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The number of spanning trees in graphs (networks) is an important invariant; it is also an important measure of reliability of a
network. In this paper, we derive simple formulas of the complexity, number of spanning trees, of products of some complete and
complete bipartite graphs such as cartesian product, normal product, composition product, tensor product, and symmetric product,
using linear algebra and matrix analysis techniques.

1. Introduction

In this work we deal with simple and finite undirected graphs
𝐺 = (𝑉, 𝐸), where 𝑉 is the vertex set and 𝐸 is the edge set.
For a graph 𝐺, a spanning tree in 𝐺 is a tree which has the
same vertex set as𝐺. The number of spanning trees in𝐺, also
called the complexity of the graph, denoted by 𝜏(𝐺), is a well-
studied quantity (for long time). A classical result of Kirchhoff
[1], can be used to determine the number of spanning trees for
𝐺 = (𝑉, 𝐸). Let𝑉 = {V

1
, V
2
, . . . , V

𝑛
}; then the Kirchhoff matrix

𝐻 defined as 𝑛×𝑛, characteristic matrix,𝐻 = 𝐷−𝐴, where𝐷
is the diagonal matrix whose elements are the degrees of the
vertices of 𝐺. While 𝐴 is the adjacency matrix of 𝐺,𝐻 = [𝑎

𝑖𝑗
]

is defined as follows:

(i) 𝑎
𝑖𝑗
= −1V

𝑖
and V
𝑗
are adjacent and 𝑖 ̸= 𝑗,

(ii) 𝑎
𝑖𝑗
equals the degree of vertex V

𝑖
if 𝑖 = 𝑗,

(iii) 𝑎
𝑖𝑗
= 0 otherwise.

All of the cofactors of 𝐻 are equal to 𝜏(𝐺). There are other
methods for calculating 𝜏(𝐺). Let 𝜇

1
≥ 𝜇
1
≥ ⋅ ⋅ ⋅ ≥ 𝜇

𝑝

denote the eigenvalues of𝐻 matrix of a 𝑝 point graph. Then
it is easily shown that 𝜇

𝑝
= 0. Furthermore, Kelmans and

Chelnokov [2] have shown that 𝜏(𝐺) = (1/𝑝) ∏𝑝−1
𝑘=1
𝜇
𝑘
. The

formula for the number of spanning trees in a d-regular

graph 𝐺 can be expressed as 𝜏(𝐺) = (1/𝑝) ∏𝑝−1
𝑘=1
(𝑑 − 𝜆

𝑘
),

where 𝜆
0
= 𝑑, 𝜆

1
, 𝜆
2
, . . . , 𝜆

𝑝−1
are the eigenvalues of the

corresponding adjacency matrix of the graph. However, for a
few special families of graphs there exist simple formulas that
make itmuch easier to calculate and determine the number of
corresponding spanning trees especially when these numbers
are very large. One of the first results is due to Cayley [3]
who showed that the complete graph on 𝑛 vertices, 𝐾

𝑛
has

𝑛
𝑛−2 spanning trees, 𝑛 ≥ 2. Another result is that 𝜏(𝐾

𝑝,𝑞
) =

𝑝
𝑞−1
𝑞
𝑝−1
, 𝑝, 𝑞 ≥ 1, where𝐾

𝑝,𝑞
is the complete bipartite graph

with bipartite sets containing 𝑝 and 𝑞 vertices, respectively.
It is well known, as in, for example, [4, 5]. Another result is
due to Sedlá ̌cek [6] who derived a formula for the wheel on
𝑛+1 vertices,𝑊

𝑛+1
; he showed that 𝜏(𝑊

𝑛+1
) = ((3+√5)/2)

𝑛
+

((3 − √5)/2)
𝑛
− 2, for 𝑛 ≥ 3. Sedlacek [7] also later derived a

formula for the number of spanning trees in aMobius ladder,
𝑀
𝑛
, 𝜏(𝑀

𝑛
) = (𝑛/2)[(2 + √3)

𝑛
+ (2 − √3)

𝑛
+ 2] for 𝑛 ≥ 2.

Another class of graphs by Boesch et al., for which an explicit
formula has been derived, is based on a prism [8, 9].

Now, we can introduce the following lemmas.

Lemma 1 (see [10]). Consider 𝜏 (𝐺) = (1/𝑛2) det(𝑛𝐼 −𝐷+𝐴)
where 𝐴 and 𝐷 are the adjacency and degree matrices of 𝐺
and the complement of 𝐺, respectively, and 𝐼 is the 𝑛 × 𝑛 unit
matrix.
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Lemma 2. Let 𝐸
𝑛
(𝑥) be 𝑛 × 𝑛matrix, 𝑥 ≥ 2 such that

𝐸
𝑛
(𝑥) =

(
(
(
(
(

(

𝑥 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

1 d d d d
...

... d d d d
...

... d d d d
...

... d d d d 1
1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 𝑥

)
)
)
)
)

)

. (1)

Then,

det (𝐸
𝑛
) = (𝑥 + 𝑛 − 1) (𝑥 − 1)

𝑛−1
. (2)

Proof. From the definition of the circulant determinants, we
have

det (𝐸
𝑛
(𝑥)) = det

(
(
(
(
(

(

𝑥 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

1 d d d d
...

... d d d d
...

... d d d d
...

... d d d d 1
1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 𝑥

)
)
)
)
)

)

=

𝑛

∏

𝑗=1

(𝑥 + 𝜔
𝑗
+ 𝜔
2

𝑗
+ 𝜔
3

𝑗
+ ⋅ ⋅ ⋅ + 𝜔

𝑛−1

𝑗
)

= (𝑥 + 1 + 1 + ⋅ ⋅ ⋅ + 1)

×

𝑛

∏

𝑗=1,𝜔𝑗 ̸= 1

(𝑥 + 𝜔
𝑗
+ 𝜔
2

𝑗
+ 𝜔
3

𝑗
+ ⋅ ⋅ ⋅ + 𝜔

𝑛−1

𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=−1

)

= (𝑥 + 𝑛 − 1) × (𝑥 − 1)
𝑛−1
.

(3)

We can generalize the previous lemma as follows.

Lemma 3. Let 𝐴, 𝐵 ∈ 𝐹𝑛×𝑛 and 𝐹 ∈ 𝐹𝑘𝑛×𝑘𝑛 such that

𝐹 =

(
(
(
(
(

(

𝐴 𝐵 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝐵

𝐵 d d d d
...

... d d d d
...

... d d d d
...

... d d d d 𝐵
𝐵 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝐵 𝐴

)
)
)
)
)

)

. (4)

Then,

det𝐹 = [det (𝐴 − 𝐵)]𝑘−1 det [𝐴 + (𝑘 − 1) 𝐵] . (5)

Lemma 4 (see [11]). Let𝐴 ∈ 𝐹𝑛×𝑛, let 𝐵 ∈ 𝐹𝑛×𝑚, let𝐶 ∈ 𝐹𝑚×𝑛,
and let𝐷 ∈ 𝐹𝑚×𝑚; assume that𝐴,𝐷 are nonsingular matrices.
Then

det(𝐴 𝐵
𝐶 𝐷
) = (−1)

𝑛𝑚 det (𝐴 − 𝐵𝐷−1𝐶) det𝐷

= (−1)
𝑛𝑚 det𝐴 det (𝐷 − 𝐶𝐴−1𝐵) .

(6)

Formulas in Lemmas 2, 3, and 4 give some sort of
symmetry in some matrices which facilitates our calculation
of determinants.

2. Number of Spanning Trees of
Cartesian Product of Graphs

The Cartesian product, 𝐺
1
× 𝐺
2
, is the simple graph with

vertex set 𝑉(𝐺
1
× 𝐺
2
) = 𝑉
1
× 𝑉
2
and edge set 𝐸(𝐺

1
× 𝐺
2
) =

[(𝐸
1
× 𝑉
2
) ∪ (𝑉

1
× 𝐸
2
)] such that two vertices (𝑢

1
, 𝑢
2
) and

(V
1
, V
2
) are adjacent in 𝐺

1
× 𝐺
2
if and only if either 𝑢

1
= V
1

and 𝑢
2
is adjacent to V

2
in 𝐺
2
or 𝑢
1
is adjacent to V

1
in 𝐺
1
and

𝑢
2
= V
2
[12].

Theorem 5. For 𝑛,𝑚 ≥ 1, we have

𝜏 (𝐾
2
× 𝐾
𝑚,𝑛
) = 𝑚

𝑛−1
𝑛
𝑚−1
(𝑚 + 2)

𝑛−1

× (𝑛 + 2)
𝑚−1
(𝑛 + 𝑚 + 2) .

