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We examine the relationships between lower exhausters, quasidifferentiability (in the Demyanov and Rubinov sense), and optimal
control for switching systems. Firstly, we get necessary optimality condition for the optimal control problem for switching system
in terms of lower exhausters. Then, by using relationships between lower exhausters and quasidifferentiability, we obtain necessary
optimality condition in the case that the minimization functional satisfies quasidifferentiability condition.

1. Introduction

A switched system is a particular kind of hybrid system that
consists of several subsystems and a switching law specifying
the active subsystem at each time instant. There are some
articles which are dedicated to switching system [1–8]. Exam-
ples of switched systems can be found in chemical processes,
automotive systems, and electrical circuit systems, and so
forth.

Regarding the necessary optimality conditions for switch-
ing system in the smooth cost functional, it can be found in
[1, 4, 6].Themore information connection between quasidif-
ferential, exhausters and Hadamard differential are in [8–10].
Concerning the necessary optimality conditions for discrete
switching system is in [5], and switching system with
Frechet subdifferentiable cost functional is in [3]. This paper
addresses the role exhausters and quasi-differentiability in the
switching control problem.This paper is also extension of the
results in the paper [5] (additional conditions are switch-
ing points unknown, and minimization functional is nons-
mooth) in the case of first optimality condition. The rest of
this paper is organized as follows. Section 2 contains some
preliminaries, definitions, and theorems. Section 3 contains
problem formulations and necessary optimality conditions
for switching optimal control problem in the terms of
exhausters. Then, the main theorem in Section 3 is extended
to the case in which minimizing function is quasidifferen-
tiable.

2. Some Preliminaries of Non-Smooth Analysis

Let us begin with basic constructions of the directional
derivative (or its generalization) used in the sequel. Let 𝑓 :
𝑋 → 𝑅,𝑋 ⊂ 𝑅𝑛 be an open set.The function𝑓 is calledHad-
amard upper (lower) derivative of the function 𝑓 at the point
𝑥 ∈ 𝑋 in the direction 𝑔 ∈ 𝑋 if there exist limit such that

𝑓↑
𝐻

:= lim sup
[𝛼,𝑔]→ [+0,𝑔]

1

𝛼
[𝑓 (𝑥 + 𝛼𝑔) − 𝑓 (𝑥)] ,

(𝑓↓
𝐻

:= lim inf
[𝛼,𝑔]→ [+0,𝑔]

1

𝛼
[𝑓 (𝑥 + 𝛼𝑔) − 𝑓 (𝑥)]) ,

(1)

where [𝛼, 𝑔] → [+0, 𝑔]means that 𝛼 → +0 and 𝑔 → 𝑔.
Note that limits in (1) always exist, but there are not nec-

essary finite. This derivative is positively homogeneous func-
tions of direction. The Gateaux upper (lower) subdifferential
of the function 𝑓 at a point 𝑥

0
∈ 𝑋 can be defined as follows:

𝜕+
𝐺
𝑓 (𝑥
0
) = {V ∈ 𝑅𝑛 | lim sup

𝑡↓0

𝑓 (𝑥
0
+ 𝑡𝑔) − 𝑓 (𝑥

0
)

𝑡

≤ (V, 𝑔) , ∀𝑔 ∈ 𝑅𝑛} .

(2)
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The set

𝜕̂+𝑓 (𝑥
0
) = {V ∈ 𝑅𝑛 | lim sup

𝑥→𝑥0

𝑓 (𝑥) − 𝑓 (𝑥
0
) − ⟨V, 𝑥 − 𝑥

0
⟩

󵄩󵄩󵄩󵄩𝑥 − 𝑥
0

󵄩󵄩󵄩󵄩
≤ 0}

(3)

is called, respectively, the upper (lower) Frechet subdifferen-
tial of the function 𝑓 at the point 𝑥

0
.

As observed in [9, 10], if𝑓 is a quasidifferentiable function
then its directional derivative at a point 𝑥 is represented as

𝑓󸀠 (𝑥, 𝑔) = max
V∈𝜕𝑓(𝑥)

(V, 𝑔) + min
𝑤∈𝜕𝑓(𝑥)

(𝑤, 𝑔) , (4)

where 𝜕𝑓(𝑥), 𝜕𝑓(𝑥) ⊂ 𝑅𝑛 are convex compact sets. From the
last relation, we can easily reduce that

𝑓󸀠 (𝑥, 𝑔) = min
𝑤∈𝜕𝑓(𝑥)

max
V∈𝑤+𝜕𝑓(𝑥)

(V, 𝑔) = max
V∈𝜕𝑓(𝑥)

max
𝑤∈V+𝜕𝑓(𝑥)

(V, 𝑔) .

(5)

This means that for the function ℎ(𝑔) = 𝑓󸀠(𝑥, 𝑔) the upper
and lower exhausters can be described in the following way:

𝐸∗ = {𝐶 = 𝑤 + 𝜕𝑓 (𝑥) | 𝑤 ∈ 𝜕𝑓 (𝑥)} ,

𝐸
∗
= {𝐶 = V + 𝜕𝑓 (𝑥) | V ∈ 𝜕𝑓 (𝑥)} .

