Research Article

Complexity of Products of Some Complete and Complete Bipartite Graphs

S. N. Daoud ${ }^{1,2}$
${ }^{1}$ Department of of Mathematics, Faculty of Science, Taibah University, Al Madinah 344, Saudi Arabia
${ }^{2}$ Department of Mathematics, Faculty of Science, El-Menoufia University, Shebeen El-Kom, Egypt
Correspondence should be addressed to S. N. Daoud; salamadaoud@gmail.com

Received 2 June 2013; Revised 29 July 2013; Accepted 12 August 2013
Academic Editor: Roberto Barrio
Copyright © 2013 S. N. Daoud. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The number of spanning trees in graphs (networks) is an important invariant; it is also an important measure of reliability of a network. In this paper, we derive simple formulas of the complexity, number of spanning trees, of products of some complete and complete bipartite graphs such as cartesian product, normal product, composition product, tensor product, and symmetric product, using linear algebra and matrix analysis techniques.

1. Introduction

In this work we deal with simple and finite undirected graphs $G=(V, E)$, where V is the vertex set and E is the edge set. For a graph G, a spanning tree in G is a tree which has the same vertex set as G. The number of spanning trees in G, also called the complexity of the graph, denoted by $\tau(G)$, is a wellstudied quantity (for long time). A classical result of Kirchhoff [1], can be used to determine the number of spanning trees for $G=(V, E)$. Let $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$; then the Kirchhoff matrix H defined as $n \times n$, characteristic matrix, $H=D-A$, where D is the diagonal matrix whose elements are the degrees of the vertices of G. While A is the adjacency matrix of $G, H=\left[a_{i j}\right]$ is defined as follows:
(i) $a_{i j}=-1 v_{i}$ and v_{j} are adjacent and $i \neq j$,
(ii) $a_{i j}$ equals the degree of vertex v_{i} if $i=j$,
(iii) $a_{i j}=0$ otherwise.

All of the cofactors of H are equal to $\tau(G)$. There are other methods for calculating $\tau(G)$. Let $\mu_{1} \geq \mu_{1} \geq \cdots \geq \mu_{p}$ denote the eigenvalues of H matrix of a p point graph. Then it is easily shown that $\mu_{p}=0$. Furthermore, Kelmans and Chelnokov [2] have shown that $\tau(G)=(1 / p) \prod_{k=1}^{p-1} \mu_{k}$. The formula for the number of spanning trees in a d-regular
graph G can be expressed as $\tau(G)=(1 / p) \prod_{k=1}^{p-1}\left(d-\lambda_{k}\right)$, where $\lambda_{0}=d, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{p-1}$ are the eigenvalues of the corresponding adjacency matrix of the graph. However, for a few special families of graphs there exist simple formulas that make it much easier to calculate and determine the number of corresponding spanning trees especially when these numbers are very large. One of the first results is due to Cayley [3] who showed that the complete graph on n vertices, K_{n} has n^{n-2} spanning trees, $n \geq 2$. Another result is that $\tau\left(K_{p, q}\right)=$ $p^{q-1} q^{p-1}, p, q \geq 1$, where $K_{p, q}$ is the complete bipartite graph with bipartite sets containing p and q vertices, respectively. It is well known, as in, for example, $[4,5]$. Another result is due to Sedláček [6] who derived a formula for the wheel on $n+1$ vertices, W_{n+1}; he showed that $\tau\left(W_{n+1}\right)=((3+\sqrt{5}) / 2)^{n}+$ $((3-\sqrt{5}) / 2)^{n}-2$, for $n \geq 3$. Sedlacek [7] also later derived a formula for the number of spanning trees in a Mobius ladder, $M_{n}, \tau\left(M_{n}\right)=(n / 2)\left[(2+\sqrt{3})^{n}+(2-\sqrt{3})^{n}+2\right]$ for $n \geq 2$. Another class of graphs by Boesch et al., for which an explicit formula has been derived, is based on a prism [8, 9].

Now, we can introduce the following lemmas.
Lemma 1 (see [10]). Consider $\tau(G)=\left(1 / n^{2}\right) \operatorname{det}(n I-\bar{D}+\bar{A})$ where \bar{A} and \bar{D} are the adjacency and degree matrices of \bar{G} and the complement of G, respectively, and I is the $n \times n$ unit matrix.

Lemma 2. Let $E_{n}(x)$ be $n \times n$ matrix, $x \geq 2$ such that

$$
E_{n}(x)=\left(\begin{array}{cccccc}
x & 1 & \cdots & \cdots & \cdots & 1 \tag{1}\\
1 & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & 1 \\
1 & \cdots & \cdots & \cdots & 1 & x
\end{array}\right)
$$

Then,

$$
\begin{equation*}
\operatorname{det}\left(E_{n}\right)=(x+n-1)(x-1)^{n-1} \tag{2}
\end{equation*}
$$

Proof. From the definition of the circulant determinants, we have

$$
\begin{align*}
\operatorname{det}\left(E_{n}(x)\right)= & \operatorname{det}\left(\begin{array}{cccccc}
x & 1 & \cdots & \cdots & \cdots & 1 \\
1 & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & 1 \\
1 & \cdots & \cdots & \cdots & 1 & x
\end{array}\right) \\
= & \prod_{j=1}^{n}\left(x+\omega_{j}+\omega_{j}^{2}+\omega_{j}^{3}+\cdots+\omega_{j}^{n-1}\right) \\
= & (x+1+1+\cdots+1) \\
& \times \prod_{j=1, \omega_{j} \neq 1}^{n}(x+\underbrace{\omega_{j}+\omega_{j}^{2}+\omega_{j}^{3}+\cdots+\omega_{j}^{n-1}}_{=-1}) \\
= & (x+n-1) \times(x-1)^{n-1} . \tag{3}
\end{align*}
$$

We can generalize the previous lemma as follows.

Lemma 3. Let $A, B \in F^{n \times n}$ and $F \in F^{k n \times k n}$ such that

$$
F=\left(\begin{array}{cccccc}
A & B & \cdots & \cdots & \cdots & B \tag{4}\\
B & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & B \\
B & \cdots & \cdots & \cdots & B & A
\end{array}\right)
$$

Then,

$$
\begin{equation*}
\operatorname{det} F=[\operatorname{det}(A-B)]^{k-1} \operatorname{det}[A+(k-1) B] . \tag{5}
\end{equation*}
$$

Lemma 4 (see [11]). Let $A \in F^{n \times n}$, let $B \in F^{n \times m}$, let $C \in F^{m \times n}$, and let $D \in F^{m \times m}$; assume that A, D are nonsingular matrices. Then

$$
\begin{align*}
\operatorname{det}\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) & =(-1)^{n m} \operatorname{det}\left(A-B D^{-1} C\right) \operatorname{det} D \tag{6}\\
& =(-1)^{n m} \operatorname{det} A \operatorname{det}\left(D-C A^{-1} B\right)
\end{align*}
$$

Formulas in Lemmas 2, 3, and 4 give some sort of symmetry in some matrices which facilitates our calculation of determinants.

2. Number of Spanning Trees of Cartesian Product of Graphs

The Cartesian product, $G_{1} \times G_{2}$, is the simple graph with vertex set $V\left(G_{1} \times G_{2}\right)=V_{1} \times V_{2}$ and edge set $E\left(G_{1} \times G_{2}\right)=$ $\left[\left(E_{1} \times V_{2}\right) \cup\left(V_{1} \times E_{2}\right)\right]$ such that two vertices $\left(u_{1}, u_{2}\right)$ and (v_{1}, v_{2}) are adjacent in $G_{1} \times G_{2}$ if and only if either $u_{1}=v_{1}$ and u_{2} is adjacent to v_{2} in G_{2} or u_{1} is adjacent to v_{1} in G_{1} and $u_{2}=v_{2}$ [12].

Theorem 5. For $n, m \geq 1$, we have

$$
\begin{align*}
\tau\left(K_{2} \times K_{m, n}\right)= & m^{n-1} n^{m-1}(m+2)^{n-1} \\
& \times(n+2)^{m-1}(n+m+2) . \tag{7}
\end{align*}
$$

