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In this paper we discuss time integrators for nonlinear differential equations. In recent years, splitting approaches have become an
important tool for reducing the computational time needed to solve differential equations. Moreover, nonlinearity is a challenge
to splitting schemes, while one has to extend the exp-functions in terms of a nonlinear Magnus expansion. Here we discuss a
novel extension of the so-called multiproduct expansion methods, which is used to improve the standard Strang splitting schemes
as to their nonlinearity. We present an extension of linear splitting schemes and concentrate on nonlinear systems of differential
equations and generalise in this respect the recent MPE method; see (Chin and Geiser, 2011). Some first numerical examples, of
rigid body problems, are given as benchmarks.

1. Introduction

In recent years, applications to nonlinear differential equa-
tions of multiscale problems, for example, the rigid body (see
[1]), have arisen and become important.

Here, splitting schemes are important for decoupling the
different nonlinear scales, for example, a Hamiltonian with
kinetic and potential operators, and treating them with the
best solver schemes; see [2, 3].

Theoretically, we deal with subproblems which can be
solved independently, but we have taken into account their
nonlinearity, so that standard fundamental solutions, for
example, exp-functions, of the subproblems have to be
extended in respect to their nonlinearity.

Herewe apply the nonlinearMagnus expansion; see [4, 5].
Our contributions are to use the first and second order

schemes and extend them with an extrapolation scheme,
in our case with a multiproduct expansion, to gain more
accurate and efficient higher order schemes; see [6].

In this paper we concentrate on approximate solutions of
the nonlinear evolution equation; for example,

𝜕
𝑡
𝑢 = 𝐹 (𝑢 (𝑡)) = 𝐴 (𝑢 (𝑡)) + 𝐵 (𝑢 (𝑡)) , 𝑢 (0) = 𝑢

0
, (1)

with unbounded operators 𝐴 : 𝐷(𝐴) ⊂ X → X and 𝐵 :

𝐷(𝐵) ⊂ X → X. We have further 𝐹(V) = 𝐴(V) + 𝐵(V), V ∈

𝐷(𝐴) ∩ 𝐷(𝐵).
We assume there are suitable chosen subspaces of the

underlying Banach space (𝑋, ‖ ⋅ ‖
𝑋

) such that 𝐷(𝐹) = 𝐷(𝐴)∩

𝐷(𝐵) ̸= 0.
For such equations, we concentrate on applying nonlinear

splitting schemes to extrapolation ideas to obtain higher
order schemes. Here, we deal with Suzuki’s methods and
apply factorised symplectic algorithms with forward deriva-
tives; see [6, 7].

The exact solution of the evolution problem (1) is

𝑢 (𝑡) = E
𝐹

(𝑡, 𝑢 (0)) , 0 ≤ 𝑡 ≤ 𝑇, (2)

with the evolution operatorE
𝐹
depending on the actual time

𝑡 and the initial value 𝑢(0). We use a formal notation:

𝑢 (𝑡) = exp (𝑡𝐷
𝐹
) 𝑢 (0) , 0 ≤ 𝑡 ≤ 𝑇. (3)

Here the evolution operator exp(𝑡𝐷
𝐹
) and the Lie derivative

𝐷
𝐹
associated with 𝐹 are

exp (𝑡𝐷
𝐹
) 𝐺V = 𝐺 (E

𝐹
(𝑡, V)) , 0 ≤ 𝑡 ≤ 𝑇,

𝐷
𝐹
𝐺V = 𝐺

󸀠
(𝑉) 𝐹 (V)

(4)



2 International Journal of Differential Equations

for any unbounded nonlinear operator 𝐺 : 𝐷(𝐺) ⊂ 𝑋 → 𝑋

with Frechet’s derivative 𝐺
󸀠.

The paper is outlined as follows. In Section 2, we discuss
the standard splitting schemes. The extended nonlinear mul-
tiproduct expansion is presented in Section 3. In Section 4,
we present the improved methods due to the initialisation
process. The alternative methods with respect to the lineari-
sation schemes are presented in Section 5. The numerical
experiments are given in Section 6. The conclusion is in
Section 7.

2. Nonlinear Operator Splitting Methods

In the literature, there are various types of splitting methods.
Wemainly consider the following operators splitting schemes
in this study.

(1) Sequential operator splitting: A-B splitting

𝜕𝑐
∗

(𝑡)

𝜕𝑡
= 𝐴 (𝑐

∗
(𝑡)) with 𝑡 ∈ [𝑡

𝑛
, 𝑡
𝑛+1

] ,

𝑐
∗

(𝑡
𝑛
) = 𝑐
𝑛

𝑠𝑝
,

(5)

𝜕𝑐
∗∗

(𝑡)

𝜕𝑡
= 𝐵 (𝑐

∗∗
(𝑡)) with 𝑡 ∈ [𝑡

𝑛
, 𝑡
𝑛+1

] ,

𝑐
∗∗

(𝑡
𝑛
) = 𝑐
∗

(𝑡
𝑛+1

) ,

(6)

for 𝑛 = 0, 1, . . . , 𝑁 − 1, whereby 𝑐
𝑛

𝑠𝑝
= 𝑐
0
is given from (1). The

approximated split solution at the point 𝑡 = 𝑡
𝑛+1 is defined by

𝑐
𝑛+1

𝑠𝑝
= 𝑐
∗∗

(𝑡
𝑛+1

).

(2) The Strang-Marchuk operator splitting: A-B-A split-
ting

𝜕𝑐
∗

(𝑡)

𝜕𝑡
= 𝐴 (𝑐

∗
(𝑡)) with 𝑡 ∈ [𝑡

𝑛
, 𝑡
𝑛+1/2

] , 𝑐
∗

(𝑡
𝑛
) = 𝑐
𝑛

𝑠𝑝
,

𝜕𝑐
∗∗

(𝑡)

𝜕𝑡
= 𝐵 (𝑐

∗∗
(𝑡)) with 𝑡 ∈ [𝑡

𝑛
, 𝑡
𝑛+1/2

] ,

𝑐
∗∗

(𝑡
𝑛
) = 𝑐
∗

(𝑡
𝑛+1/2

) ,

𝜕𝑐
∗∗∗

(𝑡)

𝜕𝑡
= 𝐴 (𝑐

∗
(𝑡)) with 𝑡 ∈ [𝑡

𝑛+1/2
, 𝑡
𝑛+1

] ,

𝑐
∗∗∗

(𝑡
𝑛+1/2

) = 𝑐
∗∗

(𝑡
𝑛+1

) ,

(7)

where 𝑡
𝑛+1/2

= 𝑡
𝑛

+ 𝜏/2, 𝜏 is the local time-step. The
approximate split solution at the point 𝑡 = 𝑡

𝑛+1 is defined by
𝑐
𝑛+1

𝑠𝑝
= 𝑐
∗∗∗

(𝑡
𝑛+1

).