(6)

It is clear that the Frechet upper subdifferential can be
expressed with the Hadamard upper derivative in the follow-
ing way; see [9, Lemma 3.2]:

𝜕+
𝐹
𝑓 (𝑥
0
) = 𝜕+
𝐹
𝑓↑
𝐻
(𝑥
0
, 0
𝑛
) . (7)

Theorem 1. Let 𝐸
∗
be lower exhausters of the positively homo-

geneous function ℎ : 𝑅𝑛 → 𝑅. Then, ⋂
𝐶⊂𝐸∗

𝐶 = 𝜕̂+ℎ(0
𝑛
),

where 𝜕̂+ℎ is the Frechet upper subdifferential of the ℎ at 0
𝑛
, and

for the positively homogeneous function ℎ : 𝑅𝑛 → 𝑅 the Fre-
chet superdifferential at the point zero follows

𝜕̂+ℎ (0
𝑛
) = {V ∈ 𝑅𝑛 | ℎ (𝑥) − (V, 𝑥) ≤ 0, 𝑥 ∈ 𝑅𝑛} . (8)

Proof. Take any V
0
∈ ⋂
𝐶⊂𝐸∗

𝐶. Then by using definition an
lower exhausters we can write

V
0
(𝑥) ≥ ℎ (𝑥) , ∀𝑥 ∈ 𝑅𝑛 󳨐⇒ ⋂

𝐶⊂𝐸∗

𝐶 ⊂ 𝜕̂+ℎ (0
𝑛
) . (9)

Consider now any V
0
∈ 𝜕̂+ℎ(0

𝑛
) ⇒

V
0
(𝑥) ≥ ℎ (𝑥) . (10)

Let us consider V
0

∉ ⋂
𝐶⊂𝐸∗

𝐶. Then, there exists 𝐶
0

∈ 𝐸∗

where V
0
∉ 𝐶
0
.Then, by separation theorem, there exists 𝑥

0
∈

𝑅𝑛 such that

(𝑥
0
, V
0
) ≤ max

V∈𝐶0
(𝑥
0
, V) ≤ ℎ (𝑥) . (11)

It is conducts (3) and V
0
∈ 𝐶 for every 𝐶 ∈ 𝐸∗ and due to

arbitrary. This means that V
0

∈ ⋂
𝐶⊂𝐸∗

𝐶. The proof of the
theorem is complete.

Lemma 2. The Frechet upper and Gateaux lower subdifferen-
tials of a positively homogeneous function at zero coincide.

Proof. Let ℎ : 𝑅𝑛 → 𝑅 be a positively homogenous function.
It is not difficult to observe that every 𝑔 ∈ 𝑅𝑛 and every 𝑡 > 0:

ℎ (0
𝑛
+ 𝑡𝑔) − ℎ (0

𝑛
)

𝑡
=

𝑡ℎ (𝑔)

𝑡
= ℎ (𝑔) . (12)

Hence, the Gateaux lower subdifferential of ℎ at 0
𝑛
takes the

forms

𝜕+
𝐺
ℎ (0
𝑛
) = {V ∈ 𝑅𝑛 | ℎ (𝑔) ≤ (V, 𝑔) , ∀𝑔 ∈ 𝑅𝑛} (13)

which coincides with the representation of the Frechet upper
subdifferential of the positively homogenous function (see
[11, Proposition 1.9]).

3. Problem Formulation and Necessary
Optimality Condition

Let investigating object be described by the differential equa-
tion

𝑥̇
𝐾
(𝑡) = 𝑓

𝐾
(𝑥
𝐾
(𝑡) , 𝑢
𝐾
(𝑡) , 𝑡) , 𝑡 ∈ [𝑡

𝑘−1
, 𝑡
𝑘
] ,

𝐾 = 1, 2, . . . , 𝑁
(14)

with initial condition

𝑥
1
(𝑡
0
) = 𝑥
0
, (15)

and the phase constraints at the end of the interval

𝐹
𝐾
(𝑥
𝑁
(𝑡
𝑁
) , 𝑡
𝑁
) = 0, 𝐾 = 1, 2, . . . , 𝑁 (16)

and switching conditions on switching points (the conditions
which determine that at the switching points the phase trajec-
tories must be connected to each other by some relations):

𝑥
𝐾+1

(𝑡
𝐾
) = 𝑀

𝐾
(𝑥
𝐾
(𝑡
𝐾
) , 𝑡
𝑘
) , 𝐾 = 1, 2, . . . , 𝑁 − 1. (17)

The goal of this paper is tominimize the following functional:

𝑆 (𝑢
1
, . . . , 𝑢

𝑁
, 𝑡
1
, . . . , 𝑡

𝑁
) =
𝑁

∑
𝐾=1

𝜑
𝐾
(𝑥
𝐾
(𝑡
𝐾
))

+
𝑁

∑
𝐾=1

∫
𝑡𝐾

𝑡𝐾−1

𝐿 (𝑥
𝐾
(𝑡) , 𝑢
𝐾
(𝑡) , 𝑡) 𝑑𝑡

(18)

with the conditions (14)–(16).Namely, it is required to find the
controls 𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑁
, switching points 𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑁−1
, and

the end point 𝑡
𝑁
(here 𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑁
are not fixed)with the cor-

responding state 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
satisfying (14)–(16) so that the

functional 𝐽(𝑢
1
, . . . , 𝑢

𝑁
, 𝑡
1
, . . . , 𝑡

𝑁
) in (18) is minimized. We

will derive necessary conditions for the nonsmooth version
of these problems (by using the Frechet superdifferential and
exhausters, quasidifferentiable in theDemyanov andRubinov
sense).
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Here 𝑓
𝐾