(7)

Proof. Applying Lemma 1, we have

𝜏 (𝐾
2
× 𝐾
𝑚,𝑛
)

=
1

(2 (𝑚 + 𝑛))
2
det (2 (𝑚 + 𝑛) 𝐼 − 𝐷 + 𝐴)

=
1

4(𝑚 + 𝑛)
2
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× det

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

𝑛+ 2 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

1 d d
...

... d d
... 1 d d d d d d

...
... d d 1

... d d
...

... d d d d d d
...

1 ⋅ ⋅ ⋅ 1 𝑛 + 2 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0
... d d d d d d

...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝑚 + 2 1 ⋅ ⋅ ⋅ 1
... d d d d d d

...
... d d

... 1 d d
...

... d d d d d d
...

... d d
...

... d d 1
... d d d d d d 1

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 𝑚 + 2 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0

0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 𝑛 + 2 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

1 d d d d d d
... 1 d d

...
... d d

...
... d d d d d d

...
... d d 1

... d d
...

... d d d d d d
... 1 ⋅ ⋅ ⋅ 1 𝑛 + 2 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d d d d d
... 0 d d 0 𝑚 + 2 1 ⋅ ⋅ ⋅ 1

... d d d d d d
...

... d d
... 1 d d

...
... d d d d d d 1

... d d
...

... d d 1

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 𝑚 + 2

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

=
1

4(𝑚 + 𝑛)
2
det

(
(
(
(
(
(
(
(
(

(

𝑛+ 2 2 ⋅ ⋅ ⋅ 2 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

2 d d
...

... d d
...

... d d 2
... d d

...
2 ⋅ ⋅ ⋅ 2 𝑛 + 2 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 𝑚 + 2 2 ⋅ ⋅ ⋅ 2

... d d
... 2 d d

...
... d d

...
... d d 2

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 2 ⋅ ⋅ ⋅ 2 𝑚 + 2

)
)
)
)
)
)
)
)
)

)

× det

(
(
(
(
(
(
(
(
(

(

𝑛+ 2 0 ⋅ ⋅ ⋅ 0 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1

0 d d
...

... d d
...

... d d 0
... d d

...
0 ⋅ ⋅ ⋅ 0 𝑛 + 2 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1

−1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 𝑚 + 2 0 ⋅ ⋅ ⋅ 0

... d d
... 0 d d

...
... d d

...
... d d 0

−1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 0 ⋅ ⋅ ⋅ 0 𝑚 + 2

)
)
)
)
)
)
)
)
)

)

=
1

4(𝑚 + 𝑛)
2
det( 𝐴 𝐵
𝐵
𝑇
𝐶
) × det(𝐷 𝐸

𝐸
𝑇
𝐹
)

=
1

4(𝑚 + 𝑛)
2
× det𝐴 det (𝐶 − 𝐵𝑇𝐴−1𝐵) × det𝐷 det (𝐹 − 𝐸𝑇𝐷−1𝐸)

=
1

4(𝑚 + 𝑛)
2
det(

𝑛+ 2 2 ⋅ ⋅ ⋅ 2

2 d d
...

... d d 2

2 ⋅ ⋅ ⋅ 2 𝑛 + 2

)

𝑚×𝑚
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× det
(
(
(
(

(

𝑛(𝑚 + 2) + 𝑚 (2𝑚 + 3)

𝑛 + 2𝑚

2𝑛 + 3𝑚

𝑛 + 2𝑚
⋅ ⋅ ⋅

2𝑛 + 3𝑚

𝑛 + 2𝑚

2𝑛 + 3𝑚

𝑛 + 2𝑚
d d

...
... d d

2𝑛 + 3𝑚

𝑛 + 2𝑚
2𝑛 + 3𝑚

𝑛 + 2𝑚
⋅ ⋅ ⋅
2𝑛 + 3𝑚

𝑛 + 2𝑚

𝑛 (𝑚 + 2) + 𝑚 (2𝑚 + 3)

𝑛 + 2𝑚

)
)
)
)

)𝑛×𝑛

× det(

𝑛+ 2 0 ⋅ ⋅ ⋅ 0

0 d d
...

... d d 0

0 ⋅ ⋅ ⋅ 0 𝑛 + 2

)

𝑚×𝑚

× det
(
(
(
(

(

𝑛(𝑚 + 2) + (𝑚 + 4)

𝑛 + 2

−𝑚

𝑛 + 2
⋅ ⋅ ⋅

−𝑚

𝑛 + 2

−𝑚

𝑛 + 2
d d

...
... d d

−𝑚

𝑛 + 2
−𝑚

𝑛 + 2
⋅ ⋅ ⋅
−𝑚

𝑛 + 2

𝑛 (𝑚 + 2) + (𝑚 + 4)

𝑛 + 2

)
)
)
)

)𝑛×𝑛

=
1

4(𝑚 + 𝑛)
2
× 2
𝑚 det((

(

𝑛+ 2

2
1 ⋅ ⋅ ⋅ 1

1 d d
...

... d d 1

1 ⋅ ⋅ ⋅ 1
𝑛 + 2

2

)
)

)𝑚×𝑚

× (
2𝑛 + 3𝑚

𝑛 + 2𝑚
)

𝑛

det((

(

𝑛(𝑚 + 2) + 𝑚 (2𝑚 + 3)

2𝑛 + 3𝑚
1 ⋅ ⋅ ⋅ 1

1 d d
...

... d d 1

1 ⋅ ⋅ ⋅ 1
𝑛 (𝑚 + 2) + 𝑚 (2𝑚 + 3)

2𝑛 + 3𝑚

)
)

)𝑛×𝑛

× det(

𝑛+ 2 0 ⋅ ⋅ ⋅ 0

0 d d
...

... d d 0

0 ⋅ ⋅ ⋅ 0 𝑛 + 2

)

𝑚×𝑚

× (
−𝑚

𝑛 + 2
)

𝑛

det((

(

𝑛(𝑚 + 2) + (𝑚 + 4)

−𝑚
1 ⋅ ⋅ ⋅ 1

1 d d
...

... d d 1

1 ⋅ ⋅ ⋅ 1
𝑛 (𝑚 + 2) + (𝑚 + 4)

−𝑚

)
)

)𝑛×𝑛

=
1

4(𝑚 + 𝑛)
2
× 2
𝑚
× (
𝑛 + 2

2
+ 𝑚 − 1)(

𝑛 + 2

2
− 1)

𝑚−1

× (
2𝑛 + 3𝑚

𝑛 + 2𝑚
)

𝑛

× (
𝑛 (𝑚 + 2) + 𝑚 (2𝑚 + 3)

2𝑛 + 3𝑚
+ 𝑛 − 1)



Journal of Applied Mathematics 5

× (
𝑛 (𝑚 + 2) + 𝑚 (2𝑚 + 3)

2𝑛 + 3𝑚
− 1)

𝑛−1

× (𝑛 + 2)
𝑚
× (−
𝑚

𝑛 + 2
)

𝑛

× (−
𝑛 (𝑚 + 2) + (𝑚 + 4)

𝑚
+ 𝑛 − 1) × (−

𝑛 (𝑚 + 2) + (𝑚 + 4)

𝑚
− 1)

𝑛−1

.

(8)

Thus,

𝜏 (𝐾
2
× 𝐾
𝑚,𝑛
) = 𝑚

𝑛−1
𝑛
𝑚−1
(𝑚 + 2)

𝑚−1
(𝑛 + 2)

𝑚−1

× (𝑛 + 𝑚 + 2) .

(9)

In particular,

𝜏 (𝐾
2
× 𝐾
𝑛,𝑛
) = 2𝑛

2𝑛−2
(𝑛 + 1) (𝑛 + 2)

2𝑛−2
; 𝑛 ≥ 1. (10)

Theorem 6. For𝑚, 𝑛 ≥ 1, we have

𝜏 (𝐾
3
× 𝐾
𝑚,𝑛
) = 3𝑛

𝑚−1
𝑚
𝑛−1
(𝑚 + 3)

2𝑛−2
(𝑛 + 3)

2𝑚−2

× (𝑛 + 𝑚 + 3)
2
.

(11)

Proof. Applying Lemma 1, we have

𝜏 (𝐾
3
× 𝐾
𝑚,𝑛
)

=
1

9(𝑚 + 𝑛)
2
det (3 (𝑚 + 𝑛) 𝐼 − 𝐷 + 𝐴)

=
1

9(𝑚 + 𝑛)
2

× det

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

𝑛+ 3 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 1 ⋅ ⋅ ⋅ 1

1 d d
...

... d d
... 1 d d

...
... d d 1

... d d
...

... d d 1

1 ⋅ ⋅ ⋅ 1 𝑛 + 3 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝑚 + 3 1 ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

... d d
... 1 d d

...
... d d

...
... d d

...
... d d

...
... d d

...
0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 𝑚 + 3 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

0 1 ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 𝑛 + 3 1 ⋅ ⋅ ⋅ 1

1 d d
...