(3) Iterative splitting with respect to one operator

𝜕𝑐
𝑖
(𝑡)

𝜕𝑡
= 𝐴 (𝑐

𝑖
(𝑡)) + 𝐵 (𝑐

𝑖−1
(𝑡)) , with 𝑐

𝑖
(𝑡
𝑛
) = 𝑐
𝑛
,

𝑖 = 1, 2, . . . , 𝑚,

(8)

where 𝑐
0
(𝑡
𝑛
) = 𝑐

𝑛
, 𝑐
−1

= 0, and 𝑐
𝑛 is the known

split approximation at the time level 𝑡 = 𝑡
𝑛. The split

approximation at the time level 𝑡 = 𝑡
𝑛+1 is defined by 𝑐

𝑛+1
=

𝑐
𝑚+1

(𝑡
𝑛+1

).

2.1. Error Analysis of the Classical Splitting Schemes. In the
following, we discuss the abstract error analysis with respect
to the Lie operator conventions.

We associate a new operator 𝐹 which is a linear Lie
operator.

Definition 1. For the given operator 𝐹 we associate a new
operator, denoted by 𝐹.

This Lie operator acts on the space of the differentiable
operators of the type

𝑆 󳨀→ 𝑆 (9)

and maps each operator 𝐺 into the new operator 𝐹(𝐺), such
that for any element 𝑐 ∈ 𝑆

(𝐹 (𝐺)) (𝑐) = (𝐺
󸀠
(𝑐) ∘ 𝐹) (𝑐) . (10)

Here the derivatives are given by the following.

Definition 2. The 𝑘th power of the Lie operator 𝐹 applied to
some operator 𝐺 can be expressed as the 𝑘th derivative of 𝐺;
that is, the relation

(𝐹
𝑘

(𝐺)) (𝑐) =
𝜕
𝑘
𝐺 (𝑐)

𝜕𝑡𝑘
(11)

is valid for all 𝑘 = 1, 2, . . ..

We deal with the problem (1) and split the operator 𝐹

into the sum 𝐴 + 𝐵; then we have the following results of the
abstract splitting errors. We have an appropriate norm ‖ ⋅ ‖ in
a general Banach space X.

Theorem 3. The splitting error for the A-B splitting is given by

󵄩󵄩󵄩󵄩 Err𝐴-𝐵,1,2
󵄩󵄩󵄩󵄩 = 𝜏 ((𝐵

󸀠
(𝑐) ∘ 𝐴) (𝑐) − (𝐴

󸀠
(𝑐) ∘ 𝐵) (𝑐))

+ 𝑂 (𝜏
2
) ,

(12)

The splitting error of the Strang splitting is given by

ErrStrang,1,2 =
1

24
𝜏
2

([𝐵, [𝐵, 𝐴]] (𝑐) − 2 [𝐴, [𝐴, 𝐵]] (𝑐))

+ 𝑂 (𝜏
4
) .

(13)

with the commutator [𝐴, 𝐵](𝑐) = (𝐵
󸀠
(𝑐)∘𝐴)(𝑐)−(𝐴

󸀠
(𝑐)∘𝐵)(𝑐).

The splitting error of the iterative splitting is given by

󵄩󵄩󵄩󵄩 Erriter ,𝑖 (𝑡)
󵄩󵄩󵄩󵄩 = 𝜏
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐹
2

(𝐼)
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩 Erriter ,𝑖−1 (𝑡)
󵄩󵄩󵄩󵄩 ,

for 𝜏
𝑛

= 𝑡 − 𝑡
𝑛
,

(14)

where one assumes that the previous error ‖ Erriter (𝑡
𝑛
)‖ = 0.
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Proof. The splitting error for the A-B splitting is given by

Err
𝐴-𝐵 = exp (𝜏𝐴 + 𝐵) (𝐼) − (exp (𝜏𝐴) exp (𝜏𝐵)) (𝐼) (𝑐) .

(15)

We evaluate the exp-function and apply the commutator
[𝐴, 𝐵](𝑐) and obtain

Err
𝐴-𝐵,1,2 = 𝜏 ((𝐵

󸀠
(𝑐) ∘ 𝐴) (𝑐) − (𝐴

󸀠
(𝑐) ∘ 𝐵) (𝑐)) + 𝑂 (𝜏

2
) .

(16)

The splitting error of the Strang Splitting is given by

ErrStrang = exp (𝜏𝐴 + 𝐵) (𝐼)

− (exp(
𝜏

2
𝐴) exp (𝜏𝐵) exp(

𝜏

2
𝐴)) (𝐼) (𝑐) .

(17)

We evaluate the exp-function and apply twice the commuta-
tor [𝐴, 𝐵](𝑐) based on the symmetry of the scheme and obtain

ErrStrang,1,2 =
1

24
𝜏
2

([𝐵, [𝐵, 𝐴]] (𝑐) − 2 [𝐴, [𝐴, 𝐵]] (𝑐))

+ 𝑂 (𝜏
4
) ,

(18)

where the commutator is given as [𝐴, 𝐵](𝑐) = (𝐵
󸀠
(𝑐) ∘ 𝐴)(𝑐) −

(𝐴
󸀠
(𝑐) ∘ 𝐵)(𝑐).
The splitting error of the iterative splitting is given by

󵄩󵄩󵄩󵄩Erriter,𝑖 (𝑡)
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
exp ((𝜏𝐴) (𝐼))Err (𝑡

𝑛
)

+ ∫

𝑡

𝑡
𝑛

exp (((𝑡 − 𝑠) 𝐴) (𝐼)) 𝐵 (𝐼)Erriter,𝑖−1 (𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
,

≤ 𝜏
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐵 (𝐼)

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩Erriter,𝑖−1 (𝑡)
󵄩󵄩󵄩󵄩 , for 𝜏

𝑛
= 𝑡 − 𝑡

𝑛
,

(19)

where we have applied the method of variation of constants
to the linearised operators. Furthermore, we assume that the
previous error ‖Erriter(𝑡

𝑛
)‖ = 0 and Erriter,𝑖(𝑡) = 𝑢(𝑡) − 𝑢

𝑖
(𝑡) is

the error of the iterative scheme.

