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The purpose of this paper is extending the convergence analysis of Han and Yuan (2012) for alternating direction method of
multipliers (ADMM) from the strongly convex to a more general case. Under the assumption that the individual functions are
composites of strongly convex functions and linear functions, we prove that the classical ADMMfor separable convex programming
with two blocks can be extended to the case with more than three blocks. The problems, although still very special, arise naturally
from some important applications, for example, route-based traffic assignment problems.

1. Introduction

In this paper, we consider the convex programming with
separable functions:

min{ 𝑚∑
𝑖=1

𝑓
𝑖
(𝑥
𝑖
) | 𝑚∑
𝑖=1

𝐴
𝑖
𝑥
𝑖
= 𝑏, 𝑥

𝑖
∈ X
𝑖
, 𝑖 = 1, 2, . . . , 𝑚} ,

(1)

where 𝑓
𝑖
: R𝑛𝑖 → R ∪ {+∞} (𝑖 = 1, 2, . . . , 𝑚) are closed

proper convex functions (not necessarily smooth); 𝐴
𝑖
∈

R𝑙×𝑛𝑖 (𝑖 = 1, 2, . . . , 𝑚); X
𝑖
⊆ R𝑛𝑖 (𝑖 = 1, 2, . . . , 𝑚) are closed

convex sets; 𝑏 ∈ R𝑙 and ∑𝑚
𝑖=1

𝑛
𝑖
= 𝑛. Throughout the paper,

we assume that the solution set of (1) is nonempty.
For the special case of (1) with𝑚 = 2,

min {𝑓
1
(𝑥
1
) + 𝑓
2
(𝑥
2
) |

𝐴
1
𝑥
1
+ 𝐴
2
𝑥
2
= 𝑏, 𝑥

𝑖
∈ X
𝑖
, 𝑖 = 1, 2} , (2)

the problem has been studied extensively. Among lots of
numerical methods, one of the most popular methods is

the alternating direction method of multipliers (ADMM)
which was presented originally in [1, 2]. The iterative scheme
of ADMM for (2) is as follows:

𝑥𝑘+1
1

= argmin{𝑓
1
(𝑥
1
) − (𝜆𝑘)𝑇𝐴

1
𝑥
1

+𝛽2 󵄩󵄩󵄩󵄩󵄩𝐴1𝑥1 + 𝐴2𝑥𝑘2 − 𝑏󵄩󵄩󵄩󵄩󵄩
2 | 𝑥
1
∈ X
𝑖
} ;

𝑥𝑘+1
2

= argmin{𝑓
2
(𝑥
2
) − (𝜆𝑘)𝑇𝐴

2
𝑥
2

+𝛽2 󵄩󵄩󵄩󵄩󵄩𝐴1𝑥𝑘+11 + 𝐴
2
𝑥
2
− 𝑏󵄩󵄩󵄩󵄩󵄩2 | 𝑥2 ∈ X

2
} ;

𝜆𝑘+1 = 𝜆𝑘 − 𝛽 (𝐴
1
𝑥𝑘+1
1

+ 𝐴
2
𝑥𝑘+1
2

− 𝑏) ,
(3)

where 𝜆𝑘 is Lagrange multiplier associated with the linear
constraints and 𝛽 > 0 is the penalty parameter. The
convergence of ADMM for (2) was also established under
the condition that the involved functions are convex and the
constrained sets are convex too.



2 Abstract and Applied Analysis

While there are diversified applications whose objective
function is separable into𝑚 ≥ 3 individual convex functions
without coupled variables, such as traffic problems, the
problem of recovering the low-rank, sparse components of
matrices from incomplete and noisy observation in [3], the
constrained total-variation image restoration and reconstruc-
tion problem in [4, 5], and the minimal surface PDE problem
in [6], it is thus natural to extend ADMM from 2 blocks to𝑚
blocks, resulting in the iterative scheme:

𝑥𝑘+1
1

= argmin {𝑓
1
(𝑥
1
) − (𝜆𝑘)𝑇𝐴

1
𝑥
1

+ 𝛽2 󵄩󵄩󵄩󵄩󵄩𝐴1𝑥1 + 𝐴2𝑥𝑘2 + ⋅ ⋅ ⋅
+𝐴
𝑚
𝑥𝑘
𝑚
− 𝑏󵄩󵄩󵄩󵄩󵄩2 | 𝑥1 ∈ X

1
} ;

𝑥𝑘+1
2

= argmin {𝑓
2
(𝑥
2
) − (𝜆𝑘)𝑇𝐴

2
𝑥
2

+ 𝛽2 󵄩󵄩󵄩󵄩󵄩𝐴1𝑥𝑘+11 + 𝐴
2
𝑥
2
+ ⋅ ⋅ ⋅

+𝐴
𝑚
𝑥𝑘
𝑚
− 𝑏󵄩󵄩󵄩󵄩󵄩2 | 𝑥2 ∈ X

2
} ;

...

𝑥𝑘+1
𝑚

= argmin {𝑓
𝑚
(𝑥
𝑚
) − (𝜆𝑘)𝑇𝐴

𝑚
𝑥
𝑚

+ 𝛽2 󵄩󵄩󵄩󵄩󵄩𝐴1𝑥𝑘+11 + 𝐴
2
𝑥𝑘+1
2

⋅ ⋅ ⋅
+𝐴
𝑚
𝑥
𝑚
− 𝑏󵄩󵄩󵄩󵄩󵄩2 | 𝑥𝑚 ∈ X

𝑚
} ;

𝜆𝑘+1 = 𝜆𝑘 − 𝛽 (𝐴
1
𝑥𝑘+1
1

+ 𝐴
2
𝑥𝑘+1
2

+ ⋅ ⋅ ⋅ + 𝐴
𝑚
𝑥𝑘+1
𝑚

− 𝑏) .

(4)

Unfortunately, the convergence of the natural extension
is still open under convex assumption, and the recent conver-
gence results [7] are under the assumption that all the func-
tions involved in the objective functions are strongly convex.
This lack of convergence has inspired some ADM-based
methods, for example, prediction-correction type method
[3, 8–11], that is, the iterate 𝑥𝑘+1

1
, 𝑥𝑘+1
2

, . . . , 𝑥𝑘+1
𝑚

is regarded
as a prediction, and the next iterate is a correction for it.
However, the numerical results show that the algorithm (4)
always performs better than these variants. Recently, Han and
Yuan [7] show that the global convergence of the extension of
ADMMfor𝑚 ≥ 3 is valid if the involved functions are further
assumed to be strongly convex. This result does not answer
the open problem regarding the convergence of the extension
of ADMM under the convex assumption, but it makes a key
progress towards this objective.

In this paper, we consider the separable convex optimiza-
tion problem (1) where each individual function 𝑓

𝑖
is the

combination of a strongly convex function 𝑔
𝑖
and a linear

transform 𝐵
𝑖
. That is, (1) takes the following form:

min{ 𝑚∑
𝑖=1

𝑔
𝑖
(𝐵
𝑖
𝑥
𝑖
) | 𝑚∑
𝑖=1

𝐴
𝑖
𝑥
𝑖
= 𝑏, 𝑥

𝑖
∈ X
𝑖
, 𝑖 = 1, 2, . . . , 𝑚} ,

(5)

where 𝑔
𝑖
: R𝑠𝑖 → R ∪ {+∞} (𝑖 = 1, 2, . . . , 𝑚) are closed

proper strongly convex function with the modulus 𝜇
𝑖
(not

necessarily smooth); 𝐴
𝑖
∈ R𝑙×𝑛𝑖 (𝑖 = 1, 2, . . . , 𝑚); X

𝑖
⊆

R𝑛𝑖 (𝑖 = 1, 2, . . . , 𝑚) are closed convex sets; 𝑏 ∈ R𝑙 and∑𝑚
𝑖=1

𝑛
𝑖
= 𝑛; 𝐵

𝑖
∈ R𝑠𝑖×𝑛𝑖 (𝑖 = 1, 2, . . . , 𝑚), where 𝐵

𝑖
may

not have full column rank (if 𝐵
𝑖
has full column rank, the

composite function is strongly convex and reduces to the
case considered in [7]). Note that although (5) is very special,
it arises frequently from many applications. One example is
under the route-based traffic assignment problem [12], where𝑔
𝑖
is the link traffic cost, 𝐵

𝑖
is the link-path incidence matrix,

and 𝑥 is the path follow vector.
In the following, we abuse a little the notation and still

write 𝑔
𝑖
with 𝑓

𝑖
; that is, the problem under consideration is

min{ 𝑚∑
𝑖=1

𝑓
𝑖
(𝐵
𝑖
𝑥
𝑖
) | 𝑚∑
𝑖=1

𝐴
𝑖
𝑥
𝑖
= 𝑏, 𝑥

𝑖
∈ X
𝑖
, 𝑖 = 1, 2, . . . , 𝑚} ,

(6)

where 𝑓
𝑖
: R𝑠𝑖 → R ∪ {+∞} (𝑖 = 1, 2, . . . , 𝑚) are closed

proper strongly convex function with the modulus 𝜇
𝑖
(not

necessarily smooth).
The rest of the paper is organized as follows. In the next

section, we list some necessary preliminary results that will be
used in the rest of the paper. We then describe the algorithm
formally and analyze its global convergence under reasonable
conditions in Section 3. We complete the paper with some
conclusions in Section 4.

2. Preliminaries

In this section, we summarize some basic concepts and their
properties that will be useful for further discussion.

Let ‖ ⋅ ‖
𝑝
denote the standard definition of the 𝑙𝑝-norm,

and particularly, let ‖ ⋅ ‖ = ‖ ⋅ ‖
2
denote the Euclidean norm.

For a symmetric and positive definite matrix 𝐺, we denote‖ ⋅ ‖
𝐺
the 𝐺-norm, that is, ‖𝑥‖

𝐺
= √𝑥𝑇𝐺𝑥. If 𝐺 is the product

of a positive parameter 𝛽 and the identity matrix 𝐼, that is,𝐺 = 𝛽𝐼, we use the simpler notation: ‖ ⋅ ‖
𝐺
= ‖ ⋅ ‖

𝛽
.

Let 𝑓 : R𝑛 → R ∪ {+∞}. If the domain of 𝑓 denoted by
dom𝑓 = {𝑥 ∈ R𝑛 | 𝑓(𝑥) < +∞} is not empty, then 𝑓 is said
to be proper. If for any 𝑥 ∈ R𝑛 and 𝑦 ∈ R𝑛, we have

𝑓 (𝑡𝑥 + (1 − 𝑡) 𝑦) ≤ 𝑡𝑓 (𝑥) + (1 − 𝑡) 𝑓 (𝑦) , ∀𝑡 ∈ [0, 1] ,
(7)

then 𝑓 is said to be convex. Furthermore, 𝑓 is said to be
strongly convex with the modulus 𝜇 > 0 if and only if

𝑓 (𝑡𝑥 + (1 − 𝑡) 𝑦) ≤ 𝑡𝑓 (𝑥) + (1 − 𝑡) 𝑓 (𝑦)
− 12𝜇𝑡 (1 − 𝑡) 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2, ∀𝑡 ∈ [0, 1] .

(8)
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A set-valued operator 𝑇 defined on R𝑛 is said to be
monotone if and only if

(𝑢 − 𝑢̃)𝑇 (𝑤 − 𝑤) ≥ 0, ∀𝑤 ∈ 𝑇𝑢, ∀𝑤 ∈ 𝑇𝑢̃, (9)

and 𝑇 is said to be strongly monotone with modulus 𝜇 > 0 if
and only if

(𝑢 − 𝑢̃)𝑇 (𝑤 − 𝑤) ≥ 𝜇‖𝑢 − 𝑢̃‖2, ∀𝑤 ∈ 𝑇𝑢, ∀𝑤 ∈ 𝑇𝑢̃. (10)

Let Γ
0
(R𝑛) denote the set of closed proper convex

functions from R𝑛 to R ∪ {+∞}. For any 𝑓 ∈ Γ
0
(R𝑛), the

subdifferential of 𝑓 which is the set-valued operator, defined
by

𝜕𝑓 : 𝑥 󳨃󳨀→ {𝜉 ∈ R
𝑛 |

(𝑦 − 𝑥)𝑇𝜉 + 𝑓 (𝑥) ≤ 𝑓 (𝑦) , ∀𝑦 ∈ dom 𝑓} ,
(11)

is monotone. Moreover, if 𝑓 is strongly convex function with
the modulus 𝜇, 𝜕𝑓 is strongly monotone with the modulus 𝜇.

Let 𝐹 be a mapping from a setΩ ⊂ R𝑛 → R𝑛. Then 𝐹 is
said to be co-coercive onΩ with modulus 𝛾 > 0, if
(𝑢 − V)𝑇 (𝐹 (𝑢) − 𝐹 (V)) ≥ 𝛾‖𝐹 (𝑢) − 𝐹 (V)‖2, ∀𝑢, V ∈ Ω.

(12)

Throughout the paper, we make the following assump-
tions.

Assumption 1. (i) 𝑛
𝑖
‖𝐵
𝑖
𝑥
𝑖
‖ ≥ ‖𝐴

𝑖
‖‖𝑥
𝑖
‖, ∀𝑥
𝑖
∈ R𝑛𝑖 , 𝑖 ∈{1, 2, . . . , 𝑚}; (ii) the solution set of (1) is nonempty.

Remark 2. Assumption 1 is a little restrictive. However, some
problems can satisfy it. A remarkable one is the following
route-based traffic assignment problem.

Consider a transportation network 𝐺(N, 𝐸), where N
is the set of nodes. We denote the set of links by A, and
the number of the element of A by 𝑁A, respectively. Let RS
denote the set of origin-destination (O-D) pairs. For an O-D
pair rs ∈ RS, let 𝑞rs be its traffic demand; let 𝑃rs be the set of
routes connecting rs, and 𝑝 ∈ 𝑃rs; Nrs denotes the number
of the routes connecting rs; let ℎrs

𝑝
be the route flow on 𝑝. The

feasible route flow vector ℎ = (𝑝 ∈ 𝑃rs | rs ∈ RS) is thus given
by

𝐻 = {{{
ℎ | ∑
𝑝∈𝑃

rs
ℎrs
𝑝
= 𝑞rs, ℎrs

𝑝
≥ 0, ∀𝑝 ∈ 𝑃rs, rs ∈ RS

}}}
= {ℎ | 𝑒𝑇 (ℎrs

1
, ℎrs
2
, . . . , ℎrs

𝑁
rs) = 𝑞rs,

ℎrs
𝑝
≥ 0, ∀𝑝 ∈ 𝑃rs, rs ∈ RS} .

(13)

Define 𝐸 as the link-route incidence matrix such that

𝛿𝑎
𝑝
= {1, if 𝑝 contains link 𝑎0, otherwise.

(14)

Then, link flow 𝑓
𝑎
can be written as

𝑓
𝑎
= ∑

rs∈RS
∑
𝑝∈𝑃

rs
𝛿𝑎
𝑝
ℎrs
𝑝
, ∀𝑎 ∈ A,

𝐹 = 𝐸𝐻 = {𝑓 | 𝑓 = 𝐸ℎ, ℎ ∈ 𝐻} .
(15)

By denoting the link cost function as 𝐶
𝑎
(𝑓) and for the

additive case, the route cost function as 𝐶
𝑝
(ℎ), they can be

related by

𝐶
𝑝
ℎ = ∑
𝑎∈A

𝛿𝑎
𝑝
𝐶
𝑎
(𝑓) . (16)

The user equilibrium traffic assignment problem can be
formulated as a VI: find 𝑓∗ ∈ 𝐹 such that

(𝑓 − 𝑓∗)𝑇𝐶 (𝑓∗) ≥ 0, ∀𝑓 ∈ 𝐹, (17)

or equivalently, find ℎ∗ ∈ 𝐻 such that

(ℎ − ℎ∗)𝑇𝐸𝑇𝐶 (𝐸ℎ∗) ≥ 0, ∀ℎ ∈ 𝐻, (18)

where 𝐶 = {𝐶
𝑎
} is the vector of the link cost function.

In general, it is easy to show that 𝑒 is a row of 𝐸 and 𝐸
is not a full column rank (if 𝐸 is, then the above variational
inequality is strongly monotone).

For simplicity, in the following, we only consider the case
for 𝑚 = 3. Notice that for 𝑚 ≥ 3, it can be proved similarly
following the processing of𝑚 = 3.
3. The Method

In this section, we consider the following convex minimiza-
tion problem with linear constraint, where the objective
function is in the form of the sum of three individual
functions without coupled variable:

min 𝑓
1
(𝐵
1
𝑥
1
) + 𝑓
2
(𝐵
2
𝑥
2
) + 𝑓
3
(𝐵
3
𝑥
3
)

s.t. 𝐴
1
𝑥
1
+ 𝐴
2
𝑥
2
+ 𝐴
3
𝑥
3
= 𝑏, 𝑥

𝑖
∈ X
𝑖
, 𝑖 = 1, 2, 3,

(19)

where 𝑓
𝑖
: R𝑠𝑖 → R ∪ {+∞} (𝑖 = 1, 2, 3) are closed proper

strongly convex functionwith themodulus𝜇
𝑖
(not necessarily

smooth); 𝐵
𝑖
∈ R𝑠𝑖×𝑛𝑖 (𝑖 = 1, 2, 3), 𝐴

𝑖
∈ R𝑙×𝑛𝑖 (𝑖 = 1, 2, 3);

X
𝑖
⊆ R𝑛𝑖 (𝑖 = 1, 2, 3) are closed convex sets; 𝑏 ∈ R𝑙 and∑3
𝑖=1

𝑛
𝑖
= 𝑛.
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The iterative scheme of ADMM for problem (19) is as
follows:

𝑥𝑘+1
1

= argmin {𝑓
1
(𝐵
1
𝑥
1
) − (𝜆𝑘)𝑇𝐴

1
𝑥
1

+ 𝛽2 󵄩󵄩󵄩󵄩󵄩𝐴1𝑥1
+𝐴
2
𝑥𝑘
2
+ 𝐴
3
𝑥𝑘
3
− 𝑏󵄩󵄩󵄩󵄩󵄩2 | 𝑥1 ∈ X

1
} ,

𝑥𝑘+1
2

= argmin {𝑓
2
(𝐵
2
𝑥
2
) − (𝜆𝑘)𝑇𝐴

2
𝑥
2

+ 𝛽2 󵄩󵄩󵄩󵄩󵄩𝐴1𝑥𝑘+11
+𝐴
2
𝑥
2
+ 𝐴
3
𝑥𝑘
3
− 𝑏󵄩󵄩󵄩󵄩󵄩2 | 𝑥2 ∈ X

2
} ,

𝑥𝑘+1
3

= argmin {𝑓
3
(𝐵
3
𝑥
3
) − (𝜆𝑘)𝑇𝐴

3
𝑥
3

+ 𝛽2 󵄩󵄩󵄩󵄩󵄩𝐴1𝑥𝑘+11
+𝐴
2
𝑥𝑘+1
2

+ 𝐴
3
𝑥
3
− 𝑏󵄩󵄩󵄩󵄩󵄩2 | 𝑥3 ∈ X

3
} ,

𝜆𝑘+1 = 𝜆𝑘 − 𝛽 (𝐴
1
𝑥𝑘+1
1

+ 𝐴
2
𝑥𝑘+1
2

+ 𝐴
3
𝑥𝑘+1
3

− 𝑏) ,
(20)

where 𝜆𝑘 is the Lagrangian multiplier associated with the
linear constraints and 𝛽 > 0 is the penalty parameter.

4. Convergence

In this section, we prove the convergence of the extended
ADMM for problem (19). As the assumptions aforemen-
tioned, by invoking the first-order necessary and sufficient
condition for convex programming, we easily see that the
problem (19) under the condition is characterized by the
following variational inequality (VI): find 𝑢∗ ∈ U and 𝜉∗

𝑖
∈𝜕𝑓

𝑖
(𝐵
𝑖
𝑥∗
𝑖
) such that

(𝑢 − 𝑢∗)𝑇𝑄 (𝑢∗) ≥ 0, ∀𝑢 ∈ U, (21)

where

𝑢 :=(
𝑥
1𝑥
2𝑥
3𝜆
) , 𝑄 (𝑢) :=(

𝐵𝑇
1
𝜉
1
− 𝐴𝑇
1
𝜆

𝐵𝑇
2
𝜉
2
− 𝐴𝑇
2
𝜆

𝐵𝑇
3
𝜉
3
− 𝐴𝑇
3
𝜆

𝐴
1
𝑥
1
+ 𝐴
2
𝑥
2
+ 𝐴
3
𝑥
3
− 𝑏

),

U = X
1
×X
2
×X
3
×R
𝑙.

(22)

We denote the VI (21)-(22) by MVI(U, 𝑄).

Similarly, in [7], we propose an easily implementable
stopping criterion for executing (20):

max{max
1≤𝑖≤3

󵄩󵄩󵄩󵄩󵄩𝐴 𝑖𝑥𝑘𝑖 − 𝐴 𝑖𝑥𝑘+1𝑖 󵄩󵄩󵄩󵄩󵄩 ,
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
3∑
𝑖=1

𝐴
𝑖
𝑥𝑘
𝑖
− 𝑏󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩} ≤ 𝜖, (23)

and its rationale can be seen in the following lemma.

Lemma 3 (see [7]). If ∑3
𝑖=1

𝐴
𝑖
𝑥𝑘
𝑖
− 𝑏 = 0 and 𝐴

𝑖
𝑥𝑘
𝑖

=𝐴
𝑖
𝑥𝑘+1
𝑖

(𝑖 = 1, 2, 3), then (𝑥𝑘+1
1

, 𝑥𝑘+1
2

, 𝑥𝑘+1
3

, 𝜆𝑘+1) is a solution
of MVI(U, 𝑄).

Lemma 3 implies that the iterate {(𝑥𝑘
1
, 𝑥𝑘
2
, 𝑥𝑘
3
, 𝜆𝑘)} is a

solution of MVI(U, 𝑄) when the inequality (23) holds with𝜖 = 0. Some techniques of establishing the error bounds in
[13] can help us analyze how precisely the iterate satisfies the
optimality conditions when the proposed stopping criterion
is satisfied with a tolerance 𝜖 > 0.
Lemma 4. Let (𝑥∗

1
, 𝑥∗
2
, 𝑥∗
3
, 𝜆∗) be the solution of the problem

(19), and let 𝜆∗ be a corresponding Lagrange multiplier
associated with the linear constraint. Then, the sequence{(𝑥𝑘
1
, 𝑥𝑘
2
, 𝑥𝑘
3
, 𝜆𝑘)} generated by (20) satisfies

(𝜆𝑘 − 𝜆∗)𝑇( 3∑
𝑖=1

𝐴
𝑖
𝑥𝑘+1
𝑖

− 𝑏)

≥ 3∑
𝑖=1

(𝑥𝑘+1
𝑖

− 𝑥∗
𝑖
)𝑇 (𝐵𝑇
𝑖
𝜉𝑘+1
𝑖

− 𝐵𝑇
𝑖
𝜉∗
𝑖
)

+ 𝛽󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
3∑
𝑖=1

𝐴
𝑖
𝑥𝑘+1
𝑖

− 𝑏󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

+ 𝛽(𝐴
1
𝑥𝑘+1
1

− 𝐴
1
𝑥∗
1
)𝑇

× [𝐴
2
𝑥𝑘
2
− 𝐴
2
𝑥𝑘+1
2

+ (𝐴
3
𝑥𝑘
3
− 𝐴
3
𝑥𝑘+1
3

)]
+ 𝛽(𝐴

2
𝑥𝑘+1
2

− 𝐴
2
𝑥∗
2
)𝑇 (𝐴

3
𝑥𝑘
3
− 𝐴
3
𝑥𝑘+1
3

) .

(24)

Proof. By invoking the first-order optimality condition for
the 𝑥𝑘+1
𝑖

-related subproblem in (20), for any 𝑥
𝑖
∈ X
𝑖
, 𝑖 =1, 2, 3, we get

(𝑥
1
− 𝑥𝑘+1
1

)𝑇 {𝐵𝑇
1
𝜉𝑘+1
1

−𝐴𝑇
1
[𝜆𝑘 − 𝛽 (𝐴

1
𝑥𝑘+1
1

+ 𝐴
2
𝑥𝑘
2
+ 𝐴
3
𝑥𝑘
3
− 𝑏)]}

≥ 0,
(𝑥
2
− 𝑥𝑘+1
2

)𝑇 {𝐵𝑇
2
𝜉𝑘+1
2

− 𝐴𝑇
2

× [𝜆𝑘 − 𝛽 (𝐴
1
𝑥𝑘+1
1

+ 𝐴
2
𝑥𝑘+1
2

+ 𝐴
3
𝑥𝑘
3
− 𝑏)]}

≥ 0,



Abstract and Applied Analysis 5

(𝑥
3
− 𝑥𝑘+1
3

)𝑇 {𝐵𝑇
3
𝜉𝑘+1
3

− 𝐴𝑇
3

× [𝜆𝑘 − 𝛽 (𝐴
1
𝑥𝑘+1
1

+ 𝐴
2
𝑥𝑘+1
2

+ 𝐴
3
𝑥𝑘+1
3

− 𝑏)]}
≥ 0.

(25)

Setting 𝑥
𝑖
= 𝑥∗
𝑖
(𝑖 = 1, 2, 3) in (25), we have

(𝑥∗
1
− 𝑥𝑘+1
1

)𝑇 {𝐵𝑇
1
𝜉𝑘+1
1

−𝐴𝑇
1
[𝜆𝑘 − 𝛽 (𝐴

1
𝑥𝑘+1
1

+ 𝐴
2
𝑥𝑘
2
+ 𝐴
3
𝑥𝑘
3
− 𝑏)]}

≥ 0,
(𝑥∗
2
− 𝑥𝑘+1
2

)𝑇 {𝐵𝑇
2
𝜉𝑘+1
2

− 𝐴𝑇
2

× [𝜆𝑘 − 𝛽 (𝐴
1
𝑥𝑘+1
1

+ 𝐴
2
𝑥𝑘+1
2

+ 𝐴
3
𝑥𝑘
3
− 𝑏)]}

≥ 0,
(𝑥∗
3
− 𝑥𝑘+1
3

)𝑇 {𝐵𝑇
3
𝜉𝑘+1
3

− 𝐴𝑇
3

× [𝜆𝑘 − 𝛽 (𝐴
1
𝑥𝑘+1
1

+ 𝐴
2
𝑥𝑘+1
2

+ 𝐴
3
𝑥𝑘+1
3

− 𝑏)]}
≥ 0.

(26)

On the other hand, setting (𝑥
1
, 𝑥
2
, 𝑥
3
) = (𝑥𝑘+1

1
, 𝑥𝑘+1
2

, 𝑥𝑘+1
3

) in
(21), it follows that

(
𝑥𝑘+1
1

− 𝑥∗
1

𝑥𝑘+1
2

− 𝑥∗
2

𝑥𝑘+1
3

− 𝑥∗
3

)
𝑇

(
𝐵𝑇
1
𝜉∗
1
− 𝐴𝑇
1
𝜆∗

𝐵𝑇
2
𝜉∗
2
− 𝐴𝑇
2
𝜆∗

𝐵𝑇
3
𝜉∗
3
− 𝐴𝑇
3
𝜆∗
) ≥ 0. (27)

Adding (26) and (27), we obtain

(𝑥𝑘+1
1

− 𝑥∗
1
)𝑇 {(𝐵𝑇

1
𝜉∗
1
− 𝐵𝑇
1
𝜉𝑘+1
1

) − 𝐴𝑇
1
(𝜆∗ − 𝜆𝑘)

−𝛽𝐴𝑇
1
(𝐴
1
𝑥𝑘+1
1

+ 𝐴
2
𝑥𝑘
2
+ 𝐴
3
𝑥𝑘
3
− 𝑏)} ≥ 0,

(𝑥𝑘+1
2

− 𝑥∗
2
)𝑇 {(𝐵𝑇

2
𝜉∗
2
− 𝐵𝑇
2
𝜉𝑘+1
2

) − 𝐴𝑇
2
(𝜆∗ − 𝜆𝑘)

−𝛽𝐴𝑇
2
(𝐴
1
𝑥𝑘+1
1

+ 𝐴
2
𝑥𝑘+1
2

+ 𝐴
3
𝑥𝑘
3
− 𝑏)} ≥ 0,

(𝑥𝑘+1
3

− 𝑥∗
3
)𝑇 {(𝐵𝑇

3
𝜉∗
3
− 𝐵𝑇
3
𝜉𝑘+1
3

) − 𝐴𝑇
3
(𝜆∗ − 𝜆𝑘)

−𝛽𝐴𝑇
3
(𝐴
1
𝑥𝑘+1
1

+ 𝐴
2
𝑥𝑘+1
2

+ 𝐴
3
𝑥𝑘+1
3

− 𝑏)}
≥ 0.

(28)

With the rearrangement of the above inequalities, we derive
that

(𝑥𝑘+1
1

− 𝑥∗
1
)𝑇𝐴𝑇
1
(𝜆𝑘 − 𝜆∗)

≥ (𝑥𝑘+1
1

− 𝑥∗
1
)𝑇 (𝐵𝑇
1
𝜉𝑘+1
1

− 𝐵𝑇
1
𝜉∗
1
)

+ 𝛽(𝐴
1
𝑥𝑘+1
1

− 𝐴
1
𝑥∗
1
)𝑇( 3∑
𝑖=1

𝐴
𝑖
𝑥𝑘+1
𝑖

− 𝑏)
+ 𝛽(𝐴

1
𝑥𝑘+1
1

− 𝐴
1
𝑥∗
1
)𝑇

× [(𝐴
2
𝑥𝑘
2
− 𝐴
2
𝑥𝑘+1
2

) + (𝐴
3
𝑥𝑘
3
− 𝐴
3
𝑥𝑘+1
3

)] ,
(𝑥𝑘+1
2

− 𝑥∗
2
)𝑇𝐴𝑇
2
(𝜆𝑘 − 𝜆∗)

≥ (𝑥𝑘+1
2

− 𝑥∗
2
)𝑇 (𝐵𝑇
2
𝜉𝑘+1
2

− 𝐵𝑇
2
𝜉∗
2
)

+ 𝛽(𝐴
2
𝑥𝑘+1
2

− 𝐴
2
𝑥∗
2
)𝑇( 3∑
𝑖=1

𝐴
𝑖
𝑥𝑘+1
𝑖

− 𝑏)
+ 𝛽(𝐴

2
𝑥𝑘+1
2

− 𝐴
2
𝑥∗
2
)𝑇 (𝐴

3
𝑥𝑘
3
− 𝐴
3
𝑥𝑘+1
3

) ,
(𝑥𝑘+1
3

− 𝑥∗
3
)𝑇𝐴𝑇
3
(𝜆𝑘 − 𝜆∗)

≥ (𝑥𝑘+1
3

− 𝑥∗
3
)𝑇 (𝐵𝑇
3
𝜉𝑘+1
3

− 𝐵𝑇
3
𝜉∗
3
)

+ 𝛽(𝐴
3
𝑥𝑘+1
3

− 𝐴
3
𝑥∗
3
)𝑇( 3∑
𝑖=1

𝐴
𝑖
𝑥𝑘+1
𝑖

− 𝑏) .

(29)

Adding the above inequalities (29), we have

(𝜆𝑘 − 𝜆∗)𝑇( 3∑
𝑖=1

𝐴
𝑖
𝑥𝑘+1
𝑖

− 𝑏)

≥ 3∑
𝑖=1

(𝑥𝑘+1
𝑖

− 𝑥∗
𝑖
)𝑇 (𝐵𝑇
𝑖
𝜉𝑘+1
𝑖

− 𝐵𝑇
𝑖
𝜉∗
𝑖
) + 𝛽󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

3∑
𝑖=1

𝐴
𝑖
𝑥𝑘+1
𝑖

− 𝑏󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

+ 𝛽(𝐴
1
𝑥𝑘+1
1

− 𝐴
1
𝑥∗
1
)𝑇 [(𝐴

2
𝑥𝑘
2
− 𝐴
2
𝑥𝑘+1
2

)
+ (𝐴
3
𝑥𝑘
3
− 𝐴
3
𝑥𝑘+1
3

)]
+ 𝛽(𝐴

2
𝑥𝑘+1
2

− 𝐴
2
𝑥∗
2
)𝑇 (𝐴

3
𝑥𝑘
3
− 𝐴
3
𝑥𝑘+1
3

) .
(30)

The proof is complete.

Hereafter, we define a matrix which will make the nota-
tion of proof more succinct. More specifically, let

𝑀 = (
(

2𝛽𝐴𝑇
1
𝐴
1

0 0 00 2𝛽𝐴𝑇
2
𝐴
2

00 0 2𝛽𝐴𝑇
3
𝐴
3

0
0 0 0 1𝛽𝐼

)
)

. (31)
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Obviously, 𝑀 is a positive semidefinite matrix, only for
analysis convenience; we denote

‖𝑢‖2
𝑀
= 2𝛽 (󵄩󵄩󵄩󵄩𝐴1𝑥1󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝐴2𝑥2󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝐴3𝑥3󵄩󵄩󵄩󵄩2) + ‖𝜆‖21/𝛽.

(32)

Lemma 5. Let 𝑢∗ = (𝑥∗
1
, 𝑥∗
2
, 𝑥∗
3
, 𝜆∗) be a solution of

MVI(U, 𝑄), and let the sequence {(𝑥𝑘
1
, 𝑥𝑘
2
, 𝑥𝑘
3
, 𝜆𝑘)} be generated

by (20). Then, one has

󵄩󵄩󵄩󵄩󵄩𝑢𝑘+1 − 𝑢∗󵄩󵄩󵄩󵄩󵄩2𝑀 ≤ 󵄩󵄩󵄩󵄩󵄩𝑢𝑘 − 𝑢∗󵄩󵄩󵄩󵄩󵄩2𝑀
+ 3∑
𝑖=1

3𝛽󵄩󵄩󵄩󵄩󵄩𝐴 𝑖𝑥𝑘+1𝑖 − 𝐴
𝑖
𝑥∗
𝑖

󵄩󵄩󵄩󵄩󵄩2

− 2 3∑
𝑖=1

𝜇
𝑖

󵄩󵄩󵄩󵄩󵄩𝐵𝑖𝑥𝑘+1𝑖 − 𝐵
𝑖
𝑥∗
𝑖

󵄩󵄩󵄩󵄩󵄩2.
(33)

Proof. From (20) and Lemma 4, we have

󵄩󵄩󵄩󵄩󵄩𝜆𝑘+1 − 𝜆∗󵄩󵄩󵄩󵄩󵄩21/𝛽 =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜆
𝑘 − 𝜆∗ − 𝛽( 3∑

𝑖=1

𝐴
𝑖
𝑥𝑘+1
𝑖

− 𝑏)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

1/𝛽

= 󵄩󵄩󵄩󵄩󵄩𝜆𝑘 − 𝜆∗󵄩󵄩󵄩󵄩󵄩21/𝛽
− 2(𝜆𝑘 − 𝜆∗)𝑇( 3∑

𝑖=1

𝐴
𝑖
𝑥𝑘+1
𝑖

− 𝑏)

+ 𝛽󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
3∑
𝑖=1

𝐴
𝑖
𝑥𝑘+1
𝑖

− 𝑏󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

≤ 󵄩󵄩󵄩󵄩󵄩𝜆𝑘 − 𝜆∗󵄩󵄩󵄩󵄩󵄩21/𝛽
− 2 3∑
𝑖=1

(𝑥𝑘+1
𝑖

− 𝑥∗
𝑖
)𝑇 (𝐵𝑇
𝑖
𝜉𝑘+1
𝑖

− 𝐵𝑇
𝑖
𝜉∗
𝑖
)

− 𝛽󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
3∑
𝑖=1

𝐴
𝑖
𝑥𝑘+1
𝑖

− 𝑏󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

− 2𝛽(𝐴
1
𝑥𝑘+1
1

− 𝐴
1
𝑥∗
1
)𝑇

× ( 3∑
𝑖=2

(𝐴
𝑖
𝑥𝑘
𝑖
− 𝐴
𝑖
𝑥𝑘+1
𝑖

))
− 2𝛽(𝐴

2
𝑥𝑘+1
2

− 𝐴
2
𝑥∗
2
)𝑇 (𝐴

3
𝑥𝑘
3
− 𝐴
3
𝑥𝑘+1
3

) .
(34)

Since

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
3∑
𝑖=1

(𝐴
𝑖
𝑥𝑘+1
𝑖

− 𝐴
𝑖
𝑥∗
𝑖
)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

= 3∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩𝐴 𝑖 (𝑥𝑘+1𝑖 − 𝑥∗
𝑖
)󵄩󵄩󵄩󵄩󵄩2

+ ∑
𝑖 ̸= 𝑗

(𝐴
𝑖
(𝑥𝑘+1
𝑖

− 𝑥∗
𝑖
))𝑇𝐴
𝑗
(𝑥𝑘+1
𝑗

− 𝑥∗
𝑗
) ,

(35)

and 𝐴
1
𝑥∗
1
+ 𝐴
2
𝑥∗
2
+ 𝐴
3
𝑥∗
3
= 𝑏, we can get

− 𝛽󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
3∑
𝑖=1

𝐴
𝑖
𝑥𝑘+1
𝑖

− 𝑏󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

= −𝛽 3∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩𝐴 𝑖 (𝑥𝑘+1𝑖 − 𝑥∗
𝑖
)󵄩󵄩󵄩󵄩󵄩2

− 𝛽 ∑
𝑖 ̸= 𝑗

(𝐴
𝑖
(𝑥𝑘+1
𝑖

− 𝑥∗
𝑖
))𝑇𝐴
𝑗
(𝑥𝑘+1
𝑗

− 𝑥∗
𝑗
) .

(36)

Using Cauchy-Schwarz inequality, we have

− 2𝛽(𝐴
1
𝑥𝑘+1
1

− 𝐴
1
𝑥∗
1
)𝑇( 3∑
𝑖=2

(𝐴
𝑖
𝑥𝑘
𝑖
− 𝐴
𝑖
𝑥𝑘+1
𝑖

))
− 2𝛽(𝐴

2
𝑥𝑘+1
2

− 𝐴
2
𝑥∗
2
)𝑇 (𝐴

3
𝑥𝑘
3
− 𝐴
3
𝑥𝑘+1
3

)
= −2𝛽(𝐴

1
𝑥𝑘+1
1

− 𝐴
1
𝑥∗
1
)𝑇 (𝐴

2
𝑥𝑘
2
− 𝐴
2
𝑥∗
2
)

+ 2𝛽(𝐴
1
𝑥𝑘+1
1

− 𝐴
1
𝑥∗
1
)𝑇 (𝐴

2
𝑥𝑘+1
2

− 𝐴
2
𝑥∗
2
)

− 2𝛽(𝐴
1
𝑥𝑘+1
1

− 𝐴
1
𝑥∗
1
)𝑇 (𝐴

3
𝑥𝑘
3
− 𝐴
3
𝑥∗
3
)

+ 2𝛽(𝐴
1
𝑥𝑘+1
1

− 𝐴
1
𝑥∗
1
)𝑇 (𝐴

3
𝑥𝑘+1
3

− 𝐴
3
𝑥∗
3
)

− 2𝛽(𝐴
2
𝑥𝑘+1
2

− 𝐴
2
𝑥∗
2
)𝑇 (𝐴

3
𝑥𝑘
3
− 𝐴
3
𝑥∗
3
)

+ 2𝛽(𝐴
2
𝑥𝑘+1
2

− 𝐴
2
𝑥∗
2
)𝑇 (𝐴

3
𝑥𝑘+1
3

− 𝐴
3
𝑥∗
3
)

≤ 2𝛽󵄩󵄩󵄩󵄩󵄩𝐴1𝑥𝑘+11 − 𝐴
1
𝑥∗
1

󵄩󵄩󵄩󵄩󵄩2 + 𝛽󵄩󵄩󵄩󵄩󵄩𝐴2𝑥𝑘+12 − 𝐴
2
𝑥∗
2

󵄩󵄩󵄩󵄩󵄩2
+ 𝛽󵄩󵄩󵄩󵄩󵄩𝐴2 (𝑥𝑘2 − 𝑥∗2 )󵄩󵄩󵄩󵄩󵄩2 + 2𝛽󵄩󵄩󵄩󵄩󵄩𝐴3 (𝑥𝑘3 − 𝑥∗3 )󵄩󵄩󵄩󵄩󵄩2
+ 𝛽 ∑
𝑖 ̸= 𝑗

(𝐴
𝑖
(𝑥𝑘+1
𝑖

− 𝑥∗
𝑖
))𝑇𝐴
𝑗
(𝑥𝑘+1
𝑗

− 𝑥∗
𝑗
) .

(37)
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Substituting (36) and (37) into (34), we get

󵄩󵄩󵄩󵄩󵄩𝜆𝑘+1 − 𝜆∗󵄩󵄩󵄩󵄩󵄩21/𝛽 ≤ 󵄩󵄩󵄩󵄩󵄩𝜆𝑘 − 𝜆∗󵄩󵄩󵄩󵄩󵄩21/𝛽 + 2𝛽
3∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩𝐴 𝑖 (𝑥𝑘𝑖 − 𝑥∗𝑖 )󵄩󵄩󵄩󵄩󵄩2

+ 𝛽 3∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩𝐴 𝑖 (𝑥𝑘+1𝑖 − 𝑥∗
𝑖
)󵄩󵄩󵄩󵄩󵄩2

− 2 3∑
𝑖=1

(𝑥𝑘+1
𝑖

− 𝑥∗
𝑖
)𝑇 (𝐵𝑇
𝑖
𝜉𝑘+1
𝑖

− 𝐵𝑇
𝑖
𝜉∗
𝑖
) .
(38)

Since 𝑓
𝑖
is strongly convex, from the strong monotonicity

of the subdifferentialmapping 𝜕𝑓
𝑖
(with themodulus 𝜇

𝑖
), then

we have

(𝑥𝑘+1
𝑖

− 𝑥∗
𝑖
)𝑇 (𝐵𝑇
𝑖
𝜉𝑘+1
𝑖

− 𝐵𝑇
𝑖
𝜉∗
𝑖
)

= (𝐵
𝑖
𝑥𝑘+1
𝑖

− 𝐵
𝑖
𝑥∗
𝑖
)𝑇 (𝜉𝑘+1
𝑖

− 𝜉∗
𝑖
) ≥ 𝜇
𝑖

󵄩󵄩󵄩󵄩󵄩𝐵𝑖𝑥𝑘+1𝑖 − 𝐵
𝑖
𝑥∗
𝑖

󵄩󵄩󵄩󵄩󵄩2,
(39)

where 𝜉∗
𝑖
∈ 𝜕𝑓
𝑖
(𝐵
𝑖
𝑥∗
𝑖
), 𝜉𝑘+1
𝑖

∈ 𝜕𝑓
𝑖
(𝐵
𝑖
𝑥𝑘+1
𝑖

), for any 𝑖 ∈ {1, 2, 3}.
By using the notion of ‖𝑢𝑘+1 − 𝑢∗‖2

𝑀
, from (38) we have

󵄩󵄩󵄩󵄩󵄩𝑢𝑘+1 − 𝑢∗󵄩󵄩󵄩󵄩󵄩2𝑀
= 󵄩󵄩󵄩󵄩󵄩𝜆𝑘+1 − 𝜆∗󵄩󵄩󵄩󵄩󵄩21/𝛽
+ 2𝛽 3∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩𝐴 𝑖(𝑥𝑘+1𝑖 − 𝑥∗
𝑖
)󵄩󵄩󵄩󵄩󵄩2

≤ 󵄩󵄩󵄩󵄩󵄩𝜆𝑘 − 𝜆∗󵄩󵄩󵄩󵄩󵄩21/𝛽 + 2𝛽
3∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩𝐴 𝑖(𝑥𝑘𝑖 − 𝑥∗𝑖 )󵄩󵄩󵄩󵄩󵄩2

+ 3𝛽 3∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩𝐴 𝑖(𝑥𝑘+1𝑖 − 𝑥∗
𝑖
)󵄩󵄩󵄩󵄩󵄩2 − 2

3∑
𝑖=1

𝜇
𝑖

󵄩󵄩󵄩󵄩󵄩𝐵𝑖𝑥𝑘+1𝑖 − 𝐵
𝑖
𝑥∗
𝑖

󵄩󵄩󵄩󵄩󵄩2

≤ 󵄩󵄩󵄩󵄩󵄩𝑢𝑘 − 𝑢∗󵄩󵄩󵄩󵄩󵄩2𝑀 + 3∑
𝑖=1

3𝛽󵄩󵄩󵄩󵄩󵄩𝐴 𝑖𝑥𝑘+1𝑖 − 𝐴
𝑖
𝑥∗
𝑖

󵄩󵄩󵄩󵄩󵄩2

− 2 3∑
𝑖=1

𝜇
𝑖

󵄩󵄩󵄩󵄩󵄩𝐵𝑖𝑥𝑘+1𝑖 − 𝐵
𝑖
𝑥∗
𝑖

󵄩󵄩󵄩󵄩󵄩2.
(40)

The proof is complete.

Theorem 6. Under Assumption 1, for any

0 < 𝛽 < min
1≤𝑖≤3

{ 2𝜇
𝑖3𝑛2
𝑖

} , (41)

the sequence {(𝑥𝑘
1
, 𝑥𝑘
2
, 𝑥𝑘
3
, 𝜆𝑘)} generated by (20) converges to a

solution of MVI(U, 𝑄).

Proof. From Lemma 5, we have

󵄩󵄩󵄩󵄩󵄩𝑢𝑘+1 − 𝑢∗󵄩󵄩󵄩󵄩󵄩2𝑀 ≤ 󵄩󵄩󵄩󵄩󵄩𝑢𝑘 − 𝑢∗󵄩󵄩󵄩󵄩󵄩2𝑀 + 3∑
𝑖=1

3𝛽󵄩󵄩󵄩󵄩󵄩𝐴 𝑖𝑥𝑘+1𝑖 − 𝐴
𝑖
𝑥∗
𝑖

󵄩󵄩󵄩󵄩󵄩2

− 2 3∑
𝑖=1

𝜇
𝑖

󵄩󵄩󵄩󵄩󵄩𝐵𝑖𝑥𝑘+1𝑖 − 𝐵
𝑖
𝑥∗
𝑖

󵄩󵄩󵄩󵄩󵄩2,
(42)

where

0 < 𝛽 < min
1≤𝑖≤3

{ 2𝜇
𝑖3𝑛2
𝑖

} . (43)

From Assumption 1, it follows that

󵄩󵄩󵄩󵄩󵄩𝐴 𝑖𝑥𝑘+1𝑖 − 𝐴
𝑖
𝑥∗
𝑖

󵄩󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩𝐴 𝑖󵄩󵄩󵄩󵄩2󵄩󵄩󵄩󵄩󵄩𝑥𝑘+1𝑖 − 𝑥∗
𝑖

󵄩󵄩󵄩󵄩󵄩2
≤ 𝑛2
𝑖

󵄩󵄩󵄩󵄩󵄩𝐵𝑖𝑥𝑘+1𝑖 − 𝐵
𝑖
𝑥∗
𝑖

󵄩󵄩󵄩󵄩󵄩2, 𝑖 = 1, 2, 3. (44)

Consequently,

󵄩󵄩󵄩󵄩󵄩𝑢𝑘+1 − 𝑢∗󵄩󵄩󵄩󵄩󵄩2𝑀 ≤ 󵄩󵄩󵄩󵄩󵄩𝑢𝑘 − 𝑢∗󵄩󵄩󵄩󵄩󵄩2𝑀
+ 3∑
𝑖=1

(3𝛽 − 2𝜇
𝑖𝑛2
𝑖

) 󵄩󵄩󵄩󵄩󵄩𝐴 𝑖𝑥𝑘+1𝑖 − 𝐴
𝑖
𝑥∗
𝑖

󵄩󵄩󵄩󵄩󵄩2.
(45)

From (45), we have

󵄩󵄩󵄩󵄩󵄩𝑢𝑘+1 − 𝑢∗󵄩󵄩󵄩󵄩󵄩2𝑀 ≤ 󵄩󵄩󵄩󵄩󵄩𝑢𝑘 − 𝑢∗󵄩󵄩󵄩󵄩󵄩2𝑀 ≤ ⋅ ⋅ ⋅ ≤ 󵄩󵄩󵄩󵄩󵄩𝑢0 − 𝑢∗󵄩󵄩󵄩󵄩󵄩2𝑀 < +∞,
(46)

which means that the generated sequence {𝑢𝑘} is bounded.
Furthermore, it follows that

+∞∑
𝑘=0

{ 3∑
𝑖=1

(2 𝜇𝑖𝑛2
𝑖

− 3𝛽) 󵄩󵄩󵄩󵄩󵄩𝐴 𝑖𝑥𝑘+1𝑖 − 𝐴
𝑖
𝑥∗
𝑖

󵄩󵄩󵄩󵄩󵄩2}

≤ +∞∑
𝑘=0

{󵄩󵄩󵄩󵄩󵄩𝑢𝑘 − 𝑢∗󵄩󵄩󵄩󵄩󵄩𝑀 − 󵄩󵄩󵄩󵄩󵄩𝑢𝑘+1 − 𝑢∗󵄩󵄩󵄩󵄩󵄩𝑀} < +∞,
(47)

which means that

lim
𝑘→+∞

3∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩𝐴 𝑖𝑥𝑘+1𝑖 − 𝐴
𝑖
𝑥∗
𝑖

󵄩󵄩󵄩󵄩󵄩2 = 0. (48)

Therefore, we have

lim
𝑘→+∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
3∑
𝑖=1

𝐴
𝑖
𝑥𝑘+1
𝑖

− 𝑏󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

= 0. (49)

Since ‖𝐴
𝑖
‖ is nonzero and bounded, from (48) we have

lim
𝑘→+∞

󵄩󵄩󵄩󵄩󵄩𝑥𝑘+1𝑖 − 𝑥∗
𝑖

󵄩󵄩󵄩󵄩󵄩 = 0, ∀𝑖 = 1, 2, 3. (50)

Since {𝑢𝑘} is bounded, {𝜆𝑘} has at least one cluster point, say𝜆. Let {𝜆𝑘𝑗} be the corresponding subsequence that converges
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to 𝜆. Taking a limit along this subsequence in (25) and (49),
we obtain 𝜉∗

𝑖
∈ 𝜕𝑓
𝑖
(𝐵
𝑖
𝑥∗
𝑖
),

(𝑥
𝑖
− 𝑥∗
𝑖
)𝑇 (𝐵𝑇
𝑖
𝜉∗
𝑖
− 𝐴𝑇
𝑖
𝜆) ≥ 0, ∀𝑥

𝑖
∈ X
𝑖
, 𝑖 = 1, 2, 3,

3∑
𝑖=1

𝐴
𝑖
𝑥∗
𝑖
− 𝑏 = 0, (51)

which follows that 𝜆 is an optimal Lagrange multiplier. Since𝜆∗ is arbitrary, we can set 𝜆∗ = 𝜆 in (46) and conclude
that the whole generated sequence converges to a solution of
MVI(U, 𝑄).
5. Conclusions

In this paper, we extend the convergence analysis of the
ADMM for the separable convex optimization problem with
strongly convex functions to the case in which the individual
functions are composites of strongly convex functions with a
linear transform. Under further assumptions, we established
the global convergence of the algorithm.

It should be admitted that although some problems
arising from applications such as traffic assignment fall into
our analysis, the problems considered here are too special.
Thus, it is far away to solve the open problem of convergence
of the ADMM with more than three blocks.
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