply(

Matrix(inverse(DD)),B

),V

Algorithm 1: Continued.
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)

)

+evalf(

MatrixMatrixMultiply(

MatrixMatrixMultiply(

V,C),Matrix(inverse(E)

)

)

):

SYS:=[]:

for i from 1 by 1 to SIZE

do

for j from 1 by 1 to SIZE

do

SYS:=[op(SYS),EQN SYS(i,j)=F(i,j)];

end do:

end do:

vars:=seq(seq(v(i,j),i=1..2∗N+1),j=1..2∗N+1):

A,b:LinearAlgebra[GenerateMatrix](evalf(SYS),[vars]):

c:=linsolve(A,b):

CoeffMatrix=Matrix(SIZE):

cnt:=1;

for i to SIZE do

for j to SIZE do

CoeffMatrix[j,i]:=c[cnt]:

cnt:=cnt+1

end do;

end do;

CoeffMatrix:=Matrix(CoeffMatrix,SIZE):

ApproximateSol:=unapply(

evalf(

sum(

sum("CoeffMatrix"[m+N+1,n+N+1]

∗sin(Pi∗(phi(x)-m∗h)/h)/(Pi∗(phi(x)-m∗h)/h)

∗sin(Pi∗(gamm(t)-n∗s)/s)/(Pi∗(gamm(t)-n∗s)/s)

,m=-N..N),

n=-N...N)

)

+exp(-4∗t)∗sin(Pi∗x)

,x,t):

plot3d(ApproximateSol(x,t),x=0..1,t=0..1):

Exact:=unapply(exp(-Pi∧2∗t)∗sin(Pi∗x),x,t);

plot3d(Exact(x,t),x=0..1,t=0..1);

plot3d({Exact(x,t),ApproximateSol(x,t)},x=0..1,t=0..1);

XX:=.6;

#Numerical Comparision EXACT

for j from 0.1 to 10 by 1

do

evalf(Exact(XX,j)):

od;

#Numerical Comparision APPROX

for j from 0.1 to 10 by 1

do

evalf(ApproximateSol(XX,j)):

od;

#Numerical Comparision ERROR

for j from 0.1 to 10 by 1

do

abs(evalf(evalf(ApproximateSol(XX,j)-Exact(XX,j)))):

od;

Algorithm 1
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The expressions in (14) for each 𝑝 and 𝑗 can be stored in a
matrix 𝐼(𝑟) = [𝛿(𝑟)

𝑝𝑗
]. For 𝑟 = 0, 1, 2, . . .

𝐼
(0)
= 𝛿

(0)

𝑗𝑘
= [𝑆 (𝑗, ℎ) ∘ 𝜙 (𝑥)]

󵄨
󵄨
󵄨
󵄨𝑥=𝑥𝑘

= {

1, 𝑘 = 𝑗

0, 𝑘 ̸= 𝑗,

𝐼
(1)
= 𝛿

(1)

𝑗𝑘
= ℎ

𝑑

𝑑𝜙

[𝑆 (𝑗, ℎ) ∘ 𝜙 (𝑥)]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑥=𝑥𝑘

=

{
{

{
{

{

0, 𝑘 = 𝑗

(−1)
𝑘−𝑗

(𝑘 − 𝑗)

, 𝑘 ̸= 𝑗,

𝐼
(2)
= 𝛿

(2)

𝑗𝑘
= ℎ

𝑑
2

𝑑𝜙
2
[𝑆 (𝑗, ℎ) ∘ 𝜙 (𝑥)]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑥=𝑥𝑘

=

{
{
{

{
{
{

{

−𝜋
2

3

, 𝑘 = 𝑗

−2(−1)
𝑘−𝑗

(𝑘 − 𝑗)
2
, 𝑘 ̸= 𝑗,

(33)

where

𝐼
(0)

𝑚
=

[

[

[

[

[

[

1 0 0 ⋅ ⋅ ⋅ 0

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1 ⋅ ⋅ ⋅ 0

: : : d :

0 0 0 ⋅ ⋅ ⋅ 1

]

]

]

]

]

]

= [𝛿
(0)

𝑗𝑘
] ,

𝐼
(1)