3. Nonlinear Multiproduct Decomposition

We apply the abstract standard splitting schemes to the
multiproduct decomposition.

We have to carry out the following steps:

(i) apply the nonlinear Strang splitting scheme,
(ii) embed the Strang splitting scheme into the multi-

product expansion.

To apply the abstract setting of a nonlinear Magnus
expansion, we deal with the following modified nonlinear
equation:

𝜕
𝑡
𝑢 = 𝐴 (𝑡, 𝑢 (𝑡)) 𝑢 (𝑡) + 𝐵 (𝑡, 𝑢 (𝑡)) 𝑢 (𝑡) , 𝑢 (0) = 𝑢

0
, (20)

where 𝐴(𝑡, 𝑢), 𝐵(𝑡, 𝑢) ∈ [0, 𝑇] × X are noncommuting
operators and X is a general Banach space; for example, X ⊂

R𝑚, where 𝑚 is the rank of the matrices.
To apply the nonlinear Magnus expansion, we deal with.

𝜕
𝑡
𝑢 = 𝐹 (𝑡, 𝑢 (𝑡)) 𝑢 (𝑡) ,

𝑢 (0) = 𝑢
0
, 𝑢 (𝑡) = exp (Ω

𝐹
(𝑡, 𝑢
0
)) ,

(21)

where the first order Magnus operator is given by Euler’s
formula

Ω
𝐹,1

(𝑡, 𝑢
0
) = ∫

𝑡

0

𝐹 (𝑠, 𝑢 (𝑠)) 𝑑𝑠 = 𝑡𝐹 (0, 𝑢
0
) , (22)

and the second order Magnus operator is given by the
midpoint rule:

Ω
𝐹,2

(𝑡, 𝑢
0
) = ∫

𝑡

0

𝐹 (𝑠, exp (Ω
𝐹,1

(𝑠, 𝑢
0
))) 𝑑𝑠,

= 𝑡𝐹 (
𝑡

2
, exp (Ω

𝐹,1
(

𝑡

2
, 𝑢
0
))) ,

= 𝑡𝐹 (
𝑡

2
,

𝑡

2
, 𝐹 (0, 𝑢

0
)) ,

(23)

to generalise this to higher order schemes; see [5].
In the following, we apply the schemes for the multiprod-

uct expansions to the time sequences, Δ𝑡 = 𝑡
𝑛+1

− 𝑡
𝑛 and

𝑛 = 1, . . . , 𝑁.
For the sequential splitting (Lie–Trotter) product we have

T
1,𝐴𝐵

(Δ𝑡) = exp (Ω
𝐴,2

(Δ𝑡, exp (Ω
𝐴,1

(Δ𝑡, 𝑢
0
))))

× exp (Ω
𝐵,1

(Δ𝑡, 𝑢
0
)) ,

(24)

where Ω
𝐴,𝑖

, Ω
𝐵,𝑖

are the Magnus expansions (see (22) and
(23)) of order 𝑖.

Furthermore, for the Strang splitting scheme [8], we
approximate the scheme based on the symmetrical splitting
by

T
2

(Δ𝑡) =
1

2
(T
1,𝐴𝐵

(Δ𝑡) + T
1,𝐵𝐴

(Δ𝑡)) . (25)

Based on the nonlinear approximations of Strang’s, we
generalise to higher order schemes the idea of the multiprod-
uct expansion (MPE):

exp (Ω
𝐹,1

(Δ𝑡, 𝑢
0
)) = exp (Ω

𝐴,1
(Δ𝑡, 𝑢

0
) + Ω
𝐵,1

(Δ𝑡, 𝑢
0
))

= ∑

𝑘

𝑐
𝑘
∏

𝑖

exp (𝑎
𝑘𝑖

Ω
𝐴,1

(Δ𝑡, 𝑢
0
))

× exp (𝑏
𝑘𝑖

Ω
𝐵,1

(Δ𝑡, 𝑢
0
)) ,

(26)

where we assume that a linearisation with the first order
integration scheme is sufficient.

For the applications, we assume we have to solve time-
irreversible problem, and 𝑎

𝑘𝑖
and 𝑏
𝑘𝑖
have to be positive.

We straightforwardly follow the derivation, based on the
linear multiproduct expansion; see [6].
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We construct T
𝑆
(Δ𝑡) as a product with ∑

𝑖
𝑎
𝑘𝑖

= 1 and
∑
𝑖
𝑏
𝑘𝑖

= 1. Based on the symmetry of the linearised scheme,
we have

T
𝑆

(−ℎ)T
𝑆

(ℎ) = 1; (27)

we skip the even orders based on the error truncation of the
Strang splitting (see [9]) and obtain

T
𝑆

(Δ𝑡) = exp (Ω
𝐴,1

(Δ𝑡, 𝑢
0
) + Ω
𝐵,1

(Δ𝑡, 𝑢
0
))

+ Δ𝑡
3
𝐸
3

+ Δ𝑡
5
𝐸
5

+ ⋅ ⋅ ⋅ ,

(28)

where the error terms 𝐸
𝑖
are nested commutators of Ω

𝐴,1
and

Ω
𝐵,1

depending on the specific form ofT
𝑆
.

We applyT
𝑆
at step size Δ𝑡/𝑘 and obtain

T
𝑘

𝑆
(

Δ𝑡

𝑘
) = exp (Ω

𝐴,1
(Δ𝑡, 𝑢

0
) + Ω
𝐵,1

(Δ𝑡, 𝑢
0
))

+ 𝑘
−2

Δ𝑡
3
𝐸
3

+ 𝑘
−4

Δ𝑡
5
𝐸
5

+ ⋅ ⋅ ⋅ ;

(29)

this serves as the kernel of a linearised multiproduct expan-
sion; see [6].