: R × R𝑛 × R𝑟 → R𝑛, 𝑀
𝐾
and 𝐹

𝐾
are con-

tinuous, at least continuously partially differentiable vector-
valued functions with respect to their variables, 𝐿 : R𝑛 ×R𝑟 ×
R → R are continuous and have continuous partial deriva-
tive with respect to their variables, 𝜑

𝑘
(⋅) has Frechet upper

subdifferentiable (superdifferentiable) at a point 𝑥
𝐾
(𝑡
𝐾
) and

positively homogeneous functional, and 𝑢
𝐾
(𝑡) : R →

𝑈
𝐾

⊂ R𝑟 are controls. The sets 𝑈
𝐾

are assumed to be
nonempty and open. Here (16) is switching conditions. If we
denote this as follows: 𝜃 = (𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑁
), 𝑥(𝑡) = (𝑥

1
(𝑡),

𝑥
2
(𝑡), . . . , 𝑥

𝑁
(𝑡)), 𝑢(𝑡) = (𝑢

1
(𝑡), 𝑢
2
(𝑡), . . . , 𝑢

𝑁
(𝑡)), then it is

convenient to say that the aim of this paper is to find the triple
(𝑥(𝑡), 𝑢(𝑡), 𝜃) which solves problem (14)–(18). This triple will
be called optimal control for the problem (14)–(18). At first we
assume that 𝜑

𝑘
(⋅) is the Hadamar upper differentiable at the

point𝑥
𝐾
(𝑡
𝐾
) in the direction of zero.Then,𝜑

𝑘
(⋅) is upper sem-

icontinuous, and it has an exhaustive family of lower concave
approximations of 𝜑

𝑘
(⋅).

Theorem3 (Necessary optimality condition in terms of lower
exhauster). Let (𝑢

𝐾
(⋅), 𝑥
𝐾
(⋅), 𝜃) be an optimal solution to the

control problem (14)–(18). Then, for every element 𝑥∗
𝐾
from

intersection of the subsets 𝐶
𝐾
of the lower exhauster 𝐸

∗,𝐾
of

the functional 𝜑
𝐾
(𝑥
𝐾
(𝑡
𝐾
)), that is, 𝑥∗

𝐾
∈ ⋂
𝐶𝐾∈𝐸∗,𝐾

𝐶
𝐾
, 𝐾 = 1,

2, . . . , 𝑁, there exist vector functions 𝑝
𝐾
(𝑡), 𝐾 = 1, . . . , 𝑁 for

which the following necessary optimality condition holds:

(i) State equation:

𝑥̇
𝐾
(𝑡) =

𝜕𝐻
𝐾
(𝑥
𝐾
(𝑡) , 𝑢
𝐾
(𝑡) , 𝑝
𝐾
(𝑡) , 𝑡)

𝜕𝑝
𝐾

, 𝑡 ∈ [𝑡
𝐾−1

, 𝑡
𝐾
] ;

(19)

(ii) Costate equation:

𝑝̇
𝐾
(𝑡) =

𝜕𝐻
𝐾
(𝑥
𝐾
(𝑡) , 𝑢
𝐾
(𝑡) , 𝑝
𝐾
(𝑡) , 𝑡)

𝜕𝑥
𝐾

, 𝑡 ∈ [𝑡
𝐾−1

, 𝑡
𝐾
] ;

(20)

(iii) At the switching points, 𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑁−1
,

𝑥∗
𝐾
− 𝑝
𝐾
(𝑡
𝐾
) − 𝑝
𝐾+1

(𝑡
𝐾
)
𝜕𝑀
𝐾
(𝑥
𝐾
(𝑡
𝐾
) , 𝑡
𝐾
)

𝜕𝑥
𝐾

= 0,

𝐾 = 1, 2, . . . , 𝑁 − 1;

(21)

(iv) Minimality condition:

𝐻
𝐾
(𝑥
𝐾
(𝑡) , 𝑝
𝐾
(𝑡) , 𝑢
𝐾
(𝑡) + 𝛿𝑢

𝐾
(𝑡) , 𝑡)

≥ 𝐻
𝐾
(𝑥
𝐾
(𝑡) , 𝑝
𝐾
(𝑡) , 𝑢
𝐾
(𝑡) , 𝑡) ,

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑏𝑙𝑒 𝛿𝑢
𝐾
, 𝑡 ∈ [𝑡

𝐾−1
, 𝑡
𝐾
] ;

(22)

(v) At the end point 𝑡
𝑁
,

𝑝
𝑁
(𝑡
𝑁
) = 𝑥∗
𝑁
+
𝑁

∑
𝐾=1

𝜆
𝐾

𝜕𝐹
𝐾
(𝑥
𝑁
(𝑡
𝑁
) , 𝑡
𝑁
)

𝜕𝑥
𝑁

,

(
𝑁

∑
𝐾=1

𝜆
𝐾

𝜕𝐹
𝐾
(𝑥
𝑁
(𝑡
𝑁
) , 𝑡
𝑁
)