𝑚

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0 −1

1

2

⋅ ⋅ ⋅

1

2𝑁

1 0 −1 ⋅ ⋅ ⋅ −

1

2𝑁 − 1

−

1

2

1 0 ⋅ ⋅ ⋅

1

2𝑁 − 2

: : : d :

−

1

2𝑁

1

2𝑁 − 1

1

2𝑁 − 2

⋅ ⋅ ⋅ 0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

= [𝛿
(1)

𝑗𝑘
] ,

𝐼
(2)

𝑚

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

−

𝜋
2

3

2

1
2

−

2

2
2

⋅ ⋅ ⋅ −

2

(2𝑁)
2

2

1
2

−

𝜋
2

3

2

1
2

⋅ ⋅ ⋅

2

(2𝑁 − 1)
2

−

2

2
2

2

1
2

−

𝜋
2

3

⋅ ⋅ ⋅ −

2

(2𝑁 − 2)
2

: : : d :

−

2

(2𝑁)
2

2

(2𝑁 − 1)
2
−

2

(2𝑁 − 2)
2
⋅ ⋅ ⋅ −

𝜋
2

3

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

= [𝛿
(2)

𝑗𝑘
] .

(34)

The chain rule has been used for the z-derivative of product
sinc functions. For example, when 𝑆

𝑘
(𝑧) = 𝑆(𝑘, ℎ) ∘ 𝜙(𝑧),

𝑑 (𝑆
𝑗
(𝑧) 𝑤 (𝑧))

𝑑𝑧

= (

𝑑𝑆
𝑗
(𝑧)

𝑑𝜙 (𝑧)

⋅

𝑑𝜙 (𝑧)

𝑑𝑧

)𝑤 (𝑧)

+ 𝑆
𝑗
(𝑧)

𝑑𝑤 (𝑧)

𝑑𝑧

=

𝑑𝑆
𝑗
(𝑧)

𝑑𝜙

𝜙
󸀠
(𝑧) 𝑤 (𝑧) + 𝑆

𝑗
(𝑧) 𝑤

󸀠
(𝑧) ,

𝑑
2
(𝑆

𝑗
(𝑧) 𝑤 (𝑧))

𝑑𝑧
2

=

𝑑

𝑑𝑧

(

𝑑𝑆
𝑗
(𝑧)

𝑑𝜙

𝜙
󸀠
(𝑧) 𝑤 (𝑧) + 𝑆

𝑗
(𝑧) 𝑤

󸀠
(𝑧))

=

𝑑
2
𝑆
𝑗
(𝑧)

𝑑𝜙
2
(𝜙

󸀠
(𝑧))

2

𝑤 (𝑧)

+

𝑑𝑆
𝑗
(𝑧)

𝑑𝜙

𝜙
󸀠󸀠
(𝑧) 𝑤 (𝑧)

+ 2 ⋅

𝑑𝑆
𝑗
(𝑧)

𝑑𝜙

𝜙
󸀠
(𝑧) 𝑤

󸀠
(𝑧) + 𝑆

𝑗
(𝑧) 𝑤

󸀠󸀠
(𝑧) .

(35)

Now, we are going to develop discrete form for (1).We choose
for special case the parameters as follows for the spatial
dimension:

𝜙 (𝑧) = ln( 𝑧

1 − 𝑧

) ,

𝑤
𝑋
(𝑧) =

1

𝜙
󸀠
(𝑧)

,

1

𝜙
󸀠
(𝑧)

= 𝑧 (1 − 𝑧) ,

(36)

and for the temporal space as

𝛾 (𝑡) = ln (𝑡) ,

𝑤
𝑇
(𝑡) =

1

𝛾
󸀠
(𝑡)

,

1

𝛾
󸀠
(𝑡)

= 𝑡.

(37)

The discrete form of (1) can be given the following form:

⟨𝐿𝑢 − 𝐹, 𝑆
𝑘
⋅ 𝑆

𝑙
⟩

= ∫

Γ𝑡

∫

Γ𝑧

(𝐿𝑢 − 𝐹) 𝑆 (𝑘, ℎ) ∘ 𝜙 (𝑧)

⋅ 𝑤
𝑋
(𝑥) 𝑆 (𝑙, 𝑠) ∘ 𝛾 (𝑡) ⋅ 𝑤

𝑇
(𝑡) 𝑑𝑧 𝑑𝑡

= ∫

Γ𝑡

∫

Γ𝑧

(𝑢
𝑡
− 𝑢

𝑥𝑥
− 𝐹) 𝑆 (𝑘, ℎ) ∘ 𝜙 (𝑧)

⋅ 𝑤
𝑋
(𝑥) 𝑆 (𝑙, 𝑠) ∘ 𝛾 (𝑡) ⋅ 𝑤

𝑇
(𝑡) 𝑑𝑧 𝑑𝑡.