The first schemes are given by

T
4

(Δ𝑡) = −
1

3
T
2

(Δ𝑡) +
4

3
T
2

2
(

Δ𝑡

2
) , (30)

T
6

(Δ𝑡) =
1

24
T
2

(Δ𝑡) −
16

15
T
2

2
(

Δ𝑡

2
) +

81

40
T
3

2
(

Δ𝑡

3
) . (31)

3.1. Error Analysis of the Nonlinear Multiproduct Expansion.
We deal with the following error of a linearised MPE based
on the first order nonlinear Magnus expansion operators.
In Theorem 4, we discuss the improvement of a lower order
Strang splitting scheme, given as T

2
(see (25)), to a higher

order scheme based on linearized multiproduct expansion
(MPE) methods. The idea is based on an iterative evaluation
of the extrapolation methods, see [6], which allows to receive
higher accuracy.

Theorem 4. For the numerical solution of (20), one considers
the linearised MPE algorithm (26) of linear order 2𝑛. One has
the following convergence result:

󵄩󵄩󵄩󵄩𝑆
𝑚

− exp (Ω
𝐴,1

(𝑚Δ𝑡, 𝑢
0
) + Ω
𝐵,1

(𝑚Δ𝑡, 𝑢
0
))

󵄩󵄩󵄩󵄩

≤ 𝐶𝑂 (Δ𝑡
2𝑛+1

) , 𝑚Δ𝑡 ≤ 𝑡 end ,

(32)

where 𝑆 = ∑
𝑛

𝑖=1
𝑐
𝑖
T
𝑘
𝑖

2
(Δ𝑡/𝑘
𝑖
) and 𝐶 is to be chosen uniformly

on bounded time intervals and independently of 𝑚 and Δ𝑡.

Proof. We apply the telescoping identity and the assumption
to split the linearised operators and obtain

(𝑆
𝑚

− exp (Ω
𝐴,1

(𝑚Δ𝑡, 𝑢
0
) + Ω
𝐵,1

(𝑚Δ𝑡, 𝑢
0
)))

=

𝑚−1

∑

]=0

𝑆
𝑚−]−1

(𝑆 − exp (Ω
𝐴,1

(Δ𝑡, 𝑢
0
) + Ω
𝐵,1

(Δ𝑡, 𝑢
0
)))

× exp (Ω
𝐴,1

(]Δ𝑡, 𝑢
0
) + Ω
𝐵,1

(]Δ𝑡, 𝑢
0
)) ,

(33)

where 𝑆 = ∑
𝑛

𝑖=1
𝑐
𝑖
T
𝑘
𝑖

2
(Δ𝑡/𝑘
𝑖
).

The linearised MPE expansion can be estimated (see [6])
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑

𝑖=1

𝑐
𝑖
T
𝑘
𝑖

2
(

Δ𝑡

𝑘
𝑖

)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ exp (𝑐𝜔Δ𝑡) , (34)

and the consistency is given by estimating the second part of
(33):

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑

𝑖=1

𝑐
𝑖
T
𝑘
𝑖

2
(

Δ𝑡

𝑘
𝑖

) − exp (Ω
𝐴,1

(]Δ𝑡, 𝑢
0
) + Ω
𝐵,1

(]Δ𝑡, 𝑢
0
))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝐶𝑂 (Δ𝑡
2𝑛+1

) ;

(35)

such a result is obtained by the linear MPE version. So for the
first order linearisation, we obtain a consistent scheme with
higher accuracy.

Remark 5. The results in Theorem 4 combine splitting of a
nonlinear equation in two operators, see (20), and extrapo-
lating a standard splitting scheme, here given as second order
Strang splitting scheme, to a higher order approach with the
order 2𝑛, while 𝑛 are the stages of the extrapolation scheme.
Here the novel result is based on the extension to nonlinear
higher order results, while the operators can be linearized and
approached with linearized MPE schemes.

4. Improving the Initialisation of
Splitting Methods

Adelicate problem in splittingmethods is to achieve sufficient
accuracy in the first splitting steps; see [10]. Based on the
accuracy of initial starting solution, the results of all the next
methods, for example MPE schemes or iterative scheme, are
dependent and influenced by the order of the initialization
process; see [11].Therefore, it is important to take into account
the accuracy of the initial solution. In the following, we
discuss such on idea to improve the initialization process with
the help of the Zassenhaus formula.

The improvement of the initial solution is based on the
combination of the novel commutators, that are given in
Section 2. Such a new combination allows to reduce the
splitting error between the two novel operators 𝐴 and 𝐵; see
(1).

In Theorem 6, we discuss the improvement of the initial
starting solution via the Zassenhaus exponents.

Theorem 6. One solves the initial value problem by using
the method given in (5) and (6). One assumes bounded and
nonlinear operators 𝐴 and 𝐵.

The consistency error of the A-B splitting is O(𝑡); then one
can improve the error of the A-B splitting scheme to O(𝑡

𝑝
), 𝑝 >

1, by improving the starting conditions 𝑐
0
by

𝑐
0

= (𝜋
𝑝

𝑗=2
exp (𝐶

𝑗
𝑡
𝑗
)) 𝑐
0
, (36)

where the 𝐶
𝑗
are called the nonlinear Zassenhaus exponents,

which are given by the novel commutator, for example, the
linear case given in [12].
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The local splitting error of A-B splitting method can be
expressed as follows:

𝜌
𝑛

= (exp (𝜏
𝑛

(𝐴 + 𝐵))(𝐼) − exp (𝜏
𝑛
𝐵)(𝐼) exp (𝜏

𝑛
𝐴)(𝐼))(𝑐

𝑛

𝑠𝑝
)

= 𝐶
𝑇
𝜏
𝑝+1

𝑛
+ O (𝜏

𝑝+2

𝑛
) ,

(37)

where 𝐶
𝑇
is a function of the nonlinear Lie brackets of 𝐴 and

𝐵.