... d d
... 1 d d

...
... d d 1

... d d
...

... d d 1

1 ⋅ ⋅ ⋅ 1 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ 1 𝑛 + 3

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
... 1 d d

...
... d d

...
... d d

...
... d d 1

... d d
...

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ 1 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 1 ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 1 ⋅ ⋅ ⋅ 1

1 d d
...

... d d
... 1 d d

...
... d d 1

... d d
...

... d d 1

1 ⋅ ⋅ ⋅ 1 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ 1 0

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 1 ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

... d d
... 1 d d

...
... d d

...
... d d

...
... d d 1

... d d
...

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ 1 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1
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1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 1 ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

... d d
... 1 d d

...
... d d

...
... d d

...
... d d

...
... d d

...
1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ 1 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

0 1 ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 1 ⋅ ⋅ ⋅ 1

1 d d
...

... d d
... 1 d d

...
... d d 1

... d d
...

... d d 1

1 ⋅ ⋅ ⋅ 1 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ 1 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 1 ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

... d d
... 1 d d

...
... d d

...
... d d

...
... d d 1

... d d
...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

𝑚 + 3 1 ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 1 ⋅ ⋅ ⋅ 1

1 d d
...

... d d
... 1 d d

...
... d d 1

... d d
...

... d d 1

1 ⋅ ⋅ ⋅ 1 𝑚 + 3 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ 1 0

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 𝑛 + 3 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
... 1 d d

...
... d d

...
... d d

...
... d d 1

... d d
...

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ 1 𝑛 + 3 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝑚 + 3 1 ⋅ ⋅ ⋅ 1

1 d d
...

... d d
... 1 d d

...
... d d 1

... d d
...

... d d 1

1 ⋅ ⋅ ⋅ 1 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 𝑚 + 3

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

=
1

9(𝑚 + 𝑛)
2
det(
𝐴 𝐵 𝐵

𝐵 𝐴 𝐵

𝐵 𝐵 𝐴

) =
1

9(𝑚 + 𝑛)
2
[det (𝐴 − 𝐵)]2 [det (𝐴 + 2𝐵)]

=
1

9(𝑚 + 𝑛)
2

(
(
(
(
(
(
(
(
(

(

det

(
(
(
(
(
(
(
(
(

(

𝑛+ 3 0 ⋅ ⋅ ⋅ 0 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1

0 d d
...

... d d
...

... d d 0
... d d

...
0 ⋅ ⋅ ⋅ 0 𝑛 + 3 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1

−1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 𝑚 + 3 0 ⋅ ⋅ ⋅ 0

... d d
... 0 d d

...
... d d

...
... d d 0

−1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 0 ⋅ ⋅ ⋅ 0 𝑚 + 3

)
)
)
)
)
)
)
)
)

)

)
)
)
)
)
)
)
)
)

)

2

× det

(
(
(
(
(
(
(
(
(

(

𝑛+ 3 3 ⋅ ⋅ ⋅ 3 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2

3 d d
...

... d d
...

... d d 3
... d d

...
3 ⋅ ⋅ ⋅ 3 𝑛 + 3 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2

2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 𝑚 + 3 3 ⋅ ⋅ ⋅ 3

... d d
... 3 d d

...
... d d

...
... d d 3

2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 3 ⋅ ⋅ ⋅ 3 𝑚 + 3

)
)
)
)
)
)
)
)
)

)
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=
1

9(𝑚 + 𝑛)
2
(det( 𝐴 𝐵
𝐵
𝑇
𝐶
))

2

× det(𝐷 𝐸
𝐸
𝑇
𝐹
)

=
1

9(𝑚 + 𝑛)
2
× (det𝐴)2(det (𝐶 − 𝐵𝑇𝐴−1𝐵))

2

× det𝐷 det (𝐹 − 𝐸𝑇𝐷−1𝐸) .

(12)

Thus,

𝜏 (𝐾
3
× 𝐾
𝑚,𝑛
) =

1

9(𝑚 + 𝑛)
2
(det(

𝑛 + 3 0 ⋅ ⋅ ⋅ 0

0 d d
...

... d d 0

0 ⋅ ⋅ ⋅ 0 𝑛 + 3

)

𝑚×𝑚

)

2

×

(
(
(
(

(

det
(
(
(

(

𝑛𝑚+ 3𝑛 + 2𝑚 + 9

𝑛 + 3

−𝑚

𝑛 + 3
⋅ ⋅ ⋅

−𝑚

𝑛 + 3

−𝑚

𝑛 + 3
d d

...
... d d

−𝑚

𝑛 + 3
−𝑚

𝑛 + 3
⋅ ⋅ ⋅
−𝑚

𝑛 + 3

𝑛𝑚 + 3𝑛 + 2𝑚 + 9

𝑛 + 3

)
)
)

)
𝑛×𝑛

)
)
)
)

)

2

× det(

𝑛+ 3 3 ⋅ ⋅ ⋅ 3

3 d d
...

... d d 3

3 ⋅ ⋅ ⋅ 3 𝑛 + 3

)

𝑚×𝑚

× det
(
(
(
(
(

(

𝑛𝑚+ 3𝑛 + 3𝑚
2
+ 5𝑚

𝑛 + 3𝑚

3𝑛 + 5𝑚

𝑛 + 3𝑚
⋅ ⋅ ⋅

3𝑛 + 5𝑚

𝑛 + 3𝑚

3𝑛 + 5𝑚

𝑛 + 3𝑚
d d

...
... d d

3𝑛 + 5𝑚

𝑛 + 3𝑚

3𝑛 + 5𝑚

𝑛 + 3𝑚
⋅ ⋅ ⋅
3𝑛 + 5𝑚

𝑛 + 3𝑚

𝑛𝑚 + 3𝑛 + 3𝑚
2
+ 5𝑚

𝑛 + 3𝑚

)
)
)
)
)

)𝑛×𝑛

=
1

9(𝑚 + 𝑛)
2
(𝑚 + 3)

2𝑚
× (
−𝑚

𝑛 + 3
)

2𝑛

×
(
(

(

det((

(

𝑚𝑛 + 3𝑛 + 2𝑚 + 9

−𝑚
1 . . . 1

1 d d
...

... d d 1

1 . . . 1
𝑚𝑛 + 3𝑛 + 2𝑚 + 9

−𝑚

)
)

)

)
)

)

2

× 3
𝑚
× det((

(

𝑛+ 3

3
1 . . . 1

1 d d
...

... d d 1

1 . . . 1
𝑛 + 3

3

)
)

)𝑚×𝑚

× (
3𝑛 + 5𝑚

𝑛 + 3𝑚
)

𝑛
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× det
(
(
(
(

(

𝑚𝑛 + 3𝑛 + 2𝑚
2
+ 5𝑚

3𝑛 + 5𝑚
1 . . . 1

1 d d
...

... d d 1

1 . . . 1
𝑚𝑛 + 3𝑛 + 2𝑚

2
+ 5𝑚

3𝑛 + 5𝑚

)
)
)
)

)

.

(13)

Using Lemma 2, we have

𝜏 (𝐾
3
× 𝐾
𝑚,𝑛
)

=
1

9(𝑚 + 𝑛)
2
× (𝑛 + 3)

2𝑚
× (
−𝑚

𝑛 + 3
)

2𝑛

× [−
𝑛𝑚 + 3𝑛 + 2𝑚 + 9

𝑚
+ 𝑛 − 1]

2

× [−
𝑛𝑚 + 3𝑛 + 2𝑚 + 9

𝑚
− 1]

2𝑛−2

× 3
𝑚
(
𝑛 + 3

3
+ 𝑚 − 1)

× (
𝑛 + 3

3
− 1)

𝑚−1

× (
3𝑛 + 5𝑚

𝑛 + 3𝑚
)

𝑛

× [
𝑛𝑚 + 3𝑛 + 3𝑚

2
+ 5𝑚

3𝑛 + 5𝑚
+ 𝑛 − 1]

× [
𝑛𝑚 + 3𝑛 + 3𝑚

2
+ 5𝑚

3𝑛 + 5𝑚
− 1]

𝑛−1

=
1

9(𝑚 + 𝑛)
2
(𝑛 + 3)

2𝑚

× [
1

(𝑛 + 3)
2𝑛
× (3𝑛 + 3𝑚 + 9)

2

× (𝑛𝑚 + 3𝑛 + 3𝑚 + 9)
2𝑛−2
]

× [(𝑛 + 3𝑚) × 𝑛
𝑚−1
×
1

(𝑛 + 3𝑚)
𝑛

× (6𝑛𝑚 + 3𝑛
2
+ 3𝑚
2
)

×(𝑛𝑚 + 3𝑚
2
)
𝑛−1

]

= 3𝑛
𝑚−1
𝑚
𝑛−1
(𝑚 + 3)

2𝑛−2
(𝑛 + 3)

2𝑚−2

(𝑛 + 𝑚 + 3)
2
.