𝜕𝑡
𝑁

)𝛿
𝐿,𝑁

−
1

𝑁
(
𝑁−1

∑
𝐾=1

𝑝
𝐾+1

(𝑡
𝐾
)
𝜕𝑀
𝐾
(𝑥
𝐾
(𝑡
𝐾
) , 𝑡
𝐾
)

𝜕𝑡
𝐾

)(1 − 𝛿
𝐿,𝑁

) = 0,

(23)

here

𝛿
𝐿,𝑁

= {
1, 𝐿 = 𝑁,

0, 𝐿 ̸=𝑁,
𝐿 = 1, 2, . . . , 𝑁 (24)

is a Kronecker symbol, 𝐻
𝐾
(𝑥
𝐾
, 𝑢
𝐾
, 𝑝
𝐾
, 𝑡) = 𝐿

𝐾
(𝑥
𝐾
,

𝑢
𝐾
, 𝑝
𝐾
, 𝑡) + 𝑝𝑇

𝐾
⋅ 𝑓
𝐾
(𝑥
𝐾
, 𝑢
𝐾
, 𝑝
𝐾
, 𝑡), is a Hamilton-

Pontryagin function, 𝐸
∗,𝐾

is lower exhauster of the
functional 𝜑

𝐾
(𝑥
𝐾
(𝑡
𝐾
)), 𝜆
𝐾
, 𝐾 = 1, . . . , 𝑁 are the vec-

tors, and 𝑝
𝑘
(⋅) is defined by the conditions (ii) and (iii)

in the process of the proof of the theorem, later.

Proof. Firstly, we will try to reduce optimal control problem
(14)–(18) with nonsmooth cost functional to the optimal con-
trol problem with smooth minimization functional. In this
way, we will use some useful theorems in [12, 13]. Let us note
that smooth variational descriptions of Frechet normals the-
orem in [12,Theorem 1.30] and its subdifferential counterpart
[12,Theorem 1.88] provide important variational descriptions
of Frechet subgradients of nonsmooth functions in terms of
smooth supports. To prove the theorem, take any elements
from intersection of the subset of the exhauster, 𝑥∗

𝐾
∈ ⋂𝐶

𝐾
,

where 𝐶
𝐾

∈ 𝐸
∗,𝐾

, 𝐾 = 1, 2, . . . , 𝑁. Then by using Theorem 1,
we can write that 𝑥∗

𝐾
∈ 𝜕̂+𝜑

𝐾
(𝑥
𝐾
(𝑡
𝐾
)). Then, apply the vari-

ational description in [12, Theorem 1.88] to the subgradients
−𝑥∗
𝐾

∈ 𝜕̂+(−𝜑
𝐾
(𝑥
𝐾
(𝑡
𝐾
))). In this way, we find functions 𝑠

𝐾
:

𝑋 → R for𝐾 = 1, 2, . . . , 𝑁 satisfying the relations

𝑠
𝐾
(𝑥
𝐾
(𝑡
𝐾
)) = 𝜑

𝐾
(𝑥
𝐾
(𝑡
𝐾
)) , 𝑠

𝐾
(𝑥
𝐾
(𝑡)) ≥ 𝜑

𝐾
(𝑥
𝐾
(𝑡))
(25)

in some neighborhood of 𝑥
𝐾
(𝑡
𝐾
), and such that each 𝑠

𝐾
(⋅)

is continuously differentiable at 𝑥
𝐾
(𝑡
𝐾
) with ∇𝑠

𝐾
(𝑥
𝐾
(𝑠𝑡
𝐾
)) =

𝑥∗
𝐾
, 𝐾 = 1, 2, . . . , 𝑁. It is easy to check that 𝑥

𝐾
(⋅) is a local

solution to the following optimization problem of type (14)–
(18) but with cost continuously differentiable around 𝑥

𝐾
(⋅).

Thismeans that we deduce the optimal control problem (14)–
(18) with the nonsmooth cost functional to the smooth cost
functional data:

min 𝑆 (𝑢
1
, . . . , 𝑢

𝑁
, 𝑡
1
, . . . , 𝑡

𝑁
)

=
𝑁

∑
𝐾=1

𝑠
𝐾
(𝑥
𝐾
(𝑡
𝐾
)) +
𝑁

∑
𝐾=1

∫
𝑡𝐾

𝑡𝐾−1

𝐿 (𝑥
𝐾
(𝑡) , 𝑢
𝐾
(𝑡) , 𝑡) 𝑑𝑡,

(26)

taking into account that

∇𝑠
𝐾
(𝑥
𝐾
(𝑡
𝐾
)) = 𝑥∗

𝐾
, 𝐾 = 1, 2, . . . , 𝑁. (27)
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We use multipliers to adjoint to constraints 𝑥̇
𝐾
(𝑡) −

𝑓
𝐾
(𝑥
𝐾
(𝑡), 𝑢
𝐾
(𝑡), 𝑡) = 0, 𝑡 ∈ [𝑡

𝑘−1
, 𝑡
𝑘
], 𝐾 = 1, 2, . . . , 𝑁 and

𝐹
𝐾
(𝑥
𝑁
(𝑡
𝑁
), 𝑡
𝑁
) = 0, 𝐾 = 1, 2, . . . , 𝑁 to 𝑆:

𝐽󸀠 =
𝑁

∑
𝐾=1

𝑠
𝐾
(𝑥
𝐾
(𝑡
𝐾
)) +
𝑁

∑
𝐾=1

𝜆
𝑘
𝐹
𝐾
(𝑥
𝑁
(𝑡
𝑁
) , 𝑡
𝑁
)

+
𝑁

∑
𝐾=1

∫
𝑡𝐾

𝑡𝐾−1

(𝐿 (𝑥
𝐾
(𝑡) , 𝑢
𝐾
(𝑡) , 𝑡) + 𝑝𝑇

𝐾
(𝑡)

× (𝑓
𝐾
(𝑥
𝐾
(𝑡) , 𝑢
𝐾
(𝑡) , 𝑡) − 𝑥̇

𝐾
(𝑡)) ) 𝑑𝑡

(28)

by introducing the Lagrange multipliers 𝑝
1
(𝑡), 𝑝
2
(𝑡), . . . ,

𝑝
𝑁
(𝑡). In the following, we will find it convenient to

use the function 𝐻
𝐾
, called the Hamiltonian, defined

as 𝐻
𝐾
(𝑥
𝐾
(𝑡), 𝑝
𝐾
(𝑡), 𝑢
𝐾
(𝑡), 𝑡) = 𝐿

𝐾
(𝑥
𝐾
(𝑡), 𝑢
𝐾
(𝑡), 𝑡) +

𝑝
𝐾
(𝑡)𝑓
𝐾
(𝑥
𝐾
, 𝑢
𝐾
, 𝑡) for 𝑡 ∈ [𝑡

𝐾−1
, 𝑡
𝐾
]. Using this notation, we

can write the Lagrange functional as

𝐽󸀠 =
𝑁

∑
𝐾=1

𝑠
𝐾
(𝑥
𝐾
(𝑡
𝐾
)) +
𝑁

∑
𝐾=1

𝜆
𝑘
𝐹
𝐾
(𝑥
𝑁
(𝑡
𝑁
) , 𝑡
𝑁
)

+
𝑁

∑
𝐾=1

∫
𝑡𝐾

𝑡𝐾−1

(𝐻
𝐾
(𝑥
𝐾
(𝑡) , 𝑝
𝐾
(𝑡) , 𝑢
𝐾
(𝑡) , 𝑡)−𝑝

𝑇

𝐾
𝑥̇
𝐾
(𝑡)) 𝑑𝑡.

(29)

Assume {𝑥
𝑘
, 𝑢
𝑘
, 𝜃
𝑘
} is optimal control. To determine the vari-

ation 𝛿𝐽󸀠, we introduce the variation 𝛿𝑥
𝐾
, 𝛿𝑢
𝐾
, 𝛿𝑝
𝐾
, and 𝛿𝑡

𝐾
.

From the calculus of variations, we can obtain that the first
variation of 𝐽󸀠 as

𝛿𝐽󸀠 =
𝑁

∑
𝐾=1

𝜕𝑠
𝐾
(𝑥
𝐾
(𝑡
𝐾
))

𝜕𝑥
𝐾

𝛿𝑥
𝐾
(𝑡
𝐾
)

+
𝑁

∑
𝐾=1

𝜆
𝐾

𝜕𝐹
𝐾
(𝑥
𝑁
(𝑡
𝑁
) , 𝑡
𝑁
)

𝜕𝑥
𝑁

𝛿𝑥
𝑁
(𝑡
𝑁
)

+
𝑁

∑
𝐾=1

𝜆
𝐾

𝜕𝐹
𝐾
(𝑥
𝑁
(𝑡
𝑁
) , 𝑡
𝐾
)

𝜕𝑡
𝑁

𝛿𝑡
𝑁

+
𝑁

∑
𝐾=1

∫
𝑡𝐾

𝑡𝐾−1

𝜕𝐻
𝐾
(𝑥
𝐾
(𝑡) , 𝑢
𝐾
(𝑡) , 𝑝
𝐾
(𝑡) , 𝑡)

𝜕𝑥
𝐾

𝛿𝑥
𝐾
(𝑡)

+
𝑁

∑
𝐾=1

∫
𝑡𝐾

𝑡𝐾−1

𝜕𝐻
𝐾
(𝑥
𝐾
(𝑡) , 𝑢
𝐾
(𝑡) , 𝑝
𝐾
(𝑡) , 𝑡)

𝜕𝑢
𝐾

𝛿𝑢
𝐾

+
𝑁

∑
𝐾=1

∫
𝑡𝐾

𝑡𝐾−1

𝜕𝐻
𝐾
(𝑥
𝐾
(𝑡) , 𝑢
𝐾
(𝑡) , 𝑝
𝐾
(𝑡) , 𝑡)

𝜕𝑝
𝐾

𝛿𝑝
𝐾

−
𝑁

∑
𝐾=1

∫
𝑡𝐾

𝑡𝐾−1

(𝑝
𝐾
(𝑡) 𝛿𝑥

𝐾
(𝑡) + 𝑥

𝐾
(𝑡) 𝛿𝑝
𝐾
(𝑡)) 𝑑𝑡

+ high order terms.
(30)

If we follow the steps in [3, pages 5–7] then, the first variation
of the functional takes the following form:

𝛿𝐽󸀠 =
𝑁−1

∑
𝐾=1

𝜕𝑠
𝐾
(𝑥
𝐾
(𝑡
𝐾
))