Proof. Let us consider the subinterval [0, 𝑡], where 𝜏 = 𝑡.Then
the solution of the subproblem (5) is

𝑐
∗

(𝑡) = exp (𝑡𝐴) (𝐼) (𝑐
0
) (38)

and after improving the initialisation, we have

𝑐
∗

(𝑡) = exp (𝑡𝐴) (𝐼) (𝜋
𝑝

𝑗=2
exp (𝐶

𝑗
𝑡
𝑗
)) (𝐼) (𝑐

0
) (39)

and so the solution of the subproblem (6) becomes

𝑐
∗∗

(𝑡) = exp (𝑡𝐵) (𝐼) exp (𝑡𝐴) (𝐼) (𝜋
𝑝

𝑗=2
exp (𝐶

𝑗
𝑡
𝑗
)) (𝐼) 𝑐

0

= exp (𝜏
𝑛

(𝐵 + 𝐴)) (𝐼) (𝑐
0
) + O (𝑡

𝑝+1
)

(40)

with the help of the Zassenhaus product formula.

Remark 7. The novel result in Theorem 6 is an improvement
of the first splitting step to a higher order result of O(𝑡

𝑝
), 𝑝 >

1, where 𝑝 is the number of the Zassenhaus exponents. Such
an additional prestep can be done for all splitting schemes, for
example,A-B splitting, Strang splitting, iterative splitting and
so on. Therefore the additional prestep can be done parallel
to the existing splitting schemes and can be improved at
the end of the computation the splitting results to the order
O(𝑡
𝑝
1
+𝑝
2), 𝑝
1
, 𝑝
2

> 1, where 𝑝
1
is the order of the splitting

approach and 𝑝
2
is the order of the Zassenhaus formula.

Remark 8. For example, the second order A-B splitting after
improving the initialisation is

𝑐
∗∗

(𝑡) = ( exp (𝑡𝐵) (𝐼) exp (𝑡𝐴) (𝐼)

× exp (−
1

2
𝑡
2

[𝐵, 𝐴]) (𝐼)) (𝑐
0
)

= exp (𝑡 (𝐵 + 𝐴)) (𝐼) (𝑐
0
) + O (𝑡

3
) ,

(41)

where the novel order of the new scheme isO(𝑡
𝑝
1
+𝑝
2), 𝑝
1
, 𝑝
2

>

1, with 𝑝
1

= 1 and 𝑝
2

= 2.

A next higher order is a third order A-B splitting after
improving the initialisation is

𝑐
∗∗

(𝑡) = (exp (𝑡𝐵) (𝐼) exp (𝑡𝐴) (𝐼) exp(−
1

2
𝑡
2

[𝐵, 𝐴])

× (𝐼) exp (
1

6
𝑡
3

[𝐵, [𝐵, 𝐴]] (𝐼)

−
1

3
[𝐴, [𝐴, 𝐵]] (𝐼))) (𝑐

0
)

= exp (𝑡 (𝐵 + 𝐴)) (𝐼) (𝑐
0
) + O (𝑡

4
) ,

(42)

where the novel order of the new scheme isO(𝑡
𝑝
1
+𝑝
2), 𝑝
1
, 𝑝
2

>

1, with 𝑝
1

= 1 and 𝑝
2

= 3, and the commutator is given by
[𝐴, 𝐵](𝑐) = (𝐵

󸀠
(𝑐) ∘ 𝐴)(𝑐) − (𝐴

󸀠
(𝑐) ∘ 𝐵)(𝑐).

Remark 9. The same idea can also be carried out using the
Strang splittingmethod; see the linear case in [10].We achieve
a novel order of the new scheme toO(𝑡

𝑝
1
+𝑝
2), 𝑝
1
, 𝑝
2

> 1, with
𝑝
1

= 2 and 𝑝
2
being the number of Zassenhaus exponents.

5. Alternative Approaches: Iterative
Schemes for Linearisation

We next discuss fixed-point iteration and Newton’s method
as alternative approaches to linearise nonlinear problems.

We are to solve the nonlinear problem

𝐹 (𝑥) = 0, (43)

where 𝐹 : R𝑛 → R𝑛.

5.1. Fixed-Point Iteration. The nonlinear equations can be
formulated as fixed-point problems:

𝑥 = 𝐾 (𝑥) , (44)

where𝐾 is the fixed-point map and is nonlinear; for example,
𝐾(𝑥) = 𝑥 − 𝐹(𝑥).

A solution of (45) is called a fixed point of the map 𝐾.
The fixed-point iteration is given by

𝑥
𝑖+1

= 𝐾 (𝑥
𝑖
) (45)

and is called a nonlinear Richardson iteration, a Picard
iteration, or the method of successive substitution.

Definition 10. Suppose that Ω ≤ R𝑛 and 𝐺 : Ω → R𝑚. 𝐺 is
Lipschitz continuous on Ω with Lipschitz constant 𝛾 if

󵄩󵄩󵄩󵄩𝐺 (𝑥) − 𝐺 (𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝛾

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , (46)

for all 𝑥, 𝑦 ∈ Ω.

For the convergence, we have to assume that 𝐾 is a
contraction map on Ω with Lipschitz constant 𝛾 < 1.

In the following, we present new results, in Algorithm 14,
to an application to a nonlinearHamiltonian problem, see [3].
The model equations are numerically simulated in Section 6.
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Algorithm 11. We apply the fixed-point iterative scheme to
decouple the nonseparable Hamiltonian problem

q̇
𝑖
=

𝜕𝐻

𝜕p
(p
𝑖
, q
𝑖−1

) , (47)

ṗ
𝑖
= −

𝜕𝐻

𝜕q
(p
𝑖−1

, q
𝑖
) , (48)

while we have the initial condition for the fixed-point itera-
tion:

(p
0
, q
0
) = (p (𝑡

𝑛
) , q (𝑡

𝑛
)) . (49)

The initial starting solutions for the ith iterative steps are
given as follows:p

𝑖−1
(𝑡), q
𝑖−1

(𝑡) are the solutions of the (𝑖−1)th
iterative step and we have the initial condition for the fixed-
point iteration: (p

0
(𝑡), q
0
(𝑡))
𝑡

= (p(𝑡
𝑛
), q(𝑡
𝑛
))
𝑡.