(38)
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(a) The sinc-Galerkin solutions according to the grid points size N

Figure 1: Continued.
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Figure 1: Simulation of approximate solution.

We solve this by taking our approximating basis functions to
be

𝑆
𝑘
(𝑥) = 𝑤

𝑋
𝑆 (𝑘, ℎ) ∘ 𝜙 (𝑥) , 𝑤

𝑋
=

1

𝜙
󸀠
(𝑥)

= 𝑥 (1 − 𝑥) ,

𝜙 (𝑥) = ln( 𝑥

1 − 𝑥

) ,

𝑆
𝑙
(𝑡) = 𝑤

𝑇
𝑆 (𝑙, 𝑠) ∘ 𝛾 (𝑡) , 𝑤

𝑇
=

1

𝛾
󸀠
(𝑡)

= 𝑡,

𝛾 (𝑡) = ln (𝑡) .
(39)

If we apply sinc-quadrature rules with the help of (32)–(37)
on the definite integral given (38) by using (39), we can get
the following matrix system.

Let 𝐴
𝑚
(𝑢) denote a diagonal matrix, whose diagonal

elements are 𝑢(𝑥
−𝑁
), 𝑢(𝑥

−𝑁+1
), . . . , 𝑢(𝑥

𝑁
) and nondiagonal

elements are zero. Then (38) reproduces the following
matrixes accordingly.

Firstly we set the coefficient matrix as follows:

𝐶 =(

𝑐
−𝑁,−𝑁

𝑐
−𝑁,−𝑁+1

𝑐
−𝑁,−𝑁+2

⋅ ⋅ ⋅ 𝑐
−𝑁,𝑁

𝑐
−𝑁+1,−𝑁

𝑐
−𝑁+1,−𝑁+1

𝑐
−𝑁+1,−𝑁+2

⋅ ⋅ ⋅ 𝑐
−𝑁+1,𝑁

𝑐
−𝑁+2,−𝑁

𝑐
−𝑁+2,−𝑁+1

𝑐
−𝑁+2,−𝑁+2

⋅ ⋅ ⋅ 𝑐
−𝑁+2,𝑁

: : : d :

𝑐
𝑁,−𝑁

𝑐
𝑁,−𝑁+1

𝑐
𝑁,−𝑁+2

⋅ ⋅ ⋅ 𝑐
𝑁,𝑁

),

𝐵 = −2ℎ𝐼
(0)

𝑚
(𝐴

𝑚
(𝑤

𝑋
)) + 𝐼

(1)

𝑚
(𝐴

𝑚
(𝑤

󸀠

𝑋
)) +

𝐼
(2)

𝑚

ℎ

,

𝐺 = 𝐴
𝑚
(𝑤

𝑇
) [𝑠𝐼

(0)

𝑚
− 𝐼

(1)

𝑚
] ,
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Table 2: Numerical results.

𝑡 Exact solution Sinc-Galerkin solution Error

𝑁 = 16, 𝑥 = 0.6

0.1 0.35446621870000 0.59102026517764600 0.23655404647764600
0.11 0.00001833412226 −0.08327827240548060 0.08329660652774060
0.21 0.9482992112 × 10

−9
−0.03068110846399060 0.03068110941228980

0.31 0.4904905672 × 10
−13

−0.01083286679129120 0.01083286679134030
0.41 0.2536973471 × 10

−17
−0.000420168677914081 0.000420168677914083

0.51 0.1312203514 × 10
−21

−0.00108069489771883 0.00108069489771883
0.61 0.6787134677 × 10

−26
−0.00492511086695295 0.00492511086695295

0.71 0.3510522275 × 10
−30 0.00331706758955819 0.00331706758955819

0.81 0.1815753976 × 10
34

−0.00303031084399243 0.00303031084399243
0.91 0.9391658013 × 10

−39 0.00342519240062265 0.00342519240062265

𝐷 = ℎ𝐴
𝑚
(

𝑤
𝑋

𝜙
󸀠
) ,

𝐸 = 𝑠𝐴
𝑚
(

𝑤
𝑇

𝛾
󸀠
) .