𝜕𝑥
𝐾

𝛿𝑥
𝐾
(𝑡
𝐾
) +

𝜕𝑠 (𝑥
𝑁
(𝑡
𝑁
))

𝜕𝑥
𝑁

𝛿𝑥
𝑁
(𝑡
𝑁
)

+
𝑁

∑
𝐾=1

𝜆
𝐾

𝜕𝐹
𝐾
(𝑥
𝑁
(𝑡
𝑁
) , 𝑡
𝑁
)

𝜕𝑥
𝑁

𝛿𝑥
𝑁
(𝑡
𝑁
)

+
𝑁

∑
𝐾=1

𝜆
𝐾

𝜕𝐹
𝐾
(𝑥
𝑁
(𝑡
𝑁
) , 𝑡
𝑁
)

𝜕𝑡
𝑁

𝛿𝑡
𝑁

+
𝑁

∑
𝐾=1

∫
𝑡𝐾

𝑡𝐾−1

𝜕𝐻
𝐾
(𝑢
𝐾
, 𝑥
𝐾
, 𝑝
𝐾
, 𝑡)

𝜕𝑢
𝐾

𝛿𝑢
𝐾

+
𝑁

∑
𝐾=1

∫
𝑡𝐾

𝑡𝐾−1

𝜕𝐻
𝐾
(𝑢
𝐾
(𝑡) , 𝑥
𝐾
(𝑡) , 𝑝
𝐾
(𝑡) , 𝑡)

𝜕𝑝
𝐾

𝛿𝑝
𝐾

−
𝑁−1

∑
𝐾=1

𝑝
𝐾
(𝑡
𝐾
) 𝛿𝑥
𝐾
(𝑡
𝐾
) − 𝑝
𝑁
(𝑡
𝑁
) 𝛿𝑥
𝑁
(𝑡
𝑁
)

−
𝑁−1

∑
𝐾=1

𝑝
𝐾+1

(𝑡
𝐾
)
𝜕𝑀
𝐾
(𝑥
𝐾
(𝑡
𝐾
) , 𝑡
𝐾
)

𝜕𝑥
𝐾

𝛿𝑥
𝐾
(𝑡
𝐾
)

−
𝑁−1

∑
𝐾=1

𝑝
𝐾+1

(𝑡
𝐾
)
𝜕𝑀
𝐾
(𝑥
𝐾
(𝑡
𝐾
) , 𝑡
𝐾
)

𝜕𝑡
𝐾

𝛿𝑡
𝐾

−
𝑁

∑
𝑘=1

𝑝
𝐾
(𝑡) 𝛿𝑥

𝐾
(𝑡
𝐾
)

=
𝑁−1

∑
𝐾=1

(
𝜕𝜑
𝐾
(𝑥
𝐾
(𝑡
𝐾
))

𝜕𝑥
𝐾

− 𝑝
𝐾
(𝑡
𝐾
)

− 𝑝
𝐾+1

(𝑡
𝐾
)
𝜕𝑀
𝐾
(𝑥
𝐾
(𝑡
𝐾
) , 𝑡
𝐾
)

𝜕𝑥
𝐾

)𝛿𝑥
𝐾
(𝑡
𝐾
)

+ (
𝜕𝜑
𝑁
(𝑥
𝑁
(𝑡
𝑁
))

𝜕𝑥
𝑁

+
𝑁

∑
𝐾=1

𝜆
𝐾

𝜕𝐹
𝐾
(𝑥
𝑁
(𝑡
𝑁
) , 𝑡
𝑁
)

𝜕𝑥
𝑁

−𝑝
𝑁
(𝑡
𝑁
)) 𝛿𝑥

𝑁
(𝑡
𝑁
)

+
𝑁

∑
𝐿=1

[(
𝑁

∑
𝐾=1

𝜆
𝐾

𝜕𝐹
𝐾
(𝑥
𝑁
(𝑡
𝑁
) , 𝑡
𝑁
)

𝜕𝑡
𝑁

)𝛿
𝐿,𝑁

−
1

𝑁
(
𝑁−1

∑
𝐾=1

𝑝
𝐾+1

(𝑡
𝐾
)
𝜕𝑀
𝐾
(𝑥
𝐾
(𝑡
𝐾
) , 𝑡
𝐾
)

𝜕𝑡
𝐾

)

× (1 − 𝛿
𝐿,𝑁

) ] 𝛿𝑡
𝐿

+
𝑁

∑
𝐾=1

∫
𝑡𝐾

𝑡𝐾−1

(
𝜕𝐻
𝐾
(𝑥
𝐾
(𝑡) , 𝑝
𝐾
(𝑡) , 𝑢
𝐾
(𝑡) , 𝑡)

𝜕𝑥
𝐾

− 𝑝̇
𝐾
(𝑡)) 𝛿𝑥

𝐾

+
𝑁

∑
𝐾=1

∫
𝑡𝐾

𝑡𝐾−1

𝜕𝐻
𝐾
(𝑥
𝐾
(𝑡) , 𝑝
𝐾
(𝑡) , 𝑢
𝐾
(𝑡) , 𝑡)

𝜕𝑢
𝐾

𝛿𝑢
𝐾

+
𝑁

∑
𝐾=1

∫
𝑡𝐾

𝑡𝐾−1

(
𝜕𝐻
𝐾
(𝑥
𝐾
(𝑡) , 𝑝
𝐾
(𝑡) , 𝑢
𝐾
(𝑡) , 𝑡)

𝜕𝑝
𝐾

− 𝑥̇
𝐾
(𝑡)) 𝛿𝑝

𝐾
.