We assume that we have convergent results after 𝑖 =

1 . . . , 𝑚 iterative steps or with the stopping criterion:

max (
󵄩󵄩󵄩󵄩p𝑖+1 − p

𝑖

󵄩󵄩󵄩󵄩 ,
󵄩󵄩󵄩󵄩q𝑖+1 − q

𝑖

󵄩󵄩󵄩󵄩) ≤ err, (50)

while ‖⋅‖ is the Euclidean norm (or a simple vector-norm, e.g.,
𝐿
2
) and the error bound is given, for example, as err = 10

−4.

Example 12. In the following, we present the application of
the iterative Verlet as fixed-point scheme to the nonlinear
Hamiltonian problem (47)-(48).

(1) We start with (q
0
, p
0
)
𝑡

= (q(𝑡
𝑛
), p(𝑡
𝑛
))
𝑡.

(2) The iterative scheme based on the iterative Verlet, see
[3], is given as

q
𝑖
(𝑡) = q (𝑡

𝑛
)

+ ℎ
𝜕𝐻

𝜕p
(p (𝑡
𝑛
) −

ℎ

2

𝜕𝐻

𝜕q
(p
𝑖−1

(𝑡) , q
𝑖−1

(𝑡)) , q (𝑡
𝑛
)) ,

(51)

p
𝑖
(𝑡) = p (𝑡

𝑛
) −

ℎ

2

𝜕𝐻

𝜕q
(p
𝑖−1

(𝑡) , q
𝑖−1

(𝑡))

−
ℎ

2

𝜕𝐻

𝜕q
((p (𝑡

𝑛
) −

ℎ

2

𝜕𝐻

𝜕q
(p
𝑖−1

(𝑡) , q
𝑖−1

(𝑡))) ,

q (𝑡
𝑛
) + ℎ

𝜕𝐻

𝜕p

× (p (𝑡
𝑛
) −

ℎ

2

𝜕𝐻

𝜕q

× (p
𝑖−1

(𝑡) , q
𝑖−1

(𝑡)) , q (𝑡
𝑛
) )) ,

(52)

for 𝑡 ∈ [𝑡
𝑛
, 𝑡
𝑛+1

] , ℎ = 𝑡
𝑛+1

− 𝑡
𝑛
, 𝑛 = 0, 1, . . . , 𝑁, (53)

𝑖 = 1, 2, 3 . . . , 𝐼, (54)

where the stopping criterion is 𝐼 = 3 or 4 or with (62).

Remark 13. For the alternative scheme, we can also improve
the initialisation process; see Section 4 for the standard
schemes.

To improve the initial solution we can start with the
following preprocesses.

(1) We start with a result of the explicit Euler method:

(q
0
, p
0
)
𝑡

= (q(𝑡
𝑛+1

)
Euler1st

, p(𝑡
𝑛+1

)
Euler1st

)
𝑡

. (55)

(2) We start with a result of the explicit RK method:

(q
0
, p
0
)
𝑡

= (q(𝑡
𝑛+1

)
RK4th

, p(𝑡
𝑛+1

)
RK4th

)
𝑡

. (56)

Such an improvement allows to obtain higher order
results and reduce the reduction of the order due to lower
order initial solutions; see [11].

5.2. Newton’s Method. We solve the nonlinear operator equa-
tion (43).

Here, 𝐹 : 𝐷 ⊂ 𝑋 → 𝑌 with the Banach spaces 𝑋, 𝑌

is given with the norms ‖ ⋅ ‖
𝑋
and ‖ ⋅ ‖

𝑌
. Let 𝐹 be at least

continuously differentiable; furthermore, we assume that 𝑥
0

is a starting solution of the unknown solution 𝑥
∗.

Then the successive linearisation leads to general Newton’s
method:

𝐹
󸀠
(𝑥
𝑖
) Δ𝑥
𝑖
= −𝐹 (𝑥

𝑖
) , (57)

where Δ𝑥
𝑖
= 𝑥
𝑖+1

− 𝑥
𝑖
and 𝑖 = 0, 1, 2, . . ..

The method finds the solution to a nonlinear problem by
solving a sequence of linear problems of the same kind.

Algorithm 14. We apply Newton’s method to the non-
separable Hamiltonian problem:

q̇ =
𝜕𝐻

𝜕p
(p, q) ,

ṗ = −
𝜕𝐻

𝜕q
(p, q) ,

(58)

F
1

(p, q) = q̇ −
𝜕𝐻

𝜕p
(p, q) = 0,

F
2

(p, q) = ṗ +
𝜕𝐻

𝜕q
(p, q) = 0,

(59)

where 0 is the zero vector.
Further, we have the initial condition, which are given as

follows:

(p
0
, q
0
) = (p (𝑡

𝑛
) , q (𝑡

𝑛
)) . (60)

The initial starting solutions for the ith iterative steps are
given as follows:p

𝑖−1
(𝑡), q
𝑖−1

(𝑡) are the solutions of the (𝑖−1)th
iterative step and we have the initial condition for the fixed-
point iteration: (p

0
(𝑡), q
0
(𝑡))
𝑡

= (p(𝑡
𝑛
), q(𝑡
𝑛
))
𝑡.
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We apply Newton’s method in its discrete form, which is
given as

q
𝑖
= q
𝑖−1

− 𝐷(F
1

(p
𝑖−1

, q
𝑖−1

))
−1

(F
1

(p
𝑖−1

, q
𝑖−1

)) ,

with 𝐷 (F
1

(p
𝑖−1

, q
𝑖−1

))

=
𝜕

𝜕q
𝑖−1

(q̇
𝑖−1

−
𝜕𝐻

𝜕p
(p
𝑖−1

, q
𝑖−1

)),

p
𝑖
= p
𝑖−1

− 𝐷(F
2

(p
𝑖−1

, q
𝑖−1

))
−1

(F
2

(p
𝑖−1

, q
𝑖−1

)) ,

with 𝐷 (F
2

(p
𝑖−1

, q
𝑖−1

))

=
𝜕

𝜕p
𝑖−1

(ṗ
𝑖−1

−
𝜕𝐻

𝜕q
(p
𝑖−1

, q
𝑖−1

)),

𝑖 = 1, 2, 3, . . . , 𝐼,

(61)

where 𝐷 is the Jacobian matrix (see [13]) and p
𝑖−1

(𝑡), q
𝑖−1

(𝑡)

are the given solutions of the (𝑖 − 1)th iterative step.
We assume that we have convergent results after 𝑖 =

1 . . . , 𝐼 iterative steps or with the stopping criterion:

max (
󵄩󵄩󵄩󵄩p𝑖 − p

𝑖−1

󵄩󵄩󵄩󵄩 ,
󵄩󵄩󵄩󵄩q𝑖 − q

𝑖−1

󵄩󵄩󵄩󵄩) ≤ err, (62)

while ‖⋅‖ is the Euclidean norm (or a simple vector-norm, e.g.,
𝐿
2
) and the error bound is given, for example, as err = 10

−4.