(40)

Finally, for the right side function 𝐹 given (1) can be written
in the following matrix form:

𝐹 =(

𝐹
−𝑁,−𝑁

𝐹
−𝑁,−𝑁+1

𝐹
−𝑁,−𝑁+2

⋅ ⋅ ⋅ 𝐹
−𝑁,𝑁

𝐹
−𝑁+1,−𝑁

𝐹
−𝑁+1,−𝑁+1

𝐹
−𝑁+1,−𝑁+2

⋅ ⋅ ⋅ 𝐹
−𝑁+1,𝑁

𝐹
−𝑁+2,−𝑁

𝐹
−𝑁+2,−𝑁+1

𝐹
−𝑁+2,−𝑁+2

⋅ ⋅ ⋅ 𝐹
−𝑁+2,𝑁

: : : d :

𝐹𝑐
𝑁,−𝑁

𝐹
𝑁,−𝑁+1

𝐹
𝑁,−𝑁+2

⋅ ⋅ ⋅ 𝐹
𝑁,𝑁

).

(41)

Using (32)–(37) we arrive at a matrix system given in [1] as
follows:

𝐷
−1
𝐵𝐶 + 𝐶𝐺𝐸

−1
= 𝐹. (42)

Finally, by using Maple Computer Algebra Software, the
matrix system (42) can be solved by using LU or QR
decomposition method and unknown coefficients can be
found. After calculation of 𝐶 we get approximate solution as
follows:

𝑢
𝑥,𝑡
=

𝑁

∑

𝑗=−𝑁

𝑁

∑

𝑘=−𝑁

𝑐
𝑗𝑘
𝑆 (𝑗, ℎ) ∘ 𝜙 (𝑥) ⋅ 𝑆 (𝑘, ℎ) ∘ 𝛾 (𝑡) . (43)

5. Numerical Simulation

The example in this section will illustrate the sinc method.

Example 4. This problem has been addressed in [1]. The
following equation is given in Dirichlet-type boundary con-
dition:

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡

−

𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑥
2

= 0, 0 < 𝑥 < 1, 0 < 𝑡,

𝑢 (0, 𝑡) = 𝑢 (1, 𝑡) = 0,

𝑢 (𝑥, 0) = sin (𝜋𝑥) .

(44)

The particular solution of (44) can be calculated via separa-
tion variables rules and can be given as follows:

𝑢 (𝑥, 𝑡) = e−𝜋
2
𝑡 sin (𝜋𝑥) . (45)

For (44) we choose sinc components here in the following:

ℎ = 𝑠 =

0.75

√𝑁

, 𝑥
𝑘
=

𝑒
𝑘ℎ

1 + 𝑒
𝑘ℎ
, 𝑡

𝑙
= 𝑒

𝑠𝑙
,

𝜙 (𝑥) = ln( 𝑥

1 − 𝑥

) , 𝛾 (𝑡) = ln (𝑡) , 𝑤
𝑋
=

1

𝜙
󸀠
(𝑥)

,

𝑤
𝑇
=

1

𝛾
󸀠
(𝑡)

.

(46)

According to the above parameters, the approximate solution
simulation of (44) has been given in Figure 1 and numerical
results also can be found in Table 2.

6. Conclusions

We have developed a Maple algorithm to solve and simulate
second-order parabolic PDEs with Dirichlet-type boundary
conditions based on sinc-Galerkin approximation on some
closed real intervals and the method has been compared
with the exact solutions. When compared with other com-
putational approaches, this method turns out to be more
efficient in the sense that selection parameters and changing
boundary conditions and also giving different problems to
the algorithms. The accuracy of the solutions improves by
increasing the number of sinc grid points 𝑁. The method
presented here is simple and uses sinc-Galerkin method
that gives a numerical solution, which is valid for various
boundary conditions. Several PDEs have been solved by using
our technique in less than 20 seconds. All computations and
graphical representations have been prepared automatically
by our algorithm.

Appendix

See Algorithm 1.
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