(31)
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The latter sum is known because

𝜕𝐻
𝐾
(𝑥
𝐾
(𝑡) , 𝑢
𝐾
(𝑡) , 𝑝
𝐾
(𝑡) , 𝑡)

𝜕𝑝
𝐾

= 𝑥̇
𝐾
(𝑡) , (32)

and it is easy to check that

𝑁

∑
𝐾=1

𝜆
𝐾

𝜕𝐹
𝐾
(𝑥
𝑁
(𝑡
𝑁
) , 𝑡
𝑁
)

𝜕𝑡
𝑁

𝛿𝑡
𝑁

−
𝑁−1

∑
𝐾=1

𝑝
𝐾+1

(𝑡
𝐾
)
𝜕𝑀
𝐾
(𝑥
𝐾
(𝑡
𝐾
) , 𝑡
𝐾
)

𝜕𝑡
𝐾

𝛿𝑡
𝐾

=
𝑁

∑
𝐿=1

[(
𝑁

∑
𝐾=1

𝜆
𝐾

𝜕𝐹
𝐾
(𝑥
𝑁
(𝑡
𝑁
) , 𝑡
𝑁
)

𝜕𝑡
𝑁

)𝛿
𝐿,𝑁

−
1

𝑁
(
𝑁−1

∑
𝐾=1

𝑝
𝐾+1

(𝑡
𝐾
)
𝜕𝑀
𝐾
(𝑥
𝐾
(𝑡
𝐾
) , 𝑡
𝐾
)

𝜕𝑡
𝐾

)

× (1 − 𝛿
𝐿,𝑁

) ] 𝛿𝑡
𝐿
.

(33)

If the state equations (14) are satisfied, 𝑝̇
𝑘
is selected so that

coefficient of 𝛿𝑥
𝑘
and 𝛿𝑡

𝑁
is identically zero. Thus, we have

𝛿𝑆󸀠 =
𝑁−1

∑
𝐾=1

∫
𝑡𝐾

𝑡𝐾−1

𝜕𝐻
𝐾
(𝑥
𝐾
(𝑡) , 𝑝
𝐾
(𝑡) , 𝑢
𝐾
(𝑡) , 𝑡)

𝜕𝑢
𝐾

𝛿𝑢
𝐾

+ high order terms.

(34)

The integrand is the first-order approximation to the change
in𝐻
𝐾
caused by

[
𝜕𝐻
𝐾
(𝑥
𝐾
(𝑡) , 𝑝
𝐾
(𝑡) , 𝑢
𝐾
(𝑡) , 𝑡)

𝜕𝑢
𝐾

𝛿𝑢
𝐾
]

𝑇

𝛿𝑢
𝐾
(𝑡)

= 𝐻
𝐾
(𝑥
𝐾
(𝑡) , 𝑝
𝐾
(𝑡) , 𝑢
𝐾
(𝑡) + 𝛿𝑢

𝐾
(𝑡) , 𝑡)

− 𝐻
𝐾
(𝑥
𝐾
(𝑡) , 𝑝
𝐾
(𝑡) 𝑢
𝐾
(𝑡) , 𝑡) .

(35)

Therefore,

𝛿𝑆󸀠 =
𝑁−1

∑
𝐾=1

∫
𝑡𝐾

𝑡𝐾−1

[𝐻
𝐾
(𝑥
𝐾
(𝑡) , 𝑝
𝐾
(𝑡) , 𝑢
𝐾
(𝑡) + 𝛿𝑢

𝐾
(𝑡) , 𝑡)

−𝐻
𝐾
(𝑥
𝐾
(𝑡) , 𝑝
𝐾
(𝑡) , 𝑢
𝐾
(𝑡) , 𝑡)] 𝛿𝑢

𝐾
(𝑡)

+ high order terms.
(36)

If 𝑢
𝐾

+ 𝛿𝑢
𝐾
is in a sufficiently small neighborhood of 𝑢

𝐾

then the high-order terms are small and the integral in last
equation dominates the expression of 𝛿𝑆󸀠. Thus, for 𝑢

𝐾
to be

a minimizing control it is necessary that

𝑁−1

∑
𝐾=1

∫
𝑡𝐾

𝑡𝐾−1

[𝐻
𝐾
(𝑥
𝐾
, 𝑝
𝐾
, 𝑢
𝐾
+ 𝛿𝑢
𝐾
, 𝑡)