Example 15. We apply the iterative Verlet scheme to the
underlying fixed-point problem (59) of nonlinear Hamilto-
nian problem (58).

(1) We start with (q
0
, p
0
)
𝑡

= (q(𝑡
𝑛
), p(𝑡
𝑛
))
𝑡.

(2) The iterative scheme based on the iterative Verlet (see
[3]) is given in (51)–(53).

Remark 16. For the improvement method, we can apply the
weighted Newton method. We try to skip the delicate outer
diagonals in the Jacobian matrix 𝐷 and apply

q
𝑖
= q
𝑖−1

− 𝐷(F
1

(p
𝑖−1

, q
𝑖−1

) + 𝛿
1
q
𝑖−1

)
−1

× (F
1

(p
𝑖−1

, q
𝑖−1

) + 𝜖
1
q
𝑖−1

) ,

p
𝑖
= p
𝑖−1

− 𝐷(F
2

(p
𝑖−1

, q
𝑖−1

) + 𝛿
2
p
𝑖−1

)
−1

× (F
2

(p
𝑖−1

, q
𝑖−1

) + 𝜖
2
p
𝑖−1

) ,

𝑖 = 1, 2, 3, . . . , 𝐼,

(63)

where the function 𝛿
1
, 𝛿
2
can be applied as a scalar, for

example 𝛿 = 10
−6, and the same with 𝜖

1
, 𝜖
2
; see [13]. It is

important to ensure that 𝛿 is small enough to preserve the
convergence.

Remark 17. Linearisation methods can be applied to MPE
methods.NonseparableHamiltonian problems can be decou-
pled into separable Hamiltonian problems; see the ideas in
[14].

6. Numerical Examples

In this section, we treat experiments to verify the benefit
of our methods: we treat nonseparable Hamiltonian with a
nonlinear kinetic and nonlinear potential.

The motivation arose from simulating a Levitron.
A Levitron is described on the basis of rigid body theory;

see the convention of [15] for the Euler angles. The angular
velocity 𝜔

𝜙
is along the 𝑧-axis of the system, 𝜔

𝜃
is along the

line of the nodes, and 𝜔
𝜓
is along the 𝑧

󸀠-axis. We transform
into body coordinates and obtain

𝜔 = (

̇𝜙 sin 𝜃 sin𝜓 + ̇𝜃 cos𝜓

̇𝜙 sin 𝜃 cos𝜓 + ̇𝜃 sin𝜓

̇𝜙 cos 𝜃 + 𝜓̇

) . (64)

The kinetic energy can be written as

𝑇 =
1

2
[𝑚 (𝑥̇

2
+ ̇𝑦
2

+ 𝑧̇
2
)

+𝐴 ( ̇𝜃
2

+ ̇𝜙
2sin2𝜃) + 𝐶(𝜓̇ + ̇𝜙 cos 𝜃)

2

] .

(65)

Thepotential energy𝑈 is given by the sumof the gravitational
energy and the interaction potential of the Levitron in the
magnetic field of the base plate and is

𝑈 = 𝑚𝑔𝑧 − 𝜇 (sin𝜓 sin 𝜃
Φ

𝑥
+ cos𝜓 sin 𝜃

Φ

𝑦
+ cos 𝜃

Φ

𝑧
)

(66)

with 𝑚𝑢 the magnetic moment of the top and Φ the
magnetostatic potential. Furthermore, we use the notation of
[16] and the potential of a ring dipole as an approximation
for a magnetised plane with a centred unmagnetised hole.
Furthermore, we introduced a nondimensionalisation for the
variables and the magnetostatic potential:

Ψ =
𝑍

(1 + 𝑍2)
3/2

− (𝑋
2

+ 𝑌
2
)

3

4

(2𝑍
2

− 3) 𝑍

(1 + 𝑍2)
7/2

. (67)

The lengths were scaled by the radius 𝑅 of the base plane,
mass is measured in units of 𝑚, and energy in units of 𝑚𝑔ℎ.
Therefore the one time unit is √𝑅/𝑔. So the dimensionless
Hamiltonian with q = (X,Y,Z, 𝜃, 𝜓, 𝜙) is given by

𝐻 =
1

2
(𝑝
2

1
+ 𝑝
2

2
+ 𝑝
2

3
+

𝑝
2

4

𝑎
+

(𝑝
5

− 𝑃 − 6 cos 𝑞
4
)
2

𝑎sin2𝑞
4

+
𝑝
6

𝑐
)

− 𝑀 [sin 𝑞
4

(cos 𝑞
5

𝜕Ψ

𝜕𝑞
1

sin 𝑞
5

𝜕Ψ

𝜕𝑞
2

) + cos 𝑞
4

𝜕Ψ

𝜕𝑞
3

] + 𝑞
3

(68)

with 𝑎 and 𝑐 being the nondimensionalised inertial parame-
ters and 𝑀 being the ratio of the gravitational and magnetic
energy.
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For the nonseparable Hamiltonian of (68), we have

q̇ =
𝜕𝐻

𝜕p
(p, q)

= (𝑝
1
, 𝑝
2
, 𝑝
3
,
𝑝
4

𝑎
,
(𝑝
5

− 𝑝
6
cos 𝑞
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The same is given for

ṗ = −
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(70)

𝐴 and𝐵 are linearised Lie operators and their vector fields
are given by

𝐴 =
𝜕𝐻

𝜕p
⋅

𝜕

𝜕q
, 𝐵 = −

𝜕𝐻

𝜕q
⋅

𝜕

𝜕p
. (71)

The transfer to the operators is given in the following
description.