Proof. Applying Lemma 1, we have

$$
\begin{aligned}
& \tau\left(K_{2} \times K_{m, n}\right) \\
& =\frac{1}{(2(m+n))^{2}} \operatorname{det}(2(m+n) I-\bar{D}+\bar{A}) \\
& =\frac{1}{4(m+n)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \times \operatorname{det}\left(\begin{array}{cccccccccccccccc}
n+2 & 1 & \cdots & 1 & 0 & \cdots & \cdots & 0 & 0 & 1 & \cdots & \cdots & \cdots & \cdots & \cdots & 1 \\
1 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots & 1 & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
1 & \cdots & 1 & n+2 & 0 & \cdots & \cdots & 0 & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & 0 & m+2 & 1 & \cdots & 1 & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & 1 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 1 & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & 1 \\
0 & \cdots & \cdots & 0 & 1 & \cdots & 1 & m+2 & 1 & \cdots & \cdots & \cdots & \cdots & \cdots & 1 & 0 \\
0 & 1 & \cdots & \cdots & \cdots & \cdots & \cdots & 1 & n+2 & 1 & \cdots & 1 & 0 & \cdots & \cdots & 0 \\
1 & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots & 1 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 1 & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots & 1 & \cdots & 1 & n+2 & 0 & \cdots & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots & 0 & \ddots & \ddots & 0 & m+2 & 1 & \cdots & 1 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots & 1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & 1 & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 1 \\
1 & \cdots & \cdots & \cdots & \cdots & \cdots & 1 & 0 & 0 & \cdots & \cdots & 0 & 1 & \cdots & 1 & m+2
\end{array}\right) \\
& =\frac{1}{4(m+n)^{2}} \operatorname{det}\left(\begin{array}{cccccccc}
n+2 & 2 & \cdots & 2 & 1 & \cdots & \cdots & 1 \\
2 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 2 & \vdots & \ddots & \ddots & \vdots \\
2 & \cdots & 2 & n+2 & 1 & \cdots & \cdots & 1 \\
1 & \cdots & \cdots & 1 & m+2 & 2 & \cdots & 2 \\
\vdots & \ddots & \ddots & \vdots & 2 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 2 \\
1 & \cdots & \cdots & 1 & 2 & \cdots & 2 & m+2
\end{array}\right) \\
& \times \operatorname{det}\left(\begin{array}{cccccccc}
n+2 & 0 & \cdots & 0 & -1 & \cdots & \cdots & -1 \\
0 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 & \vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & n+2 & -1 & \cdots & \cdots & -1 \\
-1 & \cdots & \cdots & -1 & m+2 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots & 0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 0 \\
-1 & \cdots & \cdots & -1 & 0 & \cdots & 0 & m+2
\end{array}\right) \\
& =\frac{1}{4(m+n)^{2}} \operatorname{det}\left(\begin{array}{cc}
A & B \\
B^{T} & C
\end{array}\right) \times \operatorname{det}\left(\begin{array}{cc}
D & E \\
E^{T} & F
\end{array}\right) \\
& =\frac{1}{4(m+n)^{2}} \times \operatorname{det} A \operatorname{det}\left(C-B^{T} A^{-1} B\right) \times \operatorname{det} D \operatorname{det}\left(F-E^{T} D^{-1} E\right) \\
& =\frac{1}{4(m+n)^{2}} \operatorname{det}\left(\begin{array}{cccc}
n+2 & 2 & \cdots & 2 \\
2 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 2 \\
2 & \cdots & 2 & n+2
\end{array}\right)_{m \times m}
\end{aligned}
$$

$$
\begin{aligned}
& \times \operatorname{det}\left(\begin{array}{cccc}
\frac{n(m+2)+m(2 m+3)}{n+2 m} & \frac{2 n+3 m}{n+2 m} & \cdots & \frac{2 n+3 m}{n+2 m} \\
\frac{2 n+3 m}{n+2 m} & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \frac{2 n+3 m}{n+2 m} \\
\frac{2 n+3 m}{n+2 m} & \cdots & \frac{2 n+3 m}{n+2 m} & \frac{n(m+2)+m(2 m+3)}{n+2 m}
\end{array}\right)_{n \times n} \\
& \times \operatorname{det}\left(\begin{array}{cccc}
n+2 & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & n+2
\end{array}\right)_{m \times m} \\
& \times \operatorname{det}\left(\begin{array}{cccc}
\frac{n(m+2)+(m+4)}{n+2} & \frac{-m}{n+2} & \cdots & \frac{-m}{n+2} \\
\frac{-m}{n+2} & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \frac{-m}{n+2} \\
\frac{-m}{n+2} & \cdots & \frac{-m}{n+2} & \frac{n(m+2)+(m+4)}{n+2}
\end{array}\right)_{n \times n} \\
& =\frac{1}{4(m+n)^{2}} \times 2^{m} \operatorname{det}\left(\begin{array}{cccc}
\frac{n+2}{2} & 1 & \cdots & 1 \\
1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & \frac{n+2}{2}
\end{array}\right)_{m \times m} \\
& \times\left(\frac{2 n+3 m}{n+2 m}\right)^{n} \operatorname{det}\left(\begin{array}{cccc}
\frac{n(m+2)+m(2 m+3)}{2 n+3 m} & 1 & \cdots & 1 \\
1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & \frac{n(m+2)+m(2 m+3)}{2 n+3 m}
\end{array}\right)_{n \times n} \\
& \times \operatorname{det}\left(\begin{array}{cccc}
n+2 & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & n+2
\end{array}\right)_{m \times m} \\
& \times\left(\frac{-m}{n+2}\right)^{n} \operatorname{det}\left(\begin{array}{cccc}
\frac{n(m+2)+(m+4)}{-m} & 1 & \cdots & 1 \\
1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & \frac{n(m+2)+(m+4)}{-m}
\end{array}\right)_{n \times n} \\
& =\frac{1}{4(m+n)^{2}} \times 2^{m} \times\left(\frac{n+2}{2}+m-1\right)\left(\frac{n+2}{2}-1\right)^{m-1} \\
& \times\left(\frac{2 n+3 m}{n+2 m}\right)^{n} \times\left(\frac{n(m+2)+m(2 m+3)}{2 n+3 m}+n-1\right)
\end{aligned}
$$

$$
\begin{align*}
& \times\left(\frac{n(m+2)+m(2 m+3)}{2 n+3 m}-1\right)^{n-1} \times(n+2)^{m} \times\left(-\frac{m}{n+2}\right)^{n} \\
& \times\left(-\frac{n(m+2)+(m+4)}{m}+n-1\right) \times\left(-\frac{n(m+2)+(m+4)}{m}-1\right)^{n-1} . \tag{8}
\end{align*}
$$

Thus,

$$
\begin{align*}
\tau\left(K_{2} \times K_{m, n}\right)= & m^{n-1} n^{m-1}(m+2)^{m-1}(n+2)^{m-1} \tag{9}\\
& \times(n+m+2) .
\end{align*}
$$

In particular,

$$
\begin{equation*}
\tau\left(K_{2} \times K_{n, n}\right)=2 n^{2 n-2}(n+1)(n+2)^{2 n-2} ; \quad n \geq 1 \tag{10}
\end{equation*}
$$

\square Proof. Applying Lemma 1, we have

$$
\begin{aligned}
& \tau\left(K_{3} \times K_{m, n}\right) \\
& =\frac{1}{9(m+n)^{2}} \operatorname{det}(3(m+n) I-\bar{D}+\bar{A}) \\
& =\frac{1}{9(m+n)^{2}} \\
& \times \operatorname{det}\left(\begin{array}{cccccccccccc}
n+3 & 1 & \cdots & 1 & 0 & \cdots & \cdots & 0 & 0 & 1 & \cdots & 1 \\
1 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots & 1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & n+3 & 0 & \cdots & \cdots & 0 & 1 & \cdots & 1 & 0 \\
0 & \cdots & \cdots & 0 & m+3 & 1 & \cdots & 1 & 1 & \cdots & \cdots & 1 \\
\vdots & \ddots & \ddots & \vdots & 1 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & 0 & 1 & \cdots & 1 & m+3 & 1 & \cdots & \cdots & 1 \\
0 & 1 & \cdots & 1 & 1 & \cdots & \cdots & 1 & n+3 & 1 & \cdots & 1 \\
1 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots & 1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & 0 & 1 & \cdots & \cdots & 1 & 1 & \cdots & 1 & n+3 \\
1 & \cdots & \cdots & 1 & 0 & 1 & \cdots & 1 & 0 & \cdots & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots & 1 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 1 & \vdots & \ddots & \ddots & \vdots \\
1 & \cdots & \cdots & 1 & 1 & \cdots & 1 & 0 & 0 & \cdots & \cdots & 0 \\
0 & 1 & \cdots & 1 & 1 & \cdots & \cdots & 1 & 0 & 1 & \cdots & 1 \\
1 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots & 1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & 0 & 1 & \cdots & \cdots & 1 & 1 & \cdots & 1 & 0 \\
1 & \cdots & \cdots & 1 & 0 & 1 & \cdots & 1 & 1 & \cdots & \cdots & 1 \\
\vdots & \ddots & \ddots & \vdots & 1 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 1 & \vdots & \ddots & \ddots & \vdots \\
1 & \cdots & \cdots & 1 & 1 & \cdots & 1 & 0 & 1 & \cdots & \cdots & 1
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{cccccccccccc}
1 & \cdots & \cdots & 1 & 0 & 1 & \cdots & 1 & 1 & \cdots & \cdots & 1 \\
\vdots & \ddots & \ddots & \vdots & 1 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
1 & \cdots & \cdots & 1 & 1 & \cdots & 1 & 0 & 1 & \cdots & \cdots & 1 \\
0 & 1 & \cdots & 1 & 1 & \cdots & \cdots & 1 & 0 & 1 & \cdots & 1 \\
1 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots & 1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & 0 & 1 & \cdots & \cdots & 1 & 1 & \cdots & 1 & 0 \\
0 & \cdots & \cdots & 0 & 0 & 1 & \cdots & 1 & 1 & \cdots & \cdots & 1 \\
\vdots & \ddots & \ddots & \vdots & 1 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 1 & \vdots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & 0 & 1 & \cdots & 1 & 0 & 1 & \cdots & \cdots & 1 \\
m+3 & 1 & \cdots & 1 & 1 & \cdots & \cdots & 1 & 0 & 1 & \cdots & 1 \\
1 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots & 1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & m+3 & 1 & \cdots & \cdots & 1 & 1 & \cdots & 1 & 0 \\
1 & \cdots & \cdots & 1 & n+3 & 1 & \cdots & 1 & 0 & \cdots & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots & 1 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 1 & \vdots & \ddots & \ddots & \vdots \\
1 & \cdots & \cdots & 1 & 1 & \cdots & 1 & n+3 & 0 & \cdots & \cdots & 0 \\
0 & 1 & \cdots & 1 & 0 & \cdots & \cdots & 0 & m+3 & 1 & \cdots & 1 \\
1 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots & 1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & 0 & 0 & \cdots & \cdots & 0 & 1 & \cdots & 1 & m+3
\end{array} \\
& =\frac{1}{9(m+n)^{2}} \operatorname{det}\left(\begin{array}{lll}
A & B & B \\
B & A & B \\
B & B & A
\end{array}\right)=\frac{1}{9(m+n)^{2}}[\operatorname{det}(A-B)]^{2}[\operatorname{det}(A+2 B)] \\
& =\frac{1}{9(m+n)^{2}}\left(\operatorname{det}\left(\begin{array}{cccccccc}
n+3 & 0 & \cdots & 0 & -1 & \cdots & \cdots & -1 \\
0 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 & \vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & n+3 & -1 & \cdots & \cdots & -1 \\
-1 & \cdots & \cdots & -1 & m+3 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots & 0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 0 \\
-1 & \cdots & \cdots & -1 & 0 & \cdots & 0 & m+3
\end{array}\right)\right)^{2} \\
& \times \operatorname{det}\left(\begin{array}{cccccccc}
n+3 & 3 & \cdots & 3 & 2 & \cdots & \cdots & 2 \\
3 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 3 & \vdots & \ddots & \ddots & \vdots \\
3 & \cdots & 3 & n+3 & 2 & \cdots & \cdots & 2 \\
2 & \cdots & \cdots & 2 & m+3 & 3 & \cdots & 3 \\
\vdots & \ddots & \ddots & \vdots & 3 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 3 \\
2 & \cdots & \cdots & 2 & 3 & \cdots & 3 & m+3
\end{array}\right)
\end{aligned}
$$

$$
\begin{align*}
& =\frac{1}{9(m+n)^{2}}\left(\operatorname{det}\left(\begin{array}{cc}
A & B \\
B^{T} & C
\end{array}\right)\right)^{2} \times \operatorname{det}\left(\begin{array}{cc}
D & E \\
E^{T} & F
\end{array}\right) \\
& =\frac{1}{9(m+n)^{2}} \times(\operatorname{det} A)^{2}\left(\operatorname{det}\left(C-B^{T} A^{-1} B\right)\right)^{2} \times \operatorname{det} D \operatorname{det}\left(F-E^{T} D^{-1} E\right) . \tag{12}
\end{align*}
$$

Thus,

$$
\begin{aligned}
& \tau\left(K_{3} \times K_{m, n}\right)=\frac{1}{9(m+n)^{2}}\left(\operatorname{det}\left(\begin{array}{cccc}
n+3 & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & n+3
\end{array}\right)_{m \times m}\right)^{2} \\
& \times\left(\operatorname{det}\left(\begin{array}{cccc}
\frac{n m+3 n+2 m+9}{n+3} & \frac{-m}{n+3} & \cdots & \frac{-m}{n+3} \\
\frac{-m}{n+3} & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \frac{-m}{n+3} \\
\frac{-m}{n+3} & \cdots & \frac{-m}{n+3} & \frac{n m+3 n+2 m+9}{n+3}
\end{array}\right)_{n \times n}\right)^{n} \\
& \times \operatorname{det}\left(\begin{array}{cccc}
n+3 & 3 & \cdots & 3 \\
3 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 3 \\
3 & \cdots & 3 & n+3
\end{array}\right)_{m \times m} \\
& \times \operatorname{det}\left(\begin{array}{cccc}
\frac{n m+3 n+3 m^{2}+5 m}{n+3 m} & \frac{3 n+5 m}{n+3 m} & \cdots & \frac{3 n+5 m}{n+3 m} \\
\frac{3 n+5 m}{n+3 m} & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \frac{3 n+5 m}{n+3 m} \\
\frac{3 n+5 m}{n+3 m} & \cdots & \frac{3 n+5 m}{n+3 m} & \frac{n m+3 n+3 m^{2}+5 m}{n+3 m}
\end{array}\right)_{n \times n} \\
& =\frac{1}{9(m+n)^{2}}(m+3)^{2 m} \times\left(\frac{-m}{n+3}\right)^{2 n} \\
& \times\left(\operatorname{det}\left(\begin{array}{cccc}
\frac{m n+3 n+2 m+9}{-m} & 1 & \cdots & 1 \\
1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & \frac{m n+3 n+2 m+9}{-m}
\end{array}\right)\right)^{2} \\
& \times 3^{m} \times \operatorname{det}\left(\begin{array}{cccc}
\frac{n+3}{3} & 1 & \cdots & 1 \\
1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & \frac{n+3}{3}
\end{array}\right)_{m \times m} \times\left(\frac{3 n+5 m}{n+3 m}\right)^{n}
\end{aligned}
$$

$$
\times \operatorname{det}\left(\begin{array}{cccc}
\frac{m n+3 n+2 m^{2}+5 m}{3 n+5 m} & 1 & \cdots & 1 \tag{13}\\
1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
1 & \ldots & 1 & \frac{m n+3 n+2 m^{2}+5 m}{3 n+5 m}
\end{array}\right)
$$

Using Lemma 2, we have

$$
\begin{aligned}
& \tau\left(K_{3} \times K_{m, n}\right) \\
&= \frac{1}{9(m+n)^{2}} \times(n+3)^{2 m} \times\left(\frac{-m}{n+3}\right)^{2 n} \\
& \times\left[-\frac{n m+3 n+2 m+9}{m}+n-1\right]^{2} \\
& \times\left[-\frac{n m+3 n+2 m+9}{m}-1\right]^{2 n-2} \times 3^{m}\left(\frac{n+3}{3}+m-1\right) \\
& \times\left(\frac{n+3}{3}-1\right)^{m-1} \times\left(\frac{3 n+5 m}{n+3 m}\right)^{n} \\
& \times\left[\frac{n m+3 n+3 m^{2}+5 m}{3 n+5 m}+n-1\right] \\
&= \times\left[\frac{n m+3 n+3 m^{2}+5 m}{3 n+5 m}-1\right]^{n-1} \\
& 9(m+n)^{2} \\
&\times n+3)^{2 m} \\
& \times\left[\frac{1}{(n+3)^{2 n}} \times(3 n+3 m+9)^{2}\right. \\
&\left.\times(n m+3 n+3 m+9)^{2 n-2}\right]
\end{aligned}
$$

$$
\begin{align*}
\times[& (n+3 m) \times n^{m-1} \times \frac{1}{(n+3 m)^{n}} \\
& \times\left(6 n m+3 n^{2}+3 m^{2}\right) \\
& \left.\times\left(n m+3 m^{2}\right)^{n-1}\right] \\
= & 3 n^{m-1} m^{n-1}(m+3)^{2 n-2}(n+3)^{2 m-2}(n+m+3)^{2} \tag{14}
\end{align*}
$$

In particular,

$$
\begin{equation*}
\tau\left(K_{3} \times K_{n, n}\right)=3 n^{2 n-2}(2 n+3)^{2}(n+3)^{4 n-4} ; \quad n \geq 1 \tag{15}
\end{equation*}
$$

3. Number of Spanning Trees of Normal Product of Graphs

The normal product, or the strong product, $G_{1} \circ G_{2}$, is the simple graph with $V\left(G_{1} \circ G_{2}\right)=V_{1} \times V_{2}$, where (u_{1}, u_{2}) and $\left(v_{1}, v_{2}\right)$ are adjacent in $G_{1} \circ G_{2}$ if and only if either $u_{1}=v_{1}$ and u_{2} is adjacent to v_{2}, u_{1} is adjacent to v_{1} and $u_{2}=v_{2}$, or u_{1} is adjacent to v_{1} and u_{2} is adjacent to v_{2} [13].

Theorem 7. For $n, m \geq 1$, we have

$$
\begin{align*}
\tau\left(K_{2} \circ K_{m, n}\right)= & 2^{2 m+2 n-2} \times n^{m-1} \tag{16}\\
& \times m^{n-1} \times(n+1)^{m} \times(m+1)^{n}
\end{align*}
$$

Proof. Applying Lemma 1, we have

$$
\begin{aligned}
& \tau\left(K_{2} \circ K_{m, n}\right) \\
& =\frac{1}{4(m+n)^{2}} \operatorname{det}(2(m+n) I-\bar{D}+\bar{A}) \\
& =\frac{1}{4(m+n)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \times \operatorname{det}\left(\begin{array}{cccccccccccccccc}
2 n+2 & 1 & \cdots & 1 & 0 & \cdots & \cdots & 0 & 0 & 1 & \cdots & 1 & 0 & \cdots & \cdots & 0 \\
1 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots & 1 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 1 & \vdots & \ddots & \ddots & \vdots \\
1 & \cdots & 1 & 2 n+2 & 0 & \cdots & \cdots & 0 & 1 & \cdots & 1 & 0 & 0 & \cdots & \cdots & 0 \\
0 & \cdots & \cdots & 0 & 2 m+2 & 1 & \cdots & 1 & 0 & \cdots & \cdots & 0 & 0 & 1 & \cdots & 1 \\
\vdots & \ddots & \ddots & 1 & 1 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots & 1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 1 & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 1 \\
0 & \cdots & \cdots & 0 & 1 & \cdots & 1 & 2 m+2 & 0 & \cdots & \cdots & 0 & 1 & \cdots & 1 & 0 \\
0 & 1 & \cdots & 1 & 0 & \cdots & \cdots & 0 & 2 n+2 & 1 & \cdots & 1 & 0 & \cdots & \cdots & 0 \\
1 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots & 1 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 1 & \vdots & \ddots & \ddots & \vdots \\
1 & \cdots & 1 & 0 & 0 & \cdots & \cdots & 0 & 1 & \cdots & 1 & 2 n+2 & 0 & \cdots & \cdots & 0 \\
0 & \cdots & \cdots & 0 & 0 & 1 & \cdots & 1 & 0 & \cdots & \cdots & 0 & 2 m+2 & 1 & \cdots & 1 \\
\vdots & \ddots & \ddots & \vdots & 1 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots & 1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 1 & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 1 \\
0 & \cdots & \cdots & 0 & 1 & \cdots & 1 & 0 & 0 & \cdots & \cdots & 0 & 1 & \cdots & 1 & 2 m+2
\end{array}\right) \\
& =\frac{1}{4(m+n)^{2}} \operatorname{det}\left(\begin{array}{cccccccc}
2 n+2 & 2 & \cdots & 2 & 0 & \cdots & \cdots & 0 \\
2 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 2 & \vdots & \ddots & \ddots & \vdots \\
2 & \cdots & 2 & 2 n+2 & 0 & \cdots & \cdots & 0 \\
0 & \cdots & \cdots & 0 & 2 m+2 & 2 & \cdots & 2 \\
\vdots & \ddots & \ddots & \vdots & 2 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 2 \\
0 & \cdots & \cdots & 0 & 2 & \cdots & 2 & 2 m+2
\end{array}\right) \\
& \times \operatorname{det}\left(\begin{array}{cccccccc}
2 n+2 & 0 & \cdots & 0 & 0 & \cdots & \cdots & 0 \\
0 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 & \vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & 2 n+2 & 0 & \cdots & \cdots & 0 \\
0 & \cdots & \cdots & 0 & 2 m+2 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots & 0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 0 \\
0 & \cdots & \cdots & 0 & 0 & \cdots & 0 & 2 m+2
\end{array}\right) \\
& =\frac{1}{4(m+n)^{2}} \operatorname{det}\left(\begin{array}{cccc}
2 n+2 & 2 & \cdots & 2 \\
2 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 2 \\
2 & \cdots & 2 & 2 n+2
\end{array}\right)_{m \times m} \times \operatorname{det}\left(\begin{array}{cccc}
2 m+2 & 2 & \cdots & 2 \\
2 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 2 \\
2 & \cdots & 2 & 2 m+2
\end{array}\right)_{n \times n} \\
& \times \operatorname{det}\left(\begin{array}{cccc}
2 n+2 & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 2 n+2
\end{array}\right)_{m \times m} \times \operatorname{det}\left(\begin{array}{cccc}
2 m+2 & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 2 m+2
\end{array}\right)_{n \times n}
\end{aligned}
$$

$$
\begin{align*}
& =\frac{1}{4(m+n)^{2}} \times 2^{m}(n+m) n^{m-1} \times 2^{n}(n+m) m^{n-1} \times 2^{m}(n+1)^{m} \times 2^{n}(m+1)^{n} \\
& =2^{2 m+2 n-2} \times n^{m-1} \times m^{n-1} \times(n+1)^{m} \times(m+1)^{n} . \tag{17}
\end{align*}
$$

In particular,

$$
\begin{equation*}
\tau\left(K_{2} \circ K_{n, n}\right)=2^{4 n-2} \times n^{2 n-2} \times(n+1)^{2 n} ; \quad n \geq 1 . \tag{18}
\end{equation*}
$$

$$
\begin{align*}
\tau\left(K_{3} \circ K_{m, n}\right)= & 3^{3 m+3 n-2} \times n^{m-1} \times m^{n-1} \tag{19}\\
& \times(n+1)^{2 m} \times(m+1)^{2 n}
\end{align*}
$$

Proof. Applying Lemma 1, we have

$$
\begin{aligned}
& \tau\left(K_{3} \circ K_{m, n}\right) \\
& =\frac{1}{9(m+n)^{2}} \operatorname{det}(3(m+n) I-\bar{D}+\bar{A}) \\
& =\frac{1}{9(m+n)^{2}}
\end{aligned}
$$

$$
\times \operatorname{det}\left(\begin{array}{cccccccccccc}
3 n+3 & 1 & \cdots & 1 & 0 & \cdots & \cdots & 0 & 0 & 1 & \cdots & 1 \\
1 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots & 1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & 3 n+3 & 0 & \cdots & \cdots & 0 & 1 & \cdots & 1 & 0 \\
0 & \cdots & \cdots & 0 & 3 m+3 & 1 & \cdots & 1 & 0 & \cdots & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots & 1 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & 0 & 1 & \cdots & 1 & 3 m+3 & 0 & \cdots & \cdots & 0 \\
0 & 1 & \cdots & 1 & 0 & \cdots & \cdots & 0 & 3 n+3 & 1 & \cdots & 1 \\
1 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots & 1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & 0 & 0 & \cdots & \cdots & 0 & 1 & \cdots & 1 & 3 n+3 \\
0 & \cdots & \cdots & 0 & 0 & 1 & \cdots & 1 & 0 & \cdots & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots & 1 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 1 & \vdots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & 0 & 1 & \cdots & 1 & 0 & 0 & \cdots & \cdots & 0 \\
0 & 1 & \cdots & 1 & 0 & \cdots & \cdots & 0 & 0 & 1 & \cdots & 1 \\
1 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots & 1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & 0 & 0 & \cdots & \cdots & 0 & 1 & \cdots & 1 & 0 \\
0 & \cdots & \cdots & 0 & 0 & 1 & \cdots & 1 & 0 & \cdots & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots & 1 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 1 & \vdots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & 0 & 1 & \cdots & 1 & 0 & 0 & \cdots & \cdots & 0
\end{array}\right.
$$

\vdots	\ddots	\ddots	\vdots	1	\ddots	\ddots	\vdots	\vdots	\ddots	\ddots	\vdots
\vdots	\ddots	\ddots	\vdots	\vdots	\ddots	\ddots	\vdots	\vdots	\ddots	\ddots	\vdots
0	\cdots	\cdots	0	1	\cdots	1	0	0	\cdots	\cdots	0
0	1	\cdots	1	0	\cdots	\cdots	0	0	1	\cdots	1
1	\ddots	\ddots	\vdots	\vdots	\ddots	\ddots	\vdots	1	\ddots	\ddots	\vdots
\vdots	\ddots	\ddots	1	\vdots	\ddots	\ddots	\vdots	\vdots	\ddots	\ddots	1
1	\cdots	1	0	0	\cdots	\cdots	0	1	\cdots	1	0
0	\cdots	\cdots	0	0	1	\cdots	1	0	\cdots	\cdots	0
\vdots	\ddots	\ddots	\vdots	1	\ddots	\ddots	\vdots	\vdots	\ddots	\ddots	\vdots
\vdots	\ddots	\ddots	\vdots	\vdots	\ddots	\ddots	1	\vdots	\ddots	\ddots	\vdots
0	\cdots	\cdots	0	1	\cdots	1	0	0	\cdots	\cdots	0
$3 m+3$	1	\cdots	1	0	\cdots	\cdots	0	0	1	\cdots	1
1	\ddots	\ddots	\vdots	\vdots	\ddots	\ddots	\vdots	1	\ddots	\ddots	\vdots
\vdots	\ddots	\ddots	1	\vdots	\ddots	\ddots	\vdots	\vdots	\ddots	\ddots	1
1	\cdots	1	$3 m+3$	0	\cdots	\cdots	0	1	\cdots	1	0
0	\cdots	\cdots	0	$3 n+3$	1	\cdots	1	0	\cdots	\cdots	0
\vdots	\ddots	\ddots	\vdots	1	\ddots	\ddots	\vdots	\vdots	\ddots	\ddots	\vdots
\vdots	\ddots	\ddots	\vdots	\vdots	\ddots	\ddots	1	\vdots	\ddots	\ddots	\vdots
0	\cdots	\cdots	0	1	\cdots	1	$3 n+3$	0	\cdots	\cdots	0
0	1	\cdots	1	0	\cdots	\cdots	0	$3 m+3$	1	\cdots	1
1	\ddots	\ddots	\vdots	\vdots	\ddots	\ddots	\vdots	1	\ddots	\ddots	\vdots
\vdots	\ddots	\ddots	1	\vdots	\ddots	\ddots	\vdots	\vdots	\ddots	\ddots	1
1	\cdots	1	0	0	\cdots	\cdots	0	1	\cdots	1	$3 m+3$

$=\frac{1}{9(m+n)^{2}} \operatorname{det}\left(\begin{array}{lll}A & B & B \\ B & A & B \\ B & B & A\end{array}\right)=\frac{1}{9(m+n)^{2}}[\operatorname{det}(A-B)]^{2}[\operatorname{det}(A+2 B)]$
$=\frac{1}{9(m+n)^{2}}\left(\operatorname{det}\left(\begin{array}{cccccccc}3 n+3 & 0 & \cdots & 0 & 0 & \cdots & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 3 n+3 & 0 & \cdots & \cdots & 0 \\ 0 & \cdots & \cdots & 0 & 3 m+3 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 0 & \cdots & 0 & 3 m+3\end{array}\right)\right)^{2}$

$$
\times \operatorname{det}\left(\begin{array}{cccccccc}
3 n+3 & 3 & \cdots & 3 & 0 & \cdots & \cdots & 0 \\
3 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 3 & \vdots & \ddots & \ddots & \vdots \\
3 & \cdots & 3 & 3 n+3 & 0 & \cdots & \cdots & 0 \\
0 & \cdots & \cdots & 0 & 3 m+3 & 3 & \cdots & 3 \\
\vdots & \ddots & \ddots & \vdots & 3 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 3 \\
0 & \cdots & \cdots & 0 & 3 & \cdots & 3 & 3 m+3
\end{array}\right)
$$

$$
\begin{align*}
& =\frac{1}{9(m+n)^{2}}\left(\operatorname{det}\left(\begin{array}{cccc}
3 n+3 & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 3 n+3
\end{array}\right)_{m \times m}\right)^{2} \\
& \times\left(\operatorname{det}\left(\begin{array}{cccc}
3 m+3 & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 3 m+3
\end{array}\right)_{n \times n}\right)^{2} \\
& \times \operatorname{det}\left(\begin{array}{cccc}
3 n+3 & 3 & \cdots & 3 \\
3 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 3 \\
3 & \cdots & 3 & 3 n+3
\end{array}\right)_{m \times m} \times \operatorname{det}\left(\begin{array}{cccc}
3 m+3 & 3 & \cdots & 3 \\
3 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 3 \\
3 & \cdots & 3 & 3 m+3
\end{array}\right)_{n \times n} . \tag{20}
\end{align*}
$$

Using Lemma 2, we have

$$
\begin{align*}
\tau\left(K_{3} \circ K_{m, n}\right)= & \frac{1}{9(m+n)^{2}} \times(3 n+3)^{2 m} \times(3 m+3)^{2 n} \\
& \times\left(3^{m} \times(n+m) \times n^{m-1}\right) \\
& \times\left(3^{n} \times(n+m) \times m^{n-1}\right) \tag{21}\\
= & 3^{3 m+3 n-2} \times n^{m-1} \times m^{n-1} \\
& \times(n+1)^{2 m} \times(m+1)^{2 n} .
\end{align*}
$$

In paricular,

$$
\begin{equation*}
\tau\left(K_{3} \circ K_{n, n}\right)=3^{6 n-2} \times n^{2 n-2} \times(n+1)^{4 n} ; \quad n \geq 1 . \tag{22}
\end{equation*}
$$

4. Number of Spanning Trees of Composition Product of Graphs

The composition, or lexicographic product, $G_{1}\left[G_{2}\right]$, is the simple graph with $V_{1} \times V_{2}$ as the vertex set in which the vertices (u_{1}, u_{2}) and (v_{1}, v_{2}) are adjacent if either u_{1} is adjacent to v_{1} or $u_{1}=v_{1}$ and u_{2} is adjacent to v_{2} in G_{2} [13].

Theorem 9. For $n, m \geq 1$, we have

$$
\begin{align*}
\tau\left(K_{2}\left[K_{m, n}\right]\right)= & 4(m+n)^{2} \tag{23}\\
& \times(m+2 n)^{2 m-2}(n+2 m)^{2 n-2}
\end{align*}
$$

Proof. Applying Lemma 1, we have

$$
\begin{aligned}
& \tau\left(K_{2}\left[K_{m, n}\right]\right) \\
& =\frac{1}{4(m+n)^{2}} \operatorname{det}(2(m+n) I-\bar{D}+\bar{A}) \\
& =\frac{1}{4(m+n)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{cccccccc}
m+2 n+1 & 1 & \cdots & 1 & 0 & \cdots & \cdots & 0 \\
1 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 & \vdots & \ddots & \ddots & \vdots \\
1 & \cdots & 1 & m+2 n+1 & 0 & \cdots & \cdots & 0 \\
0 & \cdots & \cdots & 0 & n+2 m+1 & 1 & \cdots & 1
\end{array}\right. \\
& \begin{array}{ccccccc}
\ddots & \ddots & \vdots & 1 & \ddots & \ddots & \vdots \\
\ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 1
\end{array} \\
& \times \operatorname{det} \begin{array}{cccccccc}
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 1 \\
0 & \cdots & \cdots & 0 & 1 & \cdots & 1 & n+2 m+1 \\
0 & \cdots & \cdots & 0 & 0 & \cdots & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & 0 & 0 & \cdots & \cdots & 0 \\
0 & \cdots & \cdots & 0 & 0 & \cdots & \cdots & 0
\end{array} \\
& \left(\begin{array}{cccccccc}
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & 0 & 0 & \cdots & \cdots & 0
\end{array}\right. \\
& \left.\begin{array}{cccccccc}
0 & \cdots & \cdots & 0 & 0 & \cdots & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & 0 & 0 & \cdots & \cdots & 0 \\
0 & \cdots & \cdots & 0 & 0 & \cdots & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & 0 & 0 & \cdots & \cdots & 0 \\
m+2 n+1 & 1 & \cdots & 1 & 0 & \cdots & \cdots & 0 \\
1 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 & \vdots & \ddots & \ddots & \vdots \\
1 & \cdots & 1 & m+2 n+1 & 0 & \cdots & \cdots & 0 \\
0 & \cdots & \cdots & 0 & n+2 m+1 & 1 & \cdots & 1 \\
\vdots & \ddots & \ddots & \vdots & 1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 1 \\
0 & \cdots & \cdots & 0 & 1 & \cdots & 1 & n+2 m+1
\end{array}\right) \\
& =\frac{1}{4(m+n)^{2}}\left(\operatorname{det}\left(\begin{array}{cccc}
m+2 n+1 & 1 & \cdots & 1 \\
1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & m+2 n+1
\end{array}\right)_{m \times m}\right)^{2} \\
& \times\left(\operatorname{det}\left(\begin{array}{cccc}
n+2 m+1 & 1 & \cdots & 1 \\
1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & n+2 m+1
\end{array}\right)_{n \times n}\right)^{2}
\end{aligned}
$$

$$
\begin{align*}
& =\frac{1}{4(m+n)^{2}}(2 n+2 m)^{2}(m+2 n)^{2 m-2} \times(2 n+2 m)^{2}(n+2 m)^{2 n-2} \\
& =4(m+n)^{2}(m+2 n)^{2 m-2}(n+2 m)^{2 n-2} \tag{24}
\end{align*}
$$

In particular,

$$
\begin{equation*}
\tau\left(K_{2}\left[K_{n, n}\right]\right)=16 \times 3^{4 n-4} \times n^{4 n-4} ; \quad n \geq 1 . \tag{25}
\end{equation*}
$$

Theorem 10. For $m, n \geq 1$, we have

$$
\begin{equation*}
\tau\left(K_{3}\left[K_{m, n}\right]\right)=3^{4}(m+n)^{4}(3 m+2 n)^{3 n-3}(3 n+2 m)^{3 m-3} . \tag{26}
\end{equation*}
$$

Proof. Applying Lemma 1, we have

$$
\begin{aligned}
& \tau\left(K_{3}\left[K_{m, n}\right]\right) \\
& =\frac{1}{9(m+n)^{2}} \operatorname{det}(3(m+n) I-\bar{D}+\bar{A}) \\
& =\frac{1}{9(m+n)^{2}}
\end{aligned}
$$

0	0	0	0	0	$0 \quad$ -
\vdots	$\because \cdot$.	:	$\because \cdot$:	:	$\because \cdot$	\vdots
:	$\ddots \cdot$:	.		!	\vdots	$\because \cdot$	\vdots
0	\ldots	0	0	\cdots	0	0	$\cdots \cdot$	0
0	0	0	0	0	.	0
:	$\because \cdot$:	:	$\because \cdot$	\vdots	\vdots	$\because \cdot$	\vdots
;	$\because \quad \ddots$	\vdots	\vdots	$\ddots \cdot$!	.	$\ddots \cdot$	\vdots
0	0	0	0	0	. .	0
0	\cdots	0	0	\cdots	0	0	.	0
\vdots	$\because \cdot$	\vdots	\vdots	$\because \cdot$	\vdots	:	$\because \cdot$	\vdots
!	$\because \cdot$!	\vdots	$\because \cdot$:	:	$\ddots \cdot$!
0	\cdots	0	0	\cdots	0	0	,	0
$+2 n+1$	$1 \cdots$	1	0	0	0	\cdots	0
1	$\because \cdot \ddots$:	:	$\because \cdot$	\vdots	!	$\because \cdot$	\vdots
:		1	\vdots	$\because \cdot$	\vdots	\vdots	$\because \cdot$:
1	$\cdots 1$	$3 m+2 n+1$	0	\ldots	0	0	.	0
0	0	$3 n+2 m+1$	$1 \cdots$	1	0	0
:	$\because \cdot \ddots$	\vdots	1	$\because \cdot$	\vdots	:	$\because \cdot$!
:	$\because \cdot$:	:	$\because \quad \ddots$	1	\vdots	$\because \cdot$	\vdots
0	\cdots	0	1	$\cdots 1$	$3 n+2 m+1$	0	...	0
0	0	0	0	$3 m+2 n+1$	$1 \cdots$	1
:		!	\vdots	$\because \cdot$	\vdots	1	$\because \cdot$	\vdots
\vdots	$\because \cdot$:	.		:	:	$\because \cdot$	1
0	\ldots...	0	0	0	1	$\cdots 1$	$3 m+2 n+1$

$$
=\frac{1}{9(m+n)^{2}}\left(\operatorname{det}\left(\begin{array}{cccccccc}
3 n+2 m+1 & 1 & \cdots & 1 & 0 & \cdots & \cdots & 0 \\
1 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 & \vdots & \ddots & \ddots & \vdots \\
1 & \cdots & 1 & 3 n+2 m+1 & 0 & \cdots & \cdots & 0 \\
0 & \cdots & \cdots & 0 & 3 m+2 n+1 & 1 & \cdots & 1 \\
\vdots & \ddots & \ddots & \vdots & 1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 1 \\
0 & \cdots & \cdots & 0 & 1 & \cdots & 1 & 3 m+2 n+1
\end{array}\right)\right)
$$

$$
=\frac{1}{9(m+n)^{2}}\left(\operatorname{det}\left(\begin{array}{cccc}
3 n+2 m+1 & 1 & \cdots & 1 \\
1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & 3 n+2 m+1
\end{array}\right)_{m \times m}\right)^{3}
$$

$$
\times\left(\operatorname{det}\left(\begin{array}{cccc}
3 m+2 n+1 & 1 & \cdots & 1 \\
1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & 3 m+2 n+1
\end{array}\right)_{n \times n}\right)^{3}
$$

Using Lemma 2, we have

$$
\begin{equation*}
\tau\left(K_{3}\left[K_{m, n}\right]\right)=3^{4}(m+n)^{4}(3 m+2 n)^{3 \mathrm{n}-3}(3 n+2 m)^{3 \mathrm{~m}-3} . \tag{28}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\tau\left(K_{3}\left[K_{n, n}\right]\right)=6^{4} \times 5^{6 n-6} \times n^{6 n-2} ; \quad n \geq 1 . \tag{29}
\end{equation*}
$$

5. Complexity of Tensor Product of Graphs

The tensor product, or Kronecker product, $G_{1} \otimes G_{2}$, is the simple graph with $V\left(G_{1} \otimes G_{2}\right)=V_{1} \times V_{2}$, where $\left(u_{1}, u_{2}\right)$ and

$$
\begin{aligned}
& \tau\left(K_{3} \otimes K_{m, n}\right) \\
& =\frac{1}{9(m+n)^{2}} \operatorname{det}(3(m+n) I-\bar{D}+\bar{A}) \\
& =\frac{1}{9(m+n)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{cccccccccccc}
0 & \cdots & \cdots & 0 & 1 & \cdots & \cdots & 1 & 0 & \cdots & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & 0 & 1 & \cdots & \cdots & 1 & 0 & \cdots & \cdots & 0 \\
1 & \cdots & \cdots & 1 & 0 & \cdots & \cdots & 0 & 1 & \cdots & \cdots & 1 \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
1 & \cdots & \cdots & 1 & 0 & \cdots & \cdots & 0 & 1 & \cdots & \cdots & 1 \\
1 & \cdots & \cdots & 1 & 1 & \cdots & \cdots & 1 & 0 & \cdots & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
1 & \cdots & \cdots & 1 & 1 & \cdots & \cdots & 1 & 0 & \cdots & \cdots & 0 \\
2 m+1 & 1 & \cdots & 1 & 0 & \cdots & \cdots & 0 & 1 & \cdots & \cdots & 1 \\
1 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
1 & \cdots & 1 & 2 m+1 & 0 & \cdots & \cdots & 0 & 1 & \cdots & \cdots & 1 \\
0 & \cdots & \cdots & 0 & 2 n+1 & 1 & \cdots & 1 & 1 & \cdots & \cdots & 1 \\
\vdots & \ddots & \ddots & \vdots & 1 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 1 & \vdots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & 0 & 1 & \cdots & 1 & 2 n+1 & 1 & \cdots & \cdots & 1 \\
1 & \cdots & \cdots & 1 & 1 & \cdots & \cdots & 1 & 2 m+1 & 1 & \cdots & 1 \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots & 1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 1 \\
1 & \cdots & \cdots & 1 & 1 & \cdots & \cdots & 1 & 1 & \cdots & 1 & 2 m+1
\end{array} \\
& =\frac{1}{9(m+n)^{2}} \operatorname{det}\left(\begin{array}{lll}
A & B & B \\
B & A & B \\
B & B & A
\end{array}\right)=\frac{1}{9(m+n)^{2}}[\operatorname{det}(A-B)]^{2}[\operatorname{det}(A+2 B)] \\
& =\frac{1}{9(m+n)^{2}}\left(\operatorname{det}\left(\begin{array}{cccccccc}
2 n & 0 & \cdots & 0 & 1 & \cdots & \cdots & 1 \\
0 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 & \vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & 2 n & 1 & \cdots & \cdots & 1 \\
1 & \cdots & \cdots & 1 & 2 m & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots & 0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 0 \\
1 & \cdots & \cdots & 1 & 0 & \cdots & 0 & 2 m
\end{array}\right)\right)^{2} \\
& \times \operatorname{det}\left(\begin{array}{cccccccc}
2 n+3 & 3 & \cdots & 3 & 1 & \cdots & \cdots & 1 \\
3 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 3 & \vdots & \ddots & \ddots & \vdots \\
3 & \cdots & 3 & 2 n+3 & 1 & \cdots & \cdots & 1 \\
1 & \cdots & \cdots & 1 & 2 m+3 & 3 & \cdots & 3 \\
\vdots & \ddots & \ddots & \vdots & 3 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 3 \\
1 & \cdots & \cdots & 1 & 3 & \cdots & 3 & 2 m+3
\end{array}\right)
\end{aligned}
$$

$$
\begin{align*}
= & \frac{1}{9(m+n)^{2}} \operatorname{det}\left(\begin{array}{cc}
A & B \\
B^{T} & C
\end{array}\right) \times \operatorname{det}\left(\begin{array}{cc}
D & E \\
E^{T} & F
\end{array}\right)=\frac{1}{9(m+n)^{2}} \\
& \times(\operatorname{det} A)^{2}\left(\operatorname{det}\left(C-B^{T} A^{-1} B\right)\right)^{2} \times \operatorname{det} D \operatorname{det}\left(F-E^{T} D^{-1} E\right) . \tag{32}
\end{align*}
$$

Thus,

$$
\begin{aligned}
& \tau\left(K_{3} \otimes K_{m, n}\right)=\frac{1}{9(m+n)^{2}}\left(\operatorname{det}\left(\begin{array}{cccc}
2 n & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 2 n
\end{array}\right)_{m \times m}\right)^{2} \\
& \left.\times\left(\operatorname{det}\left(\begin{array}{cccc}
\frac{m(4 n-1)}{2 n} & \frac{-m}{2 n} & \cdots & \frac{-m}{2 n} \\
\frac{-m}{2 n} & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \frac{-m}{2 n} \\
\frac{-m}{2 n} & \cdots & \frac{-m}{2 n} & \frac{m(4 n-1)}{2 n}
\end{array}\right)_{n \times n}\right)\right)^{2} \\
& \times \operatorname{det}\left(\begin{array}{cccc}
2 n+3 & 3 & \cdots & 3 \\
3 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 3 \\
3 & \cdots & 3 & 2 n+3
\end{array}\right)_{m \times m} \\
& \times \operatorname{det}\left(\begin{array}{cccc}
\frac{n(4 m+6)+6 m^{2}+8 m}{2 n+3 m} & \frac{6 n+8 m}{2 n+3 m} & \cdots & \frac{6 n+8 m}{2 n+3 m} \\
\frac{6 n+8 m}{2 n+3 m} & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \frac{6 n+8 m}{2 n+3 m} \\
\frac{6 n+8 m}{2 n+3 m} & \cdots & \frac{6 n+8 m}{2 n+3 m} & \frac{n(4 m+6)+6 m^{2}+8 m}{2 n+3 m}
\end{array}\right)_{n \times n} \\
& \left.=\frac{1}{9(m+n)^{2}}(2 n)^{2 m} \times\left(\frac{-m}{2 n}\right)^{2 n} \times\left(\operatorname{det}\left(\begin{array}{cccc}
\frac{m(4 n-1)}{-m} & 1 & \cdots & 1 \\
1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & \frac{m(4 n-1)}{-m}
\end{array}\right)\right)_{n \times n}\right)^{2} \\
& \times 3^{m} \times \operatorname{det}\left(\begin{array}{cccc}
\frac{2 n+3}{3} & 1 & \cdots & 1 \\
1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & \frac{2 n+3}{3}
\end{array}\right) \times\left(\frac{6 n+8 m}{2 n+3 m}\right)^{n}
\end{aligned}
$$

$$
\times \operatorname{det}\left(\begin{array}{cccc}
\frac{n(4 m+6)+6 m^{2}+8 m}{6 n+8 m} & 1 & \cdots & 1 \tag{33}\\
1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & \frac{n(4 m+6)+6 m^{2}+8 m}{6 n+8 m}
\end{array}\right)_{n \times n}
$$

Using Lemma 2, we have

$$
\begin{align*}
\tau\left(K_{3} \otimes K_{m, n}\right)= & \frac{1}{9(m+n)^{2}}(2 n)^{2 m} \tag{34}\\
& \times\left[\left(\frac{m}{2 n}\right)^{2 n} \times(-3 n)^{2} \times(-4 n)^{2 n-2}\right] \tag{35}\\
\times & {\left[3^{m}\left(\frac{2 n+3 m}{3}\right) \times\left(\frac{2 n}{3}\right)^{m-1}\right] } \\
\times & \times\left(\frac{6 n+8 m}{2 n+3 m}\right)^{n} \\
& \times\left[\left(\frac{4 n m+6 n+6 m^{2}+8 m}{6 n+8 m}+n-1\right)\right. \\
& \left.\times\left(\frac{4 n m+6 n+6 m^{2}+8 m}{6 n+8 m}-1\right)^{n-1}\right] \\
= & \times(2 n)^{2 m-2 n} \times m^{3 n-1} \tag{36}\\
& \times n^{2 n+m-1} \times 2^{5 n+m-5}
\end{align*}
$$

$$
=3 \times 2^{3 m+3 n-5} \times n^{3 m-1} \times m^{3 n-1}
$$

In particular,

$$
\tau\left(K_{3} \otimes K_{n, n}\right)=3 \times 2^{6 n-5} \times n^{6 n-2} ; \quad n \geq 1 .
$$

6. Number of Spanning Trees of Symmetric Product of Graphs

The symmetric product, $G_{1} \oplus G_{2}$, is the simple graph with $V\left(G_{1} \circ G_{2}\right)=V_{1} \times V_{2}$, where $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ are adjacent in $G_{1} \oplus G_{2}$ if and only if either u_{1} is adjacent to v_{1} in G_{1} and u_{2} is not adjacent to v_{2} in G_{2}, or u_{1} is not adjacent to v_{1} in G_{1} and u_{2} is adjacent to v_{2} in G_{2} [13].

Theorem 13. For $n, m \geq 1$, we have

$$
\tau\left(K_{2} \oplus K_{m, n}\right)=(m+n)^{2(m+n-1)}
$$

Proof. Applying Lemma 1, we have

$$
\begin{aligned}
& \tau\left(K_{2} \oplus K_{m, n}\right) \\
& =\frac{1}{4(m+n)^{2}} \operatorname{det}(2(m+n) I-\bar{D}+\bar{A}) \\
& =\frac{1}{4(m+n)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \times \operatorname{det}\left(\begin{array}{cccccccc}
m+n+1 & 1 & \cdots & 1 & 0 & \cdots & \cdots & 0 \\
1 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 & \vdots & \ddots & \ddots & \vdots \\
1 & \cdots & 1 & m+n+1 & 0 & \cdots & \cdots & 0 \\
0 & \cdots & \cdots & 0 & m+n+1 & 1 & \cdots & 1 \\
\vdots & \ddots & \ddots & \vdots & 1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 1 \\
0 & \cdots & \cdots & 0 & 1 & \cdots & 1 & m+n+1 \\
0 & \cdots & \cdots & 0 & 1 & \cdots & \cdots & 1 \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & 0 & 1 & \cdots & \cdots & 1 \\
1 & \cdots & \cdots & 1 & 0 & \cdots & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
1 & \cdots & \cdots & 1 & 0 & \cdots & \cdots & 0
\end{array}\right. \\
& \left.\begin{array}{cccccccc}
0 & \cdots & \cdots & 0 & 1 & \cdots & \cdots & 1 \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & 0 & 1 & \cdots & \cdots & 1 \\
1 & \cdots & \cdots & 1 & 0 & \cdots & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
1 & \cdots & \cdots & 1 & 0 & \cdots & \cdots & 0 \\
m+n+1 & 1 & \cdots & 1 & 0 & \cdots & \cdots & 0 \\
1 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 & \vdots & \ddots & \ddots & \vdots \\
1 & \cdots & 1 & m+n+1 & 0 & \cdots & \cdots & 0 \\
0 & \ddots & \ddots & 0 & m+n+1 & 1 & \cdots & 1 \\
\vdots & \ddots & \ddots & \vdots & 1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 1 \\
0 & \cdots & \cdots & 0 & 1 & \cdots & 1 & m+n+1
\end{array}\right) \\
& =\frac{1}{4(m+n)^{2}} \operatorname{det}\left(\begin{array}{cccccccc}
m+n+1 & 1 & \cdots & 1 & 1 & \cdots & \cdots & 1 \\
1 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 & \vdots & \ddots & \ddots & \vdots \\
1 & \cdots & 1 & m+n+1 & 1 & \cdots & \cdots & 1 \\
1 & \cdots & \cdots & 1 & m+n+1 & 1 & \cdots & 1 \\
\vdots & \ddots & \ddots & \vdots & 1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 1 \\
1 & \cdots & \cdots & 1 & 1 & \cdots & 1 & m+n+1
\end{array}\right)
\end{aligned}
$$

$$
\begin{align*}
& \times \operatorname{det}\left(\begin{array}{cccccccc}
m+n+1 & 1 & \cdots & 1 & -1 & \cdots & \cdots & -1 \\
1 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 & \vdots & \ddots & \ddots & \vdots \\
1 & \cdots & 1 & m+n+1 & -1 & \cdots & \cdots & -1 \\
-1 & \cdots & \cdots & -1 & m+n+1 & 1 & \cdots & 1 \\
\vdots & \ddots & \ddots & \vdots & 1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 1 \\
-1 & \cdots & \cdots & -1 & 1 & \cdots & 1 & m+n+1
\end{array}\right) \\
& =\frac{1}{4(m+n)^{2}}(m+n+1+m+n-1)(m+n+1-1)^{m+n-1} \times \operatorname{det}\left(\begin{array}{cc}
A & B \\
B^{T} & C
\end{array}\right) \\
& =\frac{1}{2}(m+n)^{m+n-2} \times \operatorname{det} A \operatorname{det}\left(C-B^{T} A^{-1} B\right) \\
& =\frac{1}{2}(m+n)^{m+n-2} \times(2 m+n)(m+n)^{m-1} \\
& \times \operatorname{det}\left(\begin{array}{cccc}
\frac{n^{2}+(3 m+1) n+2 m^{2}+m}{(n+2 m)} & \frac{n+m}{n+2 m} & \cdots & \frac{n+m}{n+2 m} \\
\frac{n+m}{n+2 m} & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \frac{n+m}{n+2 m} \\
\frac{n+m}{n+2 m} & \cdots & \frac{n+m}{n+2 m} & \frac{n^{2}+(3 m+1) n+2 m^{2}+m}{(n+2 m)}
\end{array}\right)_{n \times n} \\
& =\frac{1}{2}(m+n)^{2 m+n-3} \times(2 m+n) \times\left(\frac{n+m}{n+2 m}\right)^{n} \\
& \times \operatorname{det}\left(\begin{array}{cccc}
\frac{n^{2}+(3 m+1) n+2 m^{2}+m}{n+m} & 1 & \cdots & 1 \\
1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & \frac{n^{2}+(3 m+1) n+2 m^{2}+m}{n+m}
\end{array}\right)_{n \times n} . \tag{37}
\end{align*}
$$

Thus,

$$
\begin{align*}
\tau\left(K_{2} \oplus K_{m, n}\right)= & \frac{1}{2}(m+n)^{2 m+n-3} \times(2 m+n) \\
& \times\left(\frac{n+m}{n+2 m}\right)^{n} \times(2 n+2 m)(n+2 m)^{n-1} \\
= & (m+n)^{2(m+n-1)} . \tag{38}
\end{align*}
$$

In particular,

$$
\begin{equation*}
\tau\left(K_{2} \oplus K_{n, n}\right)=(2 n)^{2(2 n-1)} ; \quad n \geq 1 . \tag{39}
\end{equation*}
$$

Theorem 14. For $m, n \geq 1$, we have

$$
\begin{align*}
\tau\left(K_{3} \oplus K_{m, n}\right)= & 3(2 m+n)^{3 m-3} \\
& \times(2 n+m)^{3 n-3}\left(m^{2}+n^{2}+3 m n\right)^{2} \tag{40}
\end{align*}
$$

Proof. Applying Lemma 1, we have

$$
\begin{aligned}
& \tau\left(K_{3} \oplus K_{m, n}\right) \\
& =\frac{1}{9(m+n)^{2}} \operatorname{det}(3(m+n) I-\bar{D}+\bar{A}) \\
& =\frac{1}{9(m+n)^{2}}
\end{aligned}
$$

$\times \operatorname{det}$	($2 m+n+1$	$1 \ldots$	1	0	0	0	0
	-								
	1	$\because \cdot$:	:	$\because \cdot$.	:	$\because \cdot$:
	!	$\because \cdot$	1	\vdots	$\because \cdot$!	\vdots	$\ddots \cdot$!
	1	$\cdots 1$	$2 m+n+1$	0	0	0	\ldots	0
	0	0	$2 n+m+1$	1 ...	1	1	1
	:	$\because \cdot$	\vdots	1	$\because \cdot$	\vdots	\vdots	$\ddots \cdot$,	\vdots
	!	$\because \quad \ddots$;	:	$\because \quad \ddots$	引	;	$\ddots \cdot$;
	0	...	0	1	$\cdots 1$	$2 n+m+1$	1	1
	0	0	1	.	1	$2 m+n+1$	1	1
	:	,	.	:	$\because \cdot$	\vdots	1	$\because \cdot$:
	\vdots	\cdots	\vdots	:		;	.	$\bullet \cdot$	1
	0	,	0	1	\ldots	1	1	$\cdots 1$	$2 m+n+1$
	1	1	0	0	0	.	0
	.	.	\vdots	.	$\because \cdot$:	:	$\because \cdot$	\vdots
	:	$\because \cdot$	\vdots	:	\cdots	!	:	$\because \cdot$:
	1	\ldots	1	0	\cdots	0	0	\ldots	0
	0	0	1	.	1	0	0
	\vdots	$\because \cdot$	\vdots	.	$\because \cdot$.	\vdots	$\ddots \cdot$	\vdots
	:		:	:	\cdot •.	:	:	$\cdots \cdot$:
	0	$\cdots \ldots$	0	1	\ldots. . ${ }^{\text {a }}$	1	0	$\ldots \ldots$	0
	1	1	0	...	0	1	1
	:	. \quad	.	\vdots	$\because \cdot$	\vdots	\vdots	$\because \cdot$	\vdots
	:	$\because \cdot$:	:	$\ddots \cdot$:	\vdots	$\because \cdot$	\vdots
	(1	.	0	0	.	0	1	.	1
	1	.	1	0 ${ }^{\text {a }}$	0	1	1
	\vdots	\ddots	;	\vdots	$\because \cdot$	\vdots	\vdots	$\because \cdot \ddots$	\vdots
	:		:	:		:	:		:
	1	\cdots	i	0		0	i		i
	0	0	1	1	0	\ldots	0
	:	-	:	:		:	:		:
	\vdots	\ddots	\vdots	.	$\because \cdot$	\vdots	.	$\because \cdot$	1
	0	0	1	.	1	0	.	0
	0	0	0	0	1	1
	:	\bullet	:	:	\cdots.	:	:		:
				.					
	\vdots	\ddots	\vdots	\vdots	$\because \quad \ddots$.	.	$\because \quad \ddots$!
	0	. . .	0	0	0	1	\ldots...	1
	$2 n+m+1$	$1 \cdots$	1	1	1	0	0
	1	\ddots	:	\vdots	$\because \quad \ddots$:	\vdots	$\because \quad \ddots$:
	\vdots	$\because \quad$.	1	\vdots	$\because \quad \ddots$	\vdots	:	$\because \quad \ddots$:
	1	$\cdots 1$	$2 n+m+1$	1	\cdots	1	0		0
	1	1	$2 m+n+1$	$1 \cdots$	1	0	0
	$\vdots \quad$.	$\because \cdot$	\vdots	1	$\because \cdot$	\vdots	\vdots	$\because \cdot \ddots$	\vdots
	!	\ddots	\vdots	!	$\because \cdot$	1	\vdots	$\because \cdot$!
	1	\ldots	1	1	$\cdots 1$	$2 m+n+1$	0	\ldots	0
	0	0	0	0	$2 n+m+1$	1 .	1
	:	$\because \cdot$:	\vdots	$\ddots \cdot$	\vdots	1	$\because \quad \ddots$	\vdots
	\vdots	\cdots	\vdots	.		\vdots	\vdots	$\because \quad \ddots$	1
	0	0	0	0	1	$\cdots 1$	$2 n+m+1$

$$
\left.\times\left(\begin{array}{cccc}
\frac{2 n^{2}+n(7 m+1)+3 m^{2}+2 m}{n+3 m} & \frac{n+2 m}{n+3 m} & \cdots & \frac{n+2 m}{n+3 m} \\
\frac{n+2 m}{n+3 m} & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \frac{n+2 m}{n+3 m} \\
\frac{n+2 m}{n+3 m} & \cdots & \frac{n+2 m}{n+3 m} & \frac{2 n^{2}+n(7 m+1)+3 m^{2}+2 m}{n+3 m}
\end{array}\right)_{n \times n}\right)_{n}
$$

$$
\times(3 m+n)(2 m+n)^{m-1}
$$

$$
\times \operatorname{det}\left(\begin{array}{cccc}
\frac{2 n^{2}+n(7 m+1)+3 m^{2}-m}{n+3 m} & \frac{n-m}{n+3 m} & \cdots & \frac{n-m}{n+3 m} \\
\frac{n-m}{n+3 m} & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \frac{n-m}{n+3 m} \\
\frac{n-m}{n+3 m} & \cdots & \frac{n-m}{n+3 m} & \frac{2 n^{2}+n(7 m+1)+3 m^{2}-m}{n+3 m}
\end{array}\right)_{n \times n}
$$

$$
\begin{aligned}
& =\frac{1}{9(m+n)^{2}} \operatorname{det}\left(\begin{array}{lll}
A & B & B \\
B & A & B \\
B & B & A
\end{array}\right)=\frac{1}{9(m+n)^{2}}[\operatorname{det}(A-B)]^{2}[\operatorname{det}(A+2 B)] \\
& =\frac{1}{9(m+n)^{2}}\left(\operatorname{det}\left(\begin{array}{cccccccc}
2 m+n+1 & 1 & \cdots & 1 & -1 & \cdots & \cdots & -1 \\
1 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 & \vdots & \ddots & \ddots & \vdots \\
1 & \cdots & 1 & 2 m+n+1 & -1 & \cdots & \cdots & -1 \\
-1 & \cdots & \cdots & -1 & 2 n+m+1 & 1 & \cdots & 1 \\
\vdots & \ddots & \ddots & \vdots & 1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 1 \\
-1 & \cdots & \cdots & -1 & 1 & \cdots & 1 & 2 n+m+1
\end{array}\right)\right){ }^{2 n} \\
& \times \operatorname{det}\left(\begin{array}{cccccccc}
2 m+n+1 & 1 & \cdots & 1 & 2 & \cdots & \cdots & 2 \\
1 & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 & \vdots & \ddots & \ddots & \vdots \\
1 & \cdots & 1 & 2 m+n+1 & 2 & \cdots & \cdots & 2 \\
2 & \cdots & \cdots & 2 & 2 n+m+1 & 1 & \cdots & 1 \\
\vdots & \ddots & \ddots & \vdots & 3 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 1 \\
2 & \cdots & \cdots & 2 & 1 & \cdots & 1 & 2 n+m+1
\end{array}\right) \\
& =\frac{1}{9(m+n)^{2}}\left(\operatorname{det}\left(\begin{array}{cc}
A & B \\
B^{T} & C
\end{array}\right)\right)^{2} \times \operatorname{det}\left(\begin{array}{cc}
D & E \\
E^{T} & F
\end{array}\right)=\frac{1}{9(m+n)^{2}} \times(\operatorname{det} A)^{2}\left(\operatorname{det}\left(C-B^{T} A^{-1} B\right)\right)^{2} \\
& \times \operatorname{det} D \operatorname{det}\left(F-E^{T} D^{-1} E\right) \\
& =\frac{(3 m+n)^{2}(2 m+n)^{2 m-2}}{9(m+n)^{2}}
\end{aligned}
$$

$$
\begin{align*}
& =\frac{(3 m+n)^{2}(2 m+n)^{2 m-2}}{9(m+n)^{2}} \\
& \left.\times\left(\frac{n+2 m}{n+3 m}\right)^{2 n} \operatorname{det}\left(\begin{array}{cccc}
\frac{2 n^{2}+n(7 m+1)+3 m^{2}+2 m}{n+2 m} & 1 & \cdots & 1 \\
1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & \frac{2 n^{2}+n(7 m+1)+3 m^{2}+2 m}{n+2 m}
\end{array}\right){ }_{n \times n}\right)^{2} \\
& \times(3 m+n)(2 m+n)^{m-1} \\
& \times\left(\frac{n-m}{n+3 m}\right)^{n} \operatorname{det}\left(\begin{array}{cccc}
\frac{2 n^{2}+n(7 m+1)+3 m^{2}-m}{n-m} & 1 & \cdots & 1 \\
1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & \frac{2 n^{2}+n(7 m+1)+3 m^{2}-m}{n-m}
\end{array}\right)_{n \times n} \tag{41}
\end{align*}
$$

Using Lemma 2, we have

$$
\begin{align*}
\tau\left(K_{3} \oplus K_{m, n}\right)= & \frac{1}{9(m+n)^{2}}(3 m+n)^{2}(2 m+n)^{2 m-2} \\
& \times\left(\frac{n+2 m}{n+3 m}\right)^{2 n} \frac{1}{(n+3 m)^{2 n}} \\
& \times\left(3 n^{2}+3 m^{2}+9 n m\right)^{2} \\
& \times\left(2 n^{2}+3 m^{2}+7 n m\right)^{2 n-2} \\
& \times(3 m+n)(2 m+n)^{m-1} \tag{42}\\
& \times\left(\frac{n-m}{n+3 m}\right)^{n} \times \frac{1}{(n-m)^{n}} \\
& \times\left(3 n^{2}+3 m^{2}+6 n m\right) \\
& \times\left(2 n^{2}+3 m^{2}+7 n m\right)^{n-1} \\
= & 3(2 m+n)^{3 m-3}(2 n+m)^{3 n-3} \\
& \times\left(m^{2}+n^{2}+3 m n\right)^{2} .
\end{align*}
$$

In particular,

$$
\begin{equation*}
\tau\left(K_{3} \oplus K_{n, n}\right)=25 \times 3^{6 n-5} \times n^{6 n-2} ; \quad n \geq 1 \tag{43}
\end{equation*}
$$

7. Conclusion

The number of spanning trees $\tau(G)$ in graphs (networks) is an important invariant. The evaluation of this number is not only
interesting from a mathematical (computational) perspective but is also an important measure of reliability of a network and designing electrical circuits. Some computationally hard problems such as the travelling salesman problem can be solved approximately by using spanning trees. Due to the high dependence of the network design and reliability on the graph theory, we introduced the above important theorems and lemmas and their proofs.

Acknowledgments

The author is deeply indebted and thankful to the deanship of the scientific research for its help and to the distinct team of employees at Taibah University, Al Madinah Saudi Arabia. This research work was supported by Grant No. 3070/1434.

References

[1] G. G. Kirchhoff, "Uber die Auflosung der Gleichungen, auf welche man be ider Untersuchung der Linearen Verteilung galvanischer Storme gefuhrt wird," Annual Review of Physical Chemistry, vol. 72, pp. 497-4508, 1847.
[2] A. K. Kelmans and V. M. Chelnokov, "A certain polynomial of a graph and graphs with an extremal number of trees," Journal of Combinatorial Theory B, vol. 16, pp. 197-214, 1974.
[3] G. A. Cayley, "A theorm on trees," Quarterly Journal of Mathematics, vol. 23, pp. 276-378, 1889.
[4] L. Clark, "On the enumeration of spanning trees of the complete multipartite graph," Bulletin of the Institute of Combinatorics and its Applications, vol. 38, pp. 50-60, 2003.
[5] S. N. Qiao and B. Chen, "The number of spanning trees and chains of graphs," Applied Mathematics E-Notes, vol. 9, pp. 1016, 2009.
[6] J. Sedláček, "Lucas numbers in graph theory," in Mathematics (Geometry and Graph Theory), pp. 111-115, Univerzita Karlova, Prague, Czech Republic, 1970.
[7] J. Sedlacek, "On the skeleton of a graph or digraph," in Combinatorial Structures and Their Applications, R. Guy, M. Hanani, N. Saver, and J. Schonheim, Eds., pp. 387-391, Gordon and Breach, New York, NY, USA, 1970.
[8] F. T. Boesch and Z. R. Bogdanowicz, "The number of spanning trees in a Prism," International Journal of Computer Mathematics, vol. 21, pp. 229-243, 1987.
[9] F. T. Boesch and H. Prodinger, "Spanning tree formulas and Chebyshev polynomials," Graphs and Combinatorics, vol. 2, no. 3, pp. 191-200, 1986.
[10] S. N. Daoud, "Chebyshev polynomials and spanning tree formulas," International Journal of Mathematical Combinatorics, vol. 4, pp. 68-79, 2013.
[11] M. Marcus, A Servy of Matrix Theory and Matrix Inequalities, Allyn and Bacon, Boston, Mass, USA, 1964.
[12] J. L. Gross and T. W. Tucker, Topological Graph Theory, John Wiley \& Sons, New York, Ny, USA, 1987.
[13] R. Balakrishnan and K. Ranganathan, A textbook of Graph Theory, Springer, New York, NY, USA, 2000.