−𝐻
𝐾
(𝑥
𝐾
, 𝑝
𝐾
, 𝑢
𝐾
, 𝑡)] 𝛿𝑢

𝐾
≥ 0

(37)

for all admissible 𝛿𝑢
𝐾
. We assert that in order for the last

inequality to be satisfied for all admissible𝛿𝑢
𝐾
in the specified

neighborhood, it is necessary that𝐻
𝐾
(𝑥
𝐾
, 𝑝
𝐾
, 𝑢
𝐾
+ 𝛿𝑢
𝐾
, 𝑡) ≥

𝐻
𝐾
(𝑥
𝐾
, 𝑝
𝐾
, 𝑢
𝐾
, 𝑡) for all admissible 𝛿𝑢

𝐾
and for all 𝑡 ∈

[𝑡
𝐾−1

, 𝑡
𝐾
]. To show this, consider the control

Δ𝑢
𝐾
= {

𝑢
𝐾
(𝑡) , 𝑡 ∈ [𝑡

𝐾−1
, 𝑡
𝐾
] ,

𝑢
𝐾
(𝑡) + 𝛿𝑢

𝐾
(𝑡) , 𝑡 ∈ [𝑡

𝐾−1
, 𝑡
𝐾
] ,

(38)

where 𝑡 ∈ [𝑡
𝐾−1

, 𝑡
𝐾
] is an arbitrarily small, but nonzero time

interval and 𝛿𝑢
𝐾
are admissible control variations. After this,

if we consider proof description of the maximum principle in
[4], we can come to the last inequality.

According to the fundamental theorem of the calculus
of the variation, at the extremal point the first variation of
the functional must be zero, that is, 𝛿𝐽󸀠 = 0. Setting to
zero, the coefficients of the independent increments 𝛿𝑥

𝑁
(𝑡
𝑁
),

𝛿𝑥
𝐾
(𝑡
𝐾
)𝛿𝑥
𝐾
, 𝛿𝑢
𝐾
and 𝛿𝑝

𝐾
, and taking into account that

∇𝑠
𝐾
(𝑥
𝐾
(𝑡
𝐾
)) = 𝑥∗

𝐾
, 𝐾 = 1, 2, . . . , 𝑁, (39)

yield the necessary optimality conditions (i)–(v) in Theo-
rem 3.

This completes the proof of the theorem.

Theorem 4 (Necessary optimality conditions for switching
optimal control system in terms of Quasidiffereniability). Let
the minimization functional 𝜑

𝐾
(⋅) be positively homogenous,

quasidifferentiable at a point 𝑥
𝐾
(⋅), and let (𝑢

𝐾
(⋅), 𝑥
𝐾
(⋅), 𝜃) be

an optimal solution to the control problem (14)–(18). Then,
there exist vector functions𝑝

𝐾
(𝑡),𝐾 = 1, . . . , 𝑁, and there exist

convex compact and bounded set 𝑀(𝜑
𝐾
(⋅)), in which for any

elements 𝑥∗
𝐾

∈ 𝑀(𝜑
𝐾
(⋅)), the necessary optimality conditions

(i)–(v) in Theorem 3 are satisfied.

Proof. Let minimization functional 𝜑
𝐾
(⋅) be positively

homogenous and quasidifferentiable at a point 𝑥
𝐾
(𝑡
𝐾
). Then,

there exist totally bounded lower exhausters𝐸
∗,𝐾

for the𝜑
𝐾
(⋅)

[9, Theorem 4]. Let us make the substitution 𝑀(𝜑
𝐾
(⋅)) =

𝐸
∗,𝐾

; take any element 𝑥∗
𝐾

∈ 𝑀(𝜑
𝐾
(⋅)), then 𝑥∗

𝐾
∈ 𝐸
∗,𝐾

also,
and if we follow the proof description and result inTheorem 3
in the current paper, we can prove Theorem 4. If we use the
relationship between the Gateaux upper subdifferential and
Dini upper derivative [9, Lemma 3.6], substitute ℎ

𝐾
(𝑔) =

𝜑+
𝐾,𝐻

(𝑥
𝐾
(𝑡
𝐾
), 𝑔), then we can write the following corollary

(here 𝜑+
𝐾,𝐻

(𝑥
𝐾
(𝑡
𝐾
), 𝑔 is the Hadamard upper derivative of the

minimizing functional 𝜑
𝐾
(⋅) in the direction 𝑔).

Corollary 5. Let the minimization functional 𝜑
𝐾
(⋅) be posi-

tively homogenous, and let the Dini upper differentiable at a
point 𝑥

𝐾
(𝑡
𝐾
) and (𝑢

𝐾
(⋅), 𝑥
𝐾
(⋅), 𝜃) be an optimal solution to

the control problem (14)–(18). Then for any elements 𝑥∗
𝐾

∈
𝜕+
𝐺
ℎ
𝐾
(0
𝑛
), there exist vector functions 𝑝

𝐾
(𝑡), 𝐾 = 1, . . . , 𝑁 in

which the necessary optimality conditions (i)–(v) in the Theo-
rem 3 hold.

Proof. Let us take any element 𝑥∗
𝐾
∈ 𝜕+
𝐺
ℎ
𝐾
(0
𝑛
). Then by using

the lemma in [9, Lemma 3.8] we can write 𝑥∗
𝐾

∈ 𝜕+
𝐹
ℎ
𝐾
(0
𝑛
).

Next, if we use the lemma in [9, Lemma 3.2], then we can put
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𝑥∗
𝐾
∈ 𝜕+
𝐹
𝜑
𝐾
(𝑥
𝐾
(𝑡
𝐾
)). At least, if we followTheorem 1 (relation-

ship between upper Frechet subdifferential and exhausters)
and Theorem 3 (necessary optimality condition in terms of
exhausters) in the current paper, we can prove the result of
Corollary 5.
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