The exponential operators eℎ𝐴 and eℎ𝐵 are then just
shift operators, with T

2
(ℎ) being a symmetric second order

splitting method:

T
2,VV (ℎ) (Δ𝑡) = 𝑒

(Δ𝑡/2)𝐵
𝑒
Δ𝑡𝐴

𝑒
(Δ𝑡/2)𝐵

. (72)

This corresponds to the velocity form of the Verlet algorithm
(VV).

Furthermore, the splitting scheme

T
2,PV (ℎ) (Δ𝑡) = 𝑒

(Δ𝑡/2)𝐴
𝑒
Δ𝑡𝐵

𝑒
(Δ𝑡/2)𝐴 (73)

corresponds to the position form of the Verlet algorithm
(PV).

Table 1: Numerical results for MPE method supplied with the
iterative Verlet algorithm.

Verlet
Timestep 10

−6
10
−6

10
−6

Iterations per step 1 2 4
Stability Ok Ok Ok
Computing time 67min 120min 219min
Mean error 0.068 0.068 0.068
Maximal error 0.0187 0.0188 0.0187

Table 2: Stability and computational time with 4th order explicit
Runge-Kutta.

Runge-Kutta
Timestep 10

−5

Number of steps 10
9

Computing time 119min
Stability Ok

Solving the equations of motion (69) and (70) numeri-
cally with nonlinear MPE methods based on the Verlet algo-
rithm, we plot the movement of the centre of mass as shown
in Figure 1. The axes in the plot show the nondimensional
variables 𝑋, 𝑌, and 𝑍. The trajectory starts at the equilibrium
point (𝑞

1
, 𝑞
2
, 𝑞
3
) = (0, 0, 1.72).

The linearisation is done with two and four iterations per
time-step, to see whether howmany iterations are reasonable.
The results are shown in Figure 2.

In a first comparison, we deal with the second orderVerlet
algorithm and improve the scheme with iterative steps. The
tables should give an impression of the timescales of the
problem and the errors; see Table 1.

Remark 18. The iterations improve the algorithm, when we
apply sufficiently accurate initial solutions. We also obtain
a benefit in reducing the computational time instead of
applying only expensive Runge-Kutta methods.

We improve the solution with an extrapolation scheme
with fourth order. We can see the errors this algorithm
produces in comparison with the Runge-Kutta method with
small time-steps (10

−5 time units per step). Figure 3 presents
the results of the 4th order MPE method with different time-
steps and compares it with the Runge-Kutta solution.

Also we tested the 6th order MPE method with different
time-steps and compared it with the Runge-Kutta method;
see Figure 4.

Table 2 gives an impression of the standard higher order
Runge-Kutta solver (4th order scheme) with the timescales of
the problem and the errors.

We could improve the accuracy and computational time
needed by using higher order extrapolation schemes; see
Table 3.

Remark 19. We improved the basic splitting schemes with the
Verlet algorithm and extrapolation schemes. At least more
accurate solutionswere achieved and computational timewas
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Figure 1: Trajectory calculated with MPE method supplied with the Verlet algorithm.
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Figure 2: Errors of the numerical scheme for MPE method supplied with the iterative Verlet method.
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Figure 3: Errors of the numerical scheme: 4th order extrapolation scheme with the Verlet method and kernel (ℎ = 10
−5).
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Table 3: Errors and computational time with 4th and 6th order MPE schemes using Verlet scheme as kernel.

Extrapolation 4th order Extrapolation 6th order
Timestep 10

−5
10
−6

10
−5

10
−6

Number of steps 10
8

10
9

10
8

10
9

Computing time 14min 142min 29min 272min
Mean error 0.007 0.007 0.0068 0.0068
Maximal error 0.0226 0.0234 0.0188 0.0188

6th order MPE
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t (time)
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r
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Figure 4: Errors of the numerical scheme: 6th order extrapolation
scheme with Verlet method as kernel (ℎ = 10

−5).

saved. The best result was achieved with order 10 and ℎ =

10
−3, and for such a case we could improve the results and

obtain them faster than with standard RK schemes.

Remark 20. We were able to accelerate the computation with
extrapolation methods and increase the time-steps. Because
of the accuracy of the underlying kernel, which is an iterative
Verlet method with 𝑖 = 1, we were able to remain at order 8
and only 10

−3 as the time-step.

7. Conclusions and Discussion

Wepresented novelMPE approaches to nonlinear differential
equations. Based on the ideas of the nonlinear Magnus
expansion and linearisation schemes, we derived a linearised
MPE approach possessing higher accuracy. We discussed the
numerical errors and different improvements of the under-
lying splitting methods. Numerical examples confirmed the
application to nonlinear equations. In the future, wewill focus
on the development of improved MPE methods for more
highly nonlinear approaches.

References

[1] M. V. Berry, “The levitron: an adiabatic trap for Spins,” Proceed-
ings of the Royal Society A, vol. 452, pp. 1207–1220, 1996.

[2] H. R. Dullin and R. W. Easton, “Stability of levitrons,” Physica
D, vol. 126, no. 1-2, pp. 1–17, 1999.

[3] J. Geiser, “Multiscale methods for levitron problems: theory
and applications,” Computers and Structures, vol. 122, pp. 27–32,
2013.

[4] S. Blanes, F. Casas, J. A. Oteo, and J. Ros, “The Magnus
expansion and some of its applications,” Physics Reports, vol.
470, no. 5-6, pp. 151–238, 2009.

[5] F. Casas and A. Iserles, “Explicit Magnus expansions for non-
linear equations,” Journal of Physics A, vol. 39, no. 19, pp. 5445–
5461, 2006.

[6] S. A. Chin and J. Geiser, “Multi-product operator splitting as
a general method of solving autonomous and nonautonomous
equations,” IMA Journal of Numerical Analysis, vol. 31, no. 4, pp.
1552–1577, 2011.

[7] S. A. Chin and P. Anisimov, “Gradient symplectic algorithms
for solving the radial schrödinger equation,” Journal of Chemical
Physics, vol. 124, no. 5, Article ID 054106, 2006.

[8] G. Strang, “On the construction and comparison of difference
schemes,” SIAM Journal on Numerical Analysis, vol. 5, pp. 506–
517, 1968.

[9] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical
Integration Structure-Preserving Algorithms for Ordinary Dif-
ferential Equations, vol. 31 of Springer Series in Computational
Mathematics, Springer, Berlin, Germany, 2002.
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