(14)

In particular,

𝜏 (𝐾
3
× 𝐾
𝑛,𝑛
) = 3𝑛

2𝑛−2
(2𝑛 + 3)

2
(𝑛 + 3)

4𝑛−4
; 𝑛 ≥ 1. (15)

3. Number of Spanning Trees of
Normal Product of Graphs

The normal product, or the strong product, 𝐺
1
∘ 𝐺
2
, is the

simple graph with 𝑉(𝐺
1
∘ 𝐺
2
) = 𝑉
1
× 𝑉
2
, where (𝑢

1
, 𝑢
2
) and

(V
1
, V
2
) are adjacent in𝐺

1
∘𝐺
2
if and only if either 𝑢

1
= V
1
and

𝑢
2
is adjacent to V

2
, 𝑢
1
is adjacent to V

1
and 𝑢

2
= V
2
, or 𝑢
1
is

adjacent to V
1
and 𝑢

2
is adjacent to V

2
[13].

Theorem 7. For 𝑛,𝑚 ≥ 1, we have

𝜏 (𝐾
2
∘ 𝐾
𝑚,𝑛
) = 2
2𝑚+2𝑛−2

× 𝑛
𝑚−1

× 𝑚
𝑛−1
× (𝑛 + 1)

𝑚
× (𝑚 + 1)

𝑛
.

(16)

Proof. Applying Lemma 1, we have

𝜏 (𝐾
2
∘ 𝐾
𝑚,𝑛
)

=
1

4(𝑚 + 𝑛)
2
det (2 (𝑚 + 𝑛) 𝐼 − 𝐷 + 𝐴)

=
1

4(𝑚 + 𝑛)
2
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× det

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

2𝑛 + 2 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

1 d d
...

... d d
... 1 d d

...
... d d

...
... d d 1

... d d
...

... d d 1
... d d

...
1 ⋅ ⋅ ⋅ 1 2𝑛 + 2 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 2𝑚 + 2 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 1 ⋅ ⋅ ⋅ 1

... d d 1 1 d d
...

... d d
... 1 d d

...
... d d

...
... d d 1

... d d
...

... d d 1

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 2𝑚 + 2 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 0

0 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 2𝑛 + 2 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

1 d d
...

... d d
... 1 d d

...
... d d

...
... d d 1

... d d
...

... d d 1
... d d

...
1 ⋅ ⋅ ⋅ 1 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 2𝑛 + 2 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 2𝑚 + 2 1 ⋅ ⋅ ⋅ 1

... d d
... 1 d d

...
... d d

... 1 d d
...

... d d
...

... d d 1
... d d

...
... d d 1

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 2𝑚 + 2

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

=
1

4(𝑚 + 𝑛)
2
det

(
(
(
(
(
(
(
(
(

(

2𝑛 + 2 2 ⋅ ⋅ ⋅ 2 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

2 d d
...

... d d
...

... d d 2
... d d

...
2 ⋅ ⋅ ⋅ 2 2𝑛 + 2 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 2𝑚 + 2 2 ⋅ ⋅ ⋅ 2

... d d
... 2 d d

...
... d d

...
... d d 2

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 2 ⋅ ⋅ ⋅ 2 2𝑚 + 2

)
)
)
)
)
)
)
)
)

)

× det

(
(
(
(
(
(
(
(
(

(

2𝑛 + 2 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 d d
...

... d d
...

... d d 0
... d d

...
0 ⋅ ⋅ ⋅ 0 2𝑛 + 2 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 2𝑚 + 2 0 ⋅ ⋅ ⋅ 0

... d d
... 0 d d

...
... d d

...
... d d 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 2𝑚 + 2

)
)
)
)
)
)
)
)
)

)

=
1

4(𝑚 + 𝑛)
2
det(

2𝑛 + 2 2 ⋅ ⋅ ⋅ 2

2 d d
...

... d d 2

2 ⋅ ⋅ ⋅ 2 2𝑛 + 2

)

𝑚×𝑚

× det(

2𝑚 + 2 2 ⋅ ⋅ ⋅ 2

2 d d
...

... d d 2

2 ⋅ ⋅ ⋅ 2 2𝑚 + 2

)

𝑛×𝑛

× det(

2𝑛 + 2 0 ⋅ ⋅ ⋅ 0

0 d d
...

... d d 0

0 ⋅ ⋅ ⋅ 0 2𝑛 + 2

)

𝑚×𝑚

× det(

2𝑚 + 2 0 ⋅ ⋅ ⋅ 0

0 d d
...

... d d 0

0 ⋅ ⋅ ⋅ 0 2𝑚 + 2

)

𝑛×𝑛
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=
1

4(𝑚 + 𝑛)
2
× 2
𝑚
(𝑛 + 𝑚) 𝑛

𝑚−1
× 2
𝑛
(𝑛 + 𝑚)𝑚

𝑛−1
× 2
𝑚
(𝑛 + 1)

𝑚
× 2
𝑛
(𝑚 + 1)

𝑛

= 2
2𝑚+2𝑛−2

× 𝑛
𝑚−1
× 𝑚
𝑛−1
× (𝑛 + 1)

𝑚
× (𝑚 + 1)

𝑛
.

(17)

In particular,

𝜏 (𝐾
2
∘ 𝐾
𝑛,𝑛
) = 2
4𝑛−2
× 𝑛
2𝑛−2
× (𝑛 + 1)

2𝑛
; 𝑛 ≥ 1. (18)

Theorem 8. For𝑚, 𝑛 ≥ 1, we have

𝜏 (𝐾
3
∘ 𝐾
𝑚,𝑛
) = 3
3𝑚+3𝑛−2

× 𝑛
𝑚−1
× 𝑚
𝑛−1

× (𝑛 + 1)
2𝑚
× (𝑚 + 1)

2𝑛
.

(19)

Proof. Applying Lemma 1, we have

𝜏 (𝐾
3
∘ 𝐾
𝑚,𝑛
)

=
1

9(𝑚 + 𝑛)
2
det (3 (𝑚 + 𝑛) 𝐼 − 𝐷 + 𝐴)

=
1

9(𝑚 + 𝑛)
2

× det

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

3𝑛 + 3 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 1 ⋅ ⋅ ⋅ 1

1 d d
...

... d d
... 1 d d

...
... d d 1

... d d
...

... d d 1

1 ⋅ ⋅ ⋅ 1 3𝑛 + 3 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 3𝑚 + 3 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
... 1 d d

...
... d d

...
... d d

...
... d d

...
... d d

...
0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 3𝑚 + 3 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 3𝑛 + 3 1 ⋅ ⋅ ⋅ 1

1 d d
...

... d d
... 1 d d

...
... d d 1

... d d
...

... d d 1

1 ⋅ ⋅ ⋅ 1 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 3𝑛 + 3

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
... 1 d d

...
... d d

...
... d d

...
... d d 1

... d d
...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 1 ⋅ ⋅ ⋅ 1

1 d d
...

... d d
... 1 d d

...
... d d 1

... d d
...

... d d 1

1 ⋅ ⋅ ⋅ 1 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
... 1 d d

...
... d d

...
... d d

...
... d d 1

... d d
...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0
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... d d
... 1 d d

...
... d d

...
... d d

...
... d d

...
... d d

...
0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 1 ⋅ ⋅ ⋅ 1

1 d d
...

... d d
... 1 d d

...
... d d 1

... d d
...

... d d 1

1 ⋅ ⋅ ⋅ 1 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
... 1 d d

...
... d d

...
... d d

...
... d d 1

... d d
...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

3𝑚 + 3 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 1 ⋅ ⋅ ⋅ 1

1 d d
...

... d d
... 1 d d

...
... d d 1

... d d
...

... d d 1

1 ⋅ ⋅ ⋅ 1 3𝑚 + 3 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 3𝑛 + 3 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
... 1 d d

...
... d d

...
... d d

...
... d d 1

... d d
...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 3𝑛 + 3 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 3𝑚 + 3 1 ⋅ ⋅ ⋅ 1

1 d d
...

... d d
... 1 d d

...
... d d 1

... d d
...

... d d 1

1 ⋅ ⋅ ⋅ 1 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 3𝑚 + 3

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

=
1

9(𝑚 + 𝑛)
2
det(
𝐴 𝐵 𝐵

𝐵 𝐴 𝐵

𝐵 𝐵 𝐴

) =
1

9(𝑚 + 𝑛)
2
[det (𝐴 − 𝐵)]2 [det (𝐴 + 2𝐵)]

=
1

9(𝑚 + 𝑛)
2

(
(
(
(
(
(
(
(
(

(

det

(
(
(
(
(
(
(
(
(

(

3𝑛 + 3 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 d d
...

... d d
...

... d d 0
... d d

...
0 ⋅ ⋅ ⋅ 0 3𝑛 + 3 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 3𝑚 + 3 0 ⋅ ⋅ ⋅ 0

... d d
... 0 d d

...
... d d

...
... d d 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 3𝑚 + 3

)
)
)
)
)
)
)
)
)

)

)
)
)
)
)
)
)
)
)

)

2

× det

(
(
(
(
(
(
(
(
(

(

3𝑛 + 3 3 ⋅ ⋅ ⋅ 3 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

3 d d
...

... d d
...

... d d 3
... d d

...
3 ⋅ ⋅ ⋅ 3 3𝑛 + 3 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 3𝑚 + 3 3 ⋅ ⋅ ⋅ 3

... d d
... 3 d d

...
... d d

...
... d d 3

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 3 ⋅ ⋅ ⋅ 3 3𝑚 + 3

)
)
)
)
)
)
)
)
)

)
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=
1

9(𝑚 + 𝑛)
2
(det(

3𝑛 + 3 0 ⋅ ⋅ ⋅ 0

0 d d
...

... d d 0

0 ⋅ ⋅ ⋅ 0 3𝑛 + 3

)

𝑚×𝑚

)

2

× (det(

3𝑚 + 3 0 ⋅ ⋅ ⋅ 0

0 d d
...

... d d 0

0 ⋅ ⋅ ⋅ 0 3𝑚 + 3

)

𝑛×𝑛

)

2

× det(

3𝑛 + 3 3 ⋅ ⋅ ⋅ 3

3 d d
...

... d d 3

3 ⋅ ⋅ ⋅ 3 3𝑛 + 3

)

𝑚×𝑚

× det(

3𝑚 + 3 3 ⋅ ⋅ ⋅ 3

3 d d
...

... d d 3

3 ⋅ ⋅ ⋅ 3 3𝑚 + 3

)

𝑛×𝑛

.

(20)

Using Lemma 2, we have

𝜏 (𝐾
3
∘ 𝐾
𝑚,𝑛
) =

1

9(𝑚 + 𝑛)
2
× (3𝑛 + 3)

2𝑚
× (3𝑚 + 3)

2𝑛

× (3
𝑚
× (𝑛 + 𝑚) × 𝑛

𝑚−1
)

× (3
𝑛
× (𝑛 + 𝑚) × 𝑚

𝑛−1
)

= 3
3𝑚+3𝑛−2

× 𝑛
𝑚−1
× 𝑚
𝑛−1

× (𝑛 + 1)
2𝑚
× (𝑚 + 1)

2𝑛
.

(21)

In paricular,

𝜏 (𝐾
3
∘ 𝐾
𝑛,𝑛
) = 3
6𝑛−2
× 𝑛
2𝑛−2
× (𝑛 + 1)

4𝑛
; 𝑛 ≥ 1. (22)

4. Number of Spanning Trees of Composition
Product of Graphs

The composition, or lexicographic product, 𝐺
1
[𝐺
2
], is the

simple graph with 𝑉
1
× 𝑉
2
as the vertex set in which the

vertices (𝑢
1
, 𝑢
2
) and (V

1
, V
2
) are adjacent if either𝑢

1
is adjacent

to V
1
or 𝑢
1
= V
1
and 𝑢

2
is adjacent to V

2
in 𝐺
2
[13].

Theorem 9. For 𝑛,𝑚 ≥ 1, we have

𝜏 (𝐾
2
[𝐾
𝑚,𝑛
]) = 4(𝑚 + 𝑛)

2

× (𝑚 + 2𝑛)
2𝑚−2
(𝑛 + 2𝑚)

2𝑛−2
.

(23)

Proof. Applying Lemma 1, we have

𝜏 (𝐾
2
[𝐾
𝑚,𝑛
])

=
1

4(𝑚 + 𝑛)
2
det (2 (𝑚 + 𝑛 ) 𝐼 − 𝐷 + 𝐴)

=
1

4(𝑚 + 𝑛)
2



Journal of Applied Mathematics 13

× det

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

𝑚+ 2𝑛 + 1 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

1 d d
...

... d d
...

... d d 1
... d d

...
1 ⋅ ⋅ ⋅ 1 𝑚 + 2𝑛 + 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝑛 + 2𝑚 + 1 1 ⋅ ⋅ ⋅ 1

... d d
... 1 d d

...
... d d

...
... d d 1

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 𝑛 + 2𝑚 + 1

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
...

... d d
...

... d d
...

... d d
...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
...

... d d
...

... d d
...

... d d
...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
...

... d d
...

... d d
...

... d d
...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
...

... d d
...

... d d
...

... d d
...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

𝑚 + 2𝑛 + 1 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

1 d d
...

... d d
...

... d d 1
... d d

...
1 ⋅ ⋅ ⋅ 1 𝑚 + 2𝑛 + 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝑛 + 2𝑚 + 1 1 ⋅ ⋅ ⋅ 1

... d d
... 1 d d

...
... d d

...
... d d 1

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 𝑛 + 2𝑚 + 1

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

=
1

4(𝑚 + 𝑛)
2
(det(

𝑚+ 2𝑛 + 1 1 ⋅ ⋅ ⋅ 1

1 d d
...

... d d 1

1 ⋅ ⋅ ⋅ 1 𝑚 + 2𝑛 + 1

)

𝑚×𝑚

)

2

×(det(

𝑛+ 2𝑚 + 1 1 ⋅ ⋅ ⋅ 1

1 d d
...

... d d 1

1 ⋅ ⋅ ⋅ 1 𝑛 + 2𝑚 + 1

)

𝑛×𝑛

)

2
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=
1

4(𝑚 + 𝑛)
2
(2𝑛 + 2𝑚)

2
(𝑚 + 2𝑛)

2𝑚−2
× (2𝑛 + 2𝑚)

2
(𝑛 + 2𝑚)

2𝑛−2

= 4(𝑚 + 𝑛)
2
(𝑚 + 2𝑛)

2𝑚−2
(𝑛 + 2𝑚)

2𝑛−2
.

(24)

In particular,

𝜏 (𝐾
2
[𝐾
𝑛,𝑛
]) = 16 × 3

4𝑛−4
× 𝑛
4𝑛−4
; 𝑛 ≥ 1. (25)

Theorem 10. For𝑚, 𝑛 ≥ 1, we have

𝜏 (𝐾
3
[𝐾
𝑚,𝑛
]) = 3

4
(𝑚 + 𝑛)

4
(3𝑚 + 2𝑛)

3𝑛−3
(3𝑛 + 2𝑚)

3𝑚−3
.

(26)

Proof. Applying Lemma 1, we have

𝜏 (𝐾
3
[𝐾
𝑚,𝑛
])

=
1

9(𝑚 + 𝑛)
2
det (3 (𝑚 + 𝑛) 𝐼 − 𝐷 + 𝐴)

=
1

9(𝑚 + 𝑛)
2

× det

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

3𝑛 + 2𝑚 + 1 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

1 d d
...

... d d
...

... d d
...

... d d 1
... d d

...
... d d

...
1 ⋅ ⋅ ⋅ 1 3𝑛 + 2𝑚 + 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 3𝑚 + 2𝑛 + 1 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
... 1 d d

...
... d d

...
... d d

...
... d d

...
... d d

...
0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 3𝑚 + 2𝑛 + 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 3𝑛 + 2𝑚 + 1 1 ⋅ ⋅ ⋅ 1

... d d
...

... d d
... 1 d d

...
... d d

...
... d d

...
... d d 1

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 3𝑛 + 2𝑚 + 1

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0
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0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

3𝑚 + 2𝑛 + 1 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

1 d d
...

... d d
...

... d d
...

... d d 1
... d d

...
... d d

...
1 ⋅ ⋅ ⋅ 1 3𝑚 + 2𝑛 + 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 3𝑛 + 2𝑚 + 1 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
... 1 d d

...
... d d

...
... d d

...
... d d 1

... d d
...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 3𝑛 + 2𝑚 + 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 3𝑚 + 2𝑛 + 1 1 ⋅ ⋅ ⋅ 1

... d d
...

... d d
... 1 d d

...
... d d

...
... d d

...
... d d 1

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 3𝑚 + 2𝑛 + 1

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

=
1

9(𝑚 + 𝑛)
2

(
(
(
(
(
(
(
(
(

(

det

(
(
(
(
(
(
(
(
(

(

3𝑛 + 2𝑚 + 1 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

1 d d
...

... d d
...

... d d 1
... d d

...
1 ⋅ ⋅ ⋅ 1 3𝑛 + 2𝑚 + 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 3𝑚 + 2𝑛 + 1 1 ⋅ ⋅ ⋅ 1

... d d
... 1 d d

...
... d d

...
... d d 1

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 3𝑚 + 2𝑛 + 1

)
)
)
)
)
)
)
)
)

)

)
)
)
)
)
)
)
)
)

)

3

=
1

9(𝑚 + 𝑛)
2
(det(

3𝑛 + 2𝑚 + 1 1 ⋅ ⋅ ⋅ 1

1 d d
...

... d d 1

1 ⋅ ⋅ ⋅ 1 3𝑛 + 2𝑚 + 1

)

𝑚×𝑚

)

3

×(det(

3𝑚 + 2𝑛 + 1 1 ⋅ ⋅ ⋅ 1

1 d d
...

... d d 1

1 ⋅ ⋅ ⋅ 1 3𝑚 + 2𝑛 + 1

)

𝑛×𝑛

)

3

.

(27)
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Using Lemma 2, we have

𝜏 (𝐾
3
[𝐾
𝑚,𝑛
]) = 3

4
(𝑚 + 𝑛)

4
(3𝑚 + 2𝑛)

3n−3
(3𝑛 + 2𝑚)

3m−3
.

(28)

In particular,

𝜏 (𝐾
3
[𝐾
𝑛,𝑛
]) = 6

4
× 5
6𝑛−6
× 𝑛
6𝑛−2
; 𝑛 ≥ 1. (29)

5. Complexity of Tensor Product of Graphs

The tensor product, or Kronecker product, 𝐺
1
⊗ 𝐺
2
, is the

simple graph with 𝑉(𝐺
1
⊗ 𝐺
2
) = 𝑉
1
× 𝑉
2
, where (𝑢

1
, 𝑢
2
) and

(V
1
, V
2
) are adjacent in 𝐺

1
⊗ 𝐺
2
if and only if 𝑢

1
is adjacent to

V
1
in 𝐺
1
and 𝑢

2
is adjacent to V

2
in 𝐺
2
[13].

Lemma 11. For𝑚, 𝑛 ≥ 1, we have

𝜏 (𝐾
2
⊗ 𝐾
𝑚,𝑛
) = 0. (30)

Theorem 12. For𝑚, 𝑛 ≥ 1, we have

𝜏 (𝐾
3
⊗ 𝐾
𝑚,𝑛
) = 3 × 2

3𝑚+3𝑛−5

× 𝑛
3𝑚−1
× 𝑚
3𝑛−1
.

(31)

Proof. Applying Lemma 1, we have

𝜏 (𝐾
3
⊗ 𝐾
𝑚,𝑛
)

=
1

9(𝑚 + 𝑛)
2
det (3 (𝑚 + 𝑛) 𝐼 − 𝐷 + 𝐴)

=
1

9(𝑚 + 𝑛)
2

× det

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

2𝑛 + 1 1 ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

1 d d
...

... d d
...

... d d
...

... d d 1
... d d

...
... d d

...
1 ⋅ ⋅ ⋅ 1 2𝑛 + 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 2𝑚 + 1 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
... 1 d d

...
... d d

...
... d d

...
... d d

...
... d d

...
1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ 1 2𝑚 + 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 2𝑛 + 1 1 ⋅ ⋅ ⋅ 1

... d d
...

... d d
... 1 d d

...
... d d

...
... d d

...
... d d 1

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 2𝑛 + 1

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0
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0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

2𝑚 + 1 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

1 d d
...

... d d
...

... d d
...

... d d 1
... d d

...
... d d

...
1 ⋅ ⋅ ⋅ 1 2𝑚 + 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 2𝑛 + 1 1 ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

... d d
... 1 d d

...
... d d

...
... d d

...
... d d 1

... d d
...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 2𝑛 + 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 2𝑚 + 1 1 ⋅ ⋅ ⋅ 1

... d d
...

... d d
... 1 d d

...
... d d

...
... d d

...
... d d 1

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ 1 2𝑚 + 1

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

=
1

9(𝑚 + 𝑛)
2
det(
𝐴 𝐵 𝐵

𝐵 𝐴 𝐵

𝐵 𝐵 𝐴

) =
1

9(𝑚 + 𝑛)
2
[det (𝐴 − 𝐵)]2 [det (𝐴 + 2𝐵)]

=
1

9(𝑚 + 𝑛)
2

(
(
(
(
(
(
(
(
(

(

det

(
(
(
(
(
(
(
(
(

(

2𝑛 0 ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

0 d d
...

... d d
...

... d d 0
... d d

...
0 ⋅ ⋅ ⋅ 0 2𝑛 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 2𝑚 0 ⋅ ⋅ ⋅ 0

... d d
... 0 d d

...
... d d

...
... d d 0

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ 0 2𝑚

)
)
)
)
)
)
)
)
)

)

)
)
)
)
)
)
)
)
)

)

2

× det

(
(
(
(
(
(
(
(
(

(

2𝑛 + 3 3 ⋅ ⋅ ⋅ 3 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

3 d d
...

... d d
...

... d d 3
... d d

...
3 ⋅ ⋅ ⋅ 3 2𝑛 + 3 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 2𝑚 + 3 3 ⋅ ⋅ ⋅ 3

... d d
... 3 d d

...
... d d

...
... d d 3

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 3 ⋅ ⋅ ⋅ 3 2𝑚 + 3

)
)
)
)
)
)
)
)
)

)
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=
1

9(𝑚 + 𝑛)
2
det( 𝐴 𝐵
𝐵
𝑇
𝐶
) × det(𝐷 𝐸

𝐸
𝑇
𝐹
) =

1

9(𝑚 + 𝑛)
2

× (det𝐴)2(det (𝐶 − 𝐵𝑇𝐴−1𝐵))
2

× det𝐷 det (𝐹 − 𝐸𝑇𝐷−1𝐸) .
(32)

Thus,

𝜏 (𝐾
3
⊗ 𝐾
𝑚,𝑛
) =

1

9(𝑚 + 𝑛)
2
(det(

2𝑛 0 ⋅ ⋅ ⋅ 0

0 d d
...

... d d 0
0 ⋅ ⋅ ⋅ 0 2𝑛

)

𝑚×𝑚

)

2

×

(
(
(
(

(

det
(
(
(
(

(

𝑚(4𝑛 − 1)

2𝑛

−𝑚

2𝑛
⋅ ⋅ ⋅

−𝑚

2𝑛

−𝑚

2𝑛
d d

...
... d d

−𝑚

2𝑛
−𝑚

2𝑛
⋅ ⋅ ⋅
−𝑚

2𝑛

𝑚 (4𝑛 − 1)

2𝑛

)
)
)
)

)𝑛×𝑛

)
)
)
)

)

2

× det(

2𝑛 + 3 3 ⋅ ⋅ ⋅ 3

3 d d
...

... d d 3

3 ⋅ ⋅ ⋅ 3 2𝑛 + 3

)

𝑚×𝑚

× det
(
(
(
(

(

𝑛(4𝑚 + 6) + 6𝑚
2
+ 8𝑚

2𝑛 + 3𝑚

6𝑛 + 8𝑚

2𝑛 + 3𝑚
⋅ ⋅ ⋅

6𝑛 + 8𝑚

2𝑛 + 3𝑚

6𝑛 + 8𝑚

2𝑛 + 3𝑚
d d

...
... d d

6𝑛 + 8𝑚

2𝑛 + 3𝑚

6𝑛 + 8𝑚

2𝑛 + 3𝑚
⋅ ⋅ ⋅
6𝑛 + 8𝑚

2𝑛 + 3𝑚

𝑛 (4𝑚 + 6) + 6𝑚
2
+ 8𝑚

2𝑛 + 3𝑚

)
)
)
)

)𝑛×𝑛

=
1

9(𝑚 + 𝑛)
2
(2𝑛)
2𝑚
× (
−𝑚

2𝑛
)

2𝑛

×
(
(

(

det((

(

𝑚(4𝑛 − 1)

−𝑚
1 ⋅ ⋅ ⋅ 1

1 d d
...

... d d 1

1 ⋅ ⋅ ⋅ 1
𝑚 (4𝑛 − 1)

−𝑚

)
)

)𝑛×𝑛

)
)

)

2

× 3
𝑚
× det((

(

2𝑛 + 3

3
1 ⋅ ⋅ ⋅ 1

1 d d
...

... d d 1

1 ⋅ ⋅ ⋅ 1
2𝑛 + 3

3

)
)

)

×(
6𝑛 + 8𝑚

2𝑛 + 3𝑚
)

𝑛
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× det
(
(
(

(

𝑛(4𝑚 + 6) + 6𝑚
2
+ 8𝑚

6𝑛 + 8𝑚
1 ⋅ ⋅ ⋅ 1

1 d d
...

... d d 1

1 ⋅ ⋅ ⋅ 1
𝑛 (4𝑚 + 6) + 6𝑚

2
+ 8𝑚

6𝑛 + 8𝑚

)
)
)

)𝑛×𝑛

.

(33)

Using Lemma 2, we have

𝜏 (𝐾
3
⊗ 𝐾
𝑚,𝑛
) =

1

9(𝑚 + 𝑛)
2
(2𝑛)
2𝑚

× [(
𝑚

2𝑛
)

2𝑛

× (−3𝑛)
2
× (−4𝑛)

2𝑛−2
]

× [3
𝑚
(
2𝑛 + 3𝑚

3
) × (
2𝑛

3
)

𝑚−1

]

× (
6𝑛 + 8𝑚

2𝑛 + 3𝑚
)

𝑛

× [(
4𝑛𝑚 + 6𝑛 + 6𝑚

2
+ 8𝑚

6𝑛 + 8𝑚
+ 𝑛 − 1)

×(
4𝑛𝑚 + 6𝑛 + 6𝑚

2
+ 8𝑚

6𝑛 + 8𝑚
− 1)

𝑛−1

]

= 3 × (2𝑛)
2𝑚−2𝑛
× 𝑚
3𝑛−1

× 𝑛
2𝑛+𝑚−1
× 2
5𝑛+𝑚−5

= 3 × 2
3𝑚+3𝑛−5

× 𝑛
3𝑚−1
× 𝑚
3𝑛−1
.

(34)

In particular,

𝜏 (𝐾
3
⊗ 𝐾
𝑛,𝑛
) = 3 × 2

6𝑛−5
× 𝑛
6𝑛−2
; 𝑛 ≥ 1. (35)

6. Number of Spanning Trees of
Symmetric Product of Graphs

The symmetric product, 𝐺
1
⊕ 𝐺
2
, is the simple graph with

𝑉(𝐺
1
∘ 𝐺
2
) = 𝑉
1
× 𝑉
2
, where (𝑢

1
, 𝑢
2
) and (V

1
, V
2
) are adjacent

in𝐺
1
⊕𝐺
2
if and only if either 𝑢

1
is adjacent to V

1
in𝐺
1
and 𝑢
2

is not adjacent to V
2
in𝐺
2
, or 𝑢
1
is not adjacent to V

1
in𝐺
1
and

𝑢
2
is adjacent to V

2
in 𝐺
2
[13].

Theorem 13. For 𝑛,𝑚 ≥ 1, we have

𝜏 (𝐾
2
⊕ 𝐾
𝑚,𝑛
) = (𝑚 + 𝑛)

2(𝑚+𝑛−1)
. (36)

Proof. Applying Lemma 1, we have

𝜏 (𝐾
2
⊕ 𝐾
𝑚,𝑛
)

=
1

4(𝑚 + 𝑛)
2
det (2 (𝑚 + 𝑛) 𝐼 − 𝐷 + 𝐴)

=
1

4(𝑚 + 𝑛)
2
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× det

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

𝑚+ 𝑛 + 1 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

1 d d
...

... d d
...

... d d 1
... d d

...
1 ⋅ ⋅ ⋅ 1 𝑚 + 𝑛 + 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝑚 + 𝑛 + 1 1 ⋅ ⋅ ⋅ 1

... d d
... 1 d d

...
... d d

...
... d d 1

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 𝑚 + 𝑛 + 1

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

... d d
...

... d d
...

... d d
...

... d d
...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
...

... d d
...

... d d
...

... d d
...

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

... d d
...

... d d
...

... d d
...

... d d
...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
...

... d d
...

... d d
...

... d d
...

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

𝑚 + 𝑛 + 1 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

1 d d
...

... d d
...

... d d 1
... d d

...
1 ⋅ ⋅ ⋅ 1 𝑚 + 𝑛 + 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 d d 0 𝑚 + 𝑛 + 1 1 ⋅ ⋅ ⋅ 1

... d d
... 1 d d

...
... d d

...
... d d 1

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 𝑚 + 𝑛 + 1

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

=
1

4(𝑚 + 𝑛)
2
det

(
(
(
(
(
(
(
(
(
(
(
(
(

(

𝑚+ 𝑛 + 1 1 ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

1 d d
...

... d d
...

... d d 1
... d d

...
1 ⋅ ⋅ ⋅ 1 𝑚 + 𝑛 + 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 𝑚 + 𝑛 + 1 1 ⋅ ⋅ ⋅ 1

... d d
... 1 d d

...
... d d

...
... d d 1

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ 1 𝑚 + 𝑛 + 1

)
)
)
)
)
)
)
)
)
)
)
)
)

)
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× det

(
(
(
(
(
(
(
(
(

(

𝑚+ 𝑛 + 1 1 ⋅ ⋅ ⋅ 1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1

1 d d
...

... d d
...

... d d 1
... d d

...
1 ⋅ ⋅ ⋅ 1 𝑚 + 𝑛 + 1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1

−1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 𝑚 + 𝑛 + 1 1 ⋅ ⋅ ⋅ 1

... d d
... 1 d d

...
... d d

...
... d d 1

−1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 1 ⋅ ⋅ ⋅ 1 𝑚 + 𝑛 + 1

)
)
)
)
)
)
)
)
)

)

=
1

4(𝑚 + 𝑛)
2
(𝑚 + 𝑛 + 1 + 𝑚 + 𝑛 − 1) (𝑚 + 𝑛 + 1 − 1)

𝑚+𝑛−1
× det( 𝐴 𝐵
𝐵
𝑇
𝐶
)

=
1

2
(𝑚 + 𝑛)

𝑚+𝑛−2
× det𝐴 det (𝐶 − 𝐵𝑇𝐴−1𝐵)

=
1

2
(𝑚 + 𝑛)

𝑚+𝑛−2
× (2𝑚 + 𝑛) (𝑚 + 𝑛)

𝑚−1

× det
(
(
(
(
(

(

𝑛
2
+ (3𝑚 + 1) 𝑛 + 2𝑚

2
+ 𝑚

(𝑛 + 2𝑚)

𝑛 + 𝑚

𝑛 + 2𝑚
⋅ ⋅ ⋅

𝑛 + 𝑚

𝑛 + 2𝑚

𝑛 + 𝑚

𝑛 + 2𝑚
d d

...
... d d

𝑛 + 𝑚

𝑛 + 2𝑚

𝑛 + 𝑚

𝑛 + 2𝑚
⋅ ⋅ ⋅
𝑛 + 𝑚

𝑛 + 2𝑚

𝑛
2
+ (3𝑚 + 1) 𝑛 + 2𝑚

2
+ 𝑚

(𝑛 + 2𝑚)

)
)
)
)
)

)𝑛×𝑛

=
1

2
(𝑚 + 𝑛)

2𝑚+𝑛−3
× (2𝑚 + 𝑛) × (

𝑛 + 𝑚

𝑛 + 2𝑚
)

𝑛

× det
(
(
(

(

𝑛
2
+ (3𝑚 + 1) 𝑛 + 2𝑚

2
+ 𝑚

𝑛 + 𝑚
1 ⋅ ⋅ ⋅ 1

1 d d
...

... d d 1

1 ⋅ ⋅ ⋅ 1
𝑛
2
+ (3𝑚 + 1) 𝑛 + 2𝑚

2
+ 𝑚

𝑛 + 𝑚

)
)
)

)𝑛×𝑛

.

(37)

Thus,

𝜏 (𝐾
2
⊕ 𝐾
𝑚,𝑛
) =
1

2
(𝑚 + 𝑛)

2𝑚+𝑛−3
× (2𝑚 + 𝑛)

× (
𝑛 + 𝑚

𝑛 + 2𝑚
)

𝑛

× (2𝑛 + 2𝑚) (𝑛 + 2𝑚)
𝑛−1

= (𝑚 + 𝑛)
2(𝑚+𝑛−1)
.

(38)

In particular,
𝜏 (𝐾
2
⊕ 𝐾
𝑛,𝑛
) = (2𝑛)

2(2𝑛−1)
; 𝑛 ≥ 1. (39)

Theorem 14. For𝑚, 𝑛 ≥ 1, we have

𝜏 (𝐾
3
⊕ 𝐾
𝑚,𝑛
) = 3(2𝑚 + 𝑛)

3𝑚−3

× (2𝑛 + 𝑚)
3𝑛−3
(𝑚
2
+ 𝑛
2
+ 3𝑚𝑛)

2

.

(40)

Proof. Applying Lemma 1, we have

𝜏 (𝐾
3
⊕ 𝐾
𝑚,𝑛
)

=
1

9(𝑚 + 𝑛)
2
det (3 (𝑚 + 𝑛) 𝐼 − 𝐷 + 𝐴)

=
1

9(𝑚 + 𝑛)
2
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× det

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

2𝑚 + 𝑛 + 1 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

1 d d
...

... d d
...

... d d
...

... d d 1
... d d

...
... d d

...
1 ⋅ ⋅ ⋅ 1 2𝑚 + 𝑛 + 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 2𝑛 + 𝑚 + 1 1 ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

... d d
... 1 d d

...
... d d

...
... d d

...
... d d

...
... d d

...
0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 2𝑛 + 𝑚 + 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 2𝑚 + 𝑛 + 1 1 ⋅ ⋅ ⋅ 1

... d d
...

... d d
... 1 d d

...
... d d

...
... d d

...
... d d 1

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ 1 2𝑚 + 𝑛 + 1

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d 1

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

2𝑛 + 𝑚 + 1 1 ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

1 d d
...

... d d
...

... d d
...

... d d 1
... d d

...
... d d

...
1 ⋅ ⋅ ⋅ 1 2𝑛 + 𝑚 + 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 2𝑚 + 𝑛 + 1 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
... 1 d d

...
... d d

...
... d d

...
... d d 1

... d d
...

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ 1 2𝑚 + 𝑛 + 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 2𝑛 + 𝑚 + 1 1 ⋅ ⋅ ⋅ 1

... d d
...

... d d
... 1 d d

...
... d d

...
... d d

...
... d d 1

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 2𝑛 + 𝑚 + 1

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)
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=
1

9(𝑚 + 𝑛)
2
det(
𝐴 𝐵 𝐵

𝐵 𝐴 𝐵

𝐵 𝐵 𝐴

) =
1

9(𝑚 + 𝑛)
2
[det (𝐴 − 𝐵)]2 [det (𝐴 + 2𝐵)]

=
1

9(𝑚 + 𝑛)
2

(
(
(
(
(
(
(
(
(

(

det

(
(
(
(
(
(
(
(
(

(

2𝑚 + 𝑛 + 1 1 ⋅ ⋅ ⋅ 1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1

1 d d
...

... d d
...

... d d 1
... d d

...
1 ⋅ ⋅ ⋅ 1 2𝑚 + 𝑛 + 1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1

−1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 2𝑛 + 𝑚 + 1 1 ⋅ ⋅ ⋅ 1

... d d
... 1 d d

...
... d d

...
... d d 1

−1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 1 ⋅ ⋅ ⋅ 1 2𝑛 + 𝑚 + 1

)
)
)
)
)
)
)
)
)

)

)
)
)
)
)
)
)
)
)

)

2

× det

(
(
(
(
(
(
(
(
(

(

2𝑚 + 𝑛 + 1 1 ⋅ ⋅ ⋅ 1 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2

1 d d
...

... d d
...

... d d 1
... d d

...
1 ⋅ ⋅ ⋅ 1 2𝑚 + 𝑛 + 1 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2

2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 2𝑛 + 𝑚 + 1 1 ⋅ ⋅ ⋅ 1

... d d
... 3 d d

...
... d d

...
... d d 1

2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 ⋅ ⋅ ⋅ 1 2𝑛 + 𝑚 + 1

)
)
)
)
)
)
)
)
)

)

=
1

9(𝑚 + 𝑛)
2
(det( 𝐴 𝐵
𝐵
𝑇
𝐶
))

2

× det(𝐷 𝐸
𝐸
𝑇
𝐹
) =

1

9(𝑚 + 𝑛)
2
× (det𝐴)2(det (𝐶 − 𝐵𝑇𝐴−1𝐵))

2

× det𝐷 det (𝐹 − 𝐸𝑇𝐷−1𝐸)

=
(3𝑚 + 𝑛)

2
(2𝑚 + 𝑛)

2𝑚−2

9(𝑚 + 𝑛)
2

×

(
(
(
(
(
(

(

det
(
(
(
(
(

(

2𝑛
2
+ 𝑛 (7𝑚 + 1) + 3𝑚

2
+ 2𝑚

𝑛 + 3𝑚

𝑛 + 2𝑚

𝑛 + 3𝑚
⋅ ⋅ ⋅

𝑛 + 2𝑚

𝑛 + 3𝑚

𝑛 + 2𝑚

𝑛 + 3𝑚
d d

...
... d d

𝑛 + 2𝑚

𝑛 + 3𝑚

𝑛 + 2𝑚

𝑛 + 3𝑚
⋅ ⋅ ⋅
𝑛 + 2𝑚

𝑛 + 3𝑚

2𝑛
2
+ 𝑛 (7𝑚 + 1) + 3𝑚

2
+ 2𝑚

𝑛 + 3𝑚

)
)
)
)
)

)
𝑛×𝑛

)
)
)
)
)
)

)

2

× (3𝑚 + 𝑛 ) (2𝑚 + 𝑛)
𝑚−1

× det
(
(
(
(
(

(

2𝑛
2
+ 𝑛 (7𝑚 + 1) + 3𝑚

2
− 𝑚

𝑛 + 3𝑚

𝑛 − 𝑚

𝑛 + 3𝑚
⋅ ⋅ ⋅

𝑛 − 𝑚

𝑛 + 3𝑚

𝑛 − 𝑚

𝑛 + 3𝑚
d d

...
... d d

𝑛 − 𝑚

𝑛 + 3𝑚

𝑛 − 𝑚

𝑛 + 3𝑚
⋅ ⋅ ⋅
𝑛 − 𝑚

𝑛 + 3𝑚

2𝑛
2
+ 𝑛 (7𝑚 + 1) + 3𝑚

2
− 𝑚

𝑛 + 3𝑚

)
)
)
)
)

)𝑛×𝑛
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=
(3𝑚 + 𝑛)

2
(2𝑚 + 𝑛)

2𝑚−2

9(𝑚 + 𝑛)
2

× (
𝑛 + 2𝑚

𝑛 + 3𝑚
)

2𝑛(
(
(

(

det
(
(
(

(

2𝑛
2
+ 𝑛 (7𝑚 + 1) + 3𝑚

2
+ 2𝑚

𝑛 + 2𝑚
1 ⋅ ⋅ ⋅ 1

1 d d
...

... d d 1

1 ⋅ ⋅ ⋅ 1
2𝑛
2
+ 𝑛 (7𝑚 + 1) + 3𝑚

2
+ 2𝑚

𝑛 + 2𝑚

)
)
)

)𝑛×𝑛

)
)
)

)

2

× (3𝑚 + 𝑛) (2𝑚 + 𝑛)
𝑚−1

× (
𝑛 − 𝑚

𝑛 + 3𝑚
)

𝑛

det
(
(
(

(

2𝑛
2
+ 𝑛 (7𝑚 + 1) + 3𝑚

2
− 𝑚

𝑛 − 𝑚
1 ⋅ ⋅ ⋅ 1

1 d d
...

... d d 1

1 ⋅ ⋅ ⋅ 1
2𝑛
2
+ 𝑛 (7𝑚 + 1) + 3𝑚

2
− 𝑚

𝑛 − 𝑚

)
)
)

)𝑛×𝑛

.

(41)

Using Lemma 2, we have

𝜏 (𝐾
3
⊕ 𝐾
𝑚,𝑛
) =

1

9(𝑚 + 𝑛)
2
(3𝑚 + 𝑛)

2
(2𝑚 + 𝑛)

2𝑚−2

× (
𝑛 + 2𝑚

𝑛 + 3𝑚
)

2𝑛
1

(𝑛 + 3𝑚)
2𝑛

× (3𝑛
2
+ 3𝑚
2
+ 9𝑛𝑚)

2

× (2𝑛
2
+ 3𝑚
2
+ 7𝑛𝑚)

2𝑛−2

× (3𝑚 + 𝑛) (2𝑚 + 𝑛)
𝑚−1

× (
𝑛 − 𝑚

𝑛 + 3𝑚
)

𝑛

×
1

(𝑛 − 𝑚)
𝑛

× (3𝑛
2
+ 3𝑚
2
+ 6𝑛𝑚)

× (2𝑛
2
+ 3𝑚
2
+ 7𝑛𝑚)

𝑛−1

= 3(2𝑚 + 𝑛)
3𝑚−3
(2𝑛 + 𝑚)

3𝑛−3

× (𝑚
2
+ 𝑛
2
+ 3𝑚𝑛)

2

.

(42)

In particular,

𝜏 (𝐾
3
⊕ 𝐾
𝑛,𝑛
) = 25 × 3

6𝑛−5
× 𝑛
6𝑛−2
; 𝑛 ≥ 1. (43)

7. Conclusion

Thenumber of spanning trees 𝜏(𝐺) in graphs (networks) is an
important invariant.The evaluation of this number is not only

interesting from amathematical (computational) perspective
but is also an important measure of reliability of a network
and designing electrical circuits. Some computationally hard
problems such as the travelling salesman problem can be
solved approximately by using spanning trees. Due to the
high dependence of the network design and reliability on the
graph theory, we introduced the above important theorems
and lemmas and their proofs